Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.083
1.
Front Immunol ; 15: 1402024, 2024.
Article En | MEDLINE | ID: mdl-38873598

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.


Cholesterol , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/immunology , Cholesterol/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Animals , Host-Pathogen Interactions/immunology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Lipid Metabolism
2.
Pathog Dis ; 822024 Feb 07.
Article En | MEDLINE | ID: mdl-38845379

Tuberculosis (TB) continues to pose a significant global health challenge, emphasizing the critical need for effective preventive measures. Although many studies have tried to develop new attenuated vaccines, there is no effective TB vaccine. In this study, we report a novel attenuated Mycobacterium tuberculosis (M. tb) strain, CHVAC-25, cultured continuously for 25 years in the laboratory. CHVAC-25 exhibited significantly reduced virulence compared to both the virulent H37Rv strain in C57BL/6J and severe combined immunodeficiency disease mice. The comparative genomic analysis identified 93 potential absent genomic segments and 65 single nucleotide polymorphic sites across 47 coding genes. Notably, the deletion mutation of ppsC (Rv2933) involved in phthiocerol dimycocerosate synthesis likely contributes to CHVAC-25 virulence attenuation. Furthermore, the comparative analysis of immune responses between H37Rv- and CHVAC-25-infected macrophages showed that CHVAC-25 triggered a robust upregulation of 173 genes, particularly cytokines crucial for combating M. tb infection. Additionally, the survival of CHVAC-25 was significantly reduced compared to H37Rv in macrophages. These findings reiterate the possibility of obtaining attenuated M. tb strains through prolonged laboratory cultivation, echoing the initial conception of H37Ra nearly a century ago. Additionally, the similarity of CHVAC-25 to genotypes associated with attenuated M. tb vaccine positions it as a promising candidate for TB vaccine development.


Macrophages , Mycobacterium tuberculosis , Tuberculosis Vaccines , Vaccines, Attenuated , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Animals , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/genetics , Mice , Macrophages/immunology , Macrophages/microbiology , Virulence/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Genome, Bacterial , Genomics/methods , Mice, Inbred C57BL , Cytokines/metabolism , Tuberculosis/microbiology , Tuberculosis/immunology , Tuberculosis/prevention & control , Polymorphism, Single Nucleotide , Disease Models, Animal
3.
Emerg Microbes Infect ; 13(1): 2366359, 2024 Dec.
Article En | MEDLINE | ID: mdl-38855910

Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.


Coinfection , Granuloma , HIV Infections , Lung , Macrophages , Receptors, Interleukin-6 , STAT3 Transcription Factor , Humans , Coinfection/virology , Coinfection/immunology , Coinfection/microbiology , HIV Infections/complications , HIV Infections/immunology , Macrophages/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Granuloma/immunology , Lung/pathology , Lung/immunology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Signal Transduction , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/complications , Male , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/complications , Female , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , CD68 Molecule
4.
Front Immunol ; 15: 1413947, 2024.
Article En | MEDLINE | ID: mdl-38881887

CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.


CD36 Antigens , Mycobacterium tuberculosis , Tuberculosis , Humans , CD36 Antigens/metabolism , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Animals , Lipid Metabolism , Signal Transduction , Biomarkers , Host-Pathogen Interactions/immunology
5.
Nat Commun ; 15(1): 5191, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38890283

A recent clinical trial demonstrated that Bacille Calmette-Guérin (BCG) revaccination of adolescents reduced the risk of sustained infection with Mycobacterium tuberculosis (M.tb). In a companion phase 1b trial, HVTN 602/Aeras A-042, we characterize in-depth the cellular responses to BCG revaccination or to a H4:IC31 vaccine boost to identify T cell subsets that could be responsible for the protection observed. High-dimensional clustering analysis of cells profiled using a 26-color flow cytometric panel show marked increases in five effector memory CD4+ T cell subpopulations (TEM) after BCG revaccination, two of which are highly polyfunctional. CITE-Seq single-cell analysis shows that the activated subsets include an abundant cluster of Th1 cells with migratory potential. Additionally, a small cluster of Th17 TEM cells induced by BCG revaccination expresses high levels of CD103; these may represent recirculating tissue-resident memory cells that could provide pulmonary immune protection. Together, these results identify unique populations of CD4+ T cells with potential to be immune correlates of protection conferred by BCG revaccination.


BCG Vaccine , CD4-Positive T-Lymphocytes , Mycobacterium tuberculosis , Mycobacterium tuberculosis/immunology , Humans , Adolescent , CD4-Positive T-Lymphocytes/immunology , BCG Vaccine/immunology , Immunization, Secondary , Tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/microbiology , Female , Male , Phenotype , Single-Cell Analysis , Th1 Cells/immunology , Immunologic Memory/immunology
6.
Front Cell Infect Microbiol ; 14: 1398077, 2024.
Article En | MEDLINE | ID: mdl-38836056

Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.


Extracellular Vesicles , Host-Pathogen Interactions , Mycobacterium tuberculosis , Tuberculosis , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mycobacterium tuberculosis/immunology , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/metabolism , Host-Pathogen Interactions/immunology , Animals
7.
Front Immunol ; 15: 1401867, 2024.
Article En | MEDLINE | ID: mdl-38846947

Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.


Biomarkers , Exosomes , Mycobacterium tuberculosis , Tuberculosis , Exosomes/immunology , Exosomes/metabolism , Humans , Tuberculosis/immunology , Tuberculosis/diagnosis , Tuberculosis/therapy , Tuberculosis/microbiology , Mycobacterium tuberculosis/immunology , Animals , Antitubercular Agents/therapeutic use
8.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article En | MEDLINE | ID: mdl-38892443

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.


Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/pathology , Animals , Cell Death/immunology , Host-Pathogen Interactions/immunology , Apoptosis , Immunity, Innate , Autophagy/immunology , Signal Transduction , Macrophages/immunology , Macrophages/microbiology
9.
Tuberculosis (Edinb) ; 147: 102517, 2024 Jul.
Article En | MEDLINE | ID: mdl-38733881

The extensive inability of the BCG vaccine to produce long-term immune protection has not only accelerated the disease burden but also progressed towards the onset of drug resistance. In our previous study, we have reported the promising effects of Bergenin (Berg) in imparting significant protection as an adjunct immunomodulator against tuberculosis (TB). In congruence with our investigations, we delineated the impact of Berg on T cells, wherein it enhanced adaptive memory responses by modulating key transcription factors, STAT4 and Akt. We translated this finding into the vaccine model of TB and observed a notable reduction in the burden of Mycobacterium tuberculosis (M.tb) in BCG-Berg co-immunized mice as compared to BCG vaccination. Moreover, Berg, along with BCG, also aided in a heightened proinflammatory response milieu that corroborates the host protective immune response against TB. Furthermore, this response aligns with the escalated central and resident memory responses by modulating the Akt-Foxo-Stat4 axis, which plays a crucial role in enhancing the vaccine efficacy of BCG. These findings showcase the utilization of immunomodulator Berg as an immunoprophylactic agent to upgrade immunological memory, making it a more effective defender against TB.


Adaptive Immunity , BCG Vaccine , Benzopyrans , Immunologic Memory , Mice, Inbred C57BL , Mycobacterium tuberculosis , Proto-Oncogene Proteins c-akt , STAT4 Transcription Factor , Signal Transduction , Animals , BCG Vaccine/immunology , BCG Vaccine/pharmacology , Immunologic Memory/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mycobacterium tuberculosis/immunology , Benzopyrans/pharmacology , STAT4 Transcription Factor/metabolism , Adaptive Immunity/drug effects , Female , Tuberculosis/immunology , Tuberculosis/microbiology , Host-Pathogen Interactions , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Mice
10.
Commun Biol ; 7(1): 584, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755239

B cells are important in tuberculosis (TB) immunity, but their role in the human lung is understudied. Here, we characterize B cells from lung tissue and matched blood of patients with TB and found they are decreased in the blood and increased in the lungs, consistent with recruitment to infected tissue, where they are located in granuloma associated lymphoid tissue. Flow cytometry and transcriptomics identify multiple B cell populations in the lung, including those associated with tissue resident memory, germinal centers, antibody secretion, proinflammatory atypical B cells, and regulatory B cells, some of which are expanded in TB disease. Additionally, TB lungs contain high levels of Mtb-reactive antibodies, specifically IgM, which promotes Mtb phagocytosis. Overall, these data reveal the presence of functionally diverse B cell subsets in the lungs of patients with TB and suggest several potential localized roles that may represent a target for interventions to promote immunity or mitigate immunopathology.


B-Lymphocytes , Humans , B-Lymphocytes/immunology , Lung/immunology , Lung/microbiology , Lung/pathology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Phenotype , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/genetics , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Male , Female , Adult
11.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 485-489, 2024 May 12.
Article Zh | MEDLINE | ID: mdl-38706074

Programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, expressed on a variety of immune cells, play multiple regulatory roles in the host immune response to Mycobacterium tuberculosis infection. In this study, we reviewed that the regulatory roles of PD-1/PD-L1, PD-L2 signaling in the host adaptive immune response, such as the innate response of macrophages, and the interaction between T cells and macrophages in response to MTB. In addition, during MTB infection, PD-1/PD-L1, PD-L2 signaling is also involved in the host inflammatory response, as well as the potential roles of PD-1/PD-L1, PD-L2 in the diagnosis and treatment of tuberculosis.


B7-H1 Antigen , Macrophages , Mycobacterium tuberculosis , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Signal Transduction , Tuberculosis , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Mycobacterium tuberculosis/immunology , Macrophages/immunology , Macrophages/metabolism , Immunity, Innate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Adaptive Immunity
12.
Sci Rep ; 14(1): 10375, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710737

Tuberculosis (TB) a disease caused by Mycobacterium tuberculosis (Mtb) poses a significant threat to human life, and current BCG vaccinations only provide sporadic protection, therefore there is a need for developing efficient vaccines. Numerous immunoinformatic methods have been utilized previously, here for the first time a deep learning framework based on Deconvolutional Neural Networks (DCNN) and Bidirectional Long Short-Term Memory (DCNN-BiLSTM) was used to predict Mtb Multiepitope vaccine (MtbMEV) subunits against six Mtb H37Rv proteins. The trained model was used to design MEV within a few minutes against TB better than other machine learning models with 99.5% accuracy. The MEV has good antigenicity, and physiochemical properties, and is thermostable, soluble, and hydrophilic. The vaccine's BLAST search ruled out the possibility of autoimmune reactions. The secondary structure analysis revealed 87% coil, 10% beta, and 2% alpha helix, while the tertiary structure was highly upgraded after refinement. Molecular docking with TLR3 and TLR4 receptors showed good binding, indicating high immune reactions. Immune response simulation confirmed the generation of innate and adaptive responses. In-silico cloning revealed the vaccine is highly expressed in E. coli. The results can be further experimentally verified using various analyses to establish a candidate vaccine for future clinical trials.


Mycobacterium tuberculosis , Neural Networks, Computer , Tuberculosis Vaccines , Tuberculosis Vaccines/immunology , Mycobacterium tuberculosis/immunology , Humans , Molecular Docking Simulation , Vaccine Development/methods , Epitopes/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry
13.
PLoS Pathog ; 20(5): e1012148, 2024 May.
Article En | MEDLINE | ID: mdl-38728367

Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.


Diabetes Mellitus, Type 2 , Mycobacterium tuberculosis , Necroptosis , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Mice, Inbred C57BL , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Male , Cytokines/metabolism
14.
Front Immunol ; 15: 1380971, 2024.
Article En | MEDLINE | ID: mdl-38799462

Mycobacterium tuberculosis (Mtb) remains a major threat worldwide, although only a fraction of infected individuals develops tuberculosis (TB). TB susceptibility is shaped by multiple genetic factors, and we performed comparative immunological analysis of two mouse strains to uncover relevant mechanisms underlying susceptibility and resistance. C57BL/6 mice are relatively TB-resistant, whereas I/St mice are prone to develop severe TB, partly due to the MHC-II allelic variant that shapes suboptimal CD4+ T cell receptor repertoire. We investigated the repertoires of lung-infiltrating helper T cells and B cells at the progressed stage in both strains. We found that lung CD4+ T cell repertoires of infected C57BL/6 but not I/St mice contained convergent TCR clusters with functionally confirmed Mtb specificity. Transcriptomic analysis revealed a more prominent Th1 signature in C57BL/6, and expression of pro-inflammatory IL-16 in I/St lung-infiltrating helper T cells. The two strains also showed distinct Th2 signatures. Furthermore, the humoral response of I/St mice was delayed, less focused, and dominated by IgG/IgM isotypes, whereas C57BL/6 mice generated more Mtb antigen-focused IgA response. We conclude that the inability of I/St mice to produce a timely and efficient anti-Mtb adaptive immune responses arises from a suboptimal helper T cell landscape that also impacts the humoral response, leading to diffuse inflammation and severe disease.


Adaptive Immunity , Genetic Predisposition to Disease , Mice, Inbred C57BL , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Mycobacterium tuberculosis/immunology , Adaptive Immunity/genetics , Tuberculosis/immunology , Tuberculosis/genetics , Lung/immunology , Lung/pathology , B-Lymphocytes/immunology , Disease Models, Animal , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
15.
Front Immunol ; 15: 1387454, 2024.
Article En | MEDLINE | ID: mdl-38799468

Introduction: Mycobacteria are known to exert a range of heterologous effects on the immune system. The mycobacteria-based Freund's Complete Adjuvant is a potent non-specific stimulator of the immune response used in immunization protocols promoting antibody production, and Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccination has been linked with decreased morbidity and mortality beyond the specific protection it provides against tuberculosis (TB) in some populations and age groups. The role of heterologous antibodies in this phenomenon, if any, remains unclear and under-studied. Methods: We set out to evaluate antibody responses to a range of unrelated pathogens following infection with Mycobacterium tuberculosis (M.tb) and vaccination with BCG or a candidate TB vaccine, MTBVAC, in non-human primates. Results: We demonstrate a significant increase in the titer of antibodies against SARS-CoV-2, cytomegalovirus, Epstein-Barr virus, tetanus toxoid, and respiratory syncytial virus antigens following low-dose aerosol infection with M.tb. The magnitude of some of these responses correlated with TB disease severity. However, vaccination with BCG administered by the intradermal, intravenous or aerosol routes, or intradermal delivery of MTBVAC, did not increase antibody responses against unrelated pathogens. Discussion: Our findings suggest that it is unlikely that heterologous antibodies contribute to the non-specific effects of these vaccines. The apparent dysregulation of B cell responses associated with TB disease warrants further investigation, with potential implications for risk of B cell cancers and novel therapeutic strategies.


BCG Vaccine , Mycobacterium tuberculosis , Tuberculosis , Vaccination , Animals , BCG Vaccine/immunology , BCG Vaccine/administration & dosage , Tuberculosis/immunology , Tuberculosis/prevention & control , Mycobacterium tuberculosis/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Female , Macaca mulatta , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunity, Heterologous , Male
16.
Proc Natl Acad Sci U S A ; 121(19): e2318003121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38691588

Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.


Histocompatibility Antigens Class I , Mycobacterium tuberculosis , Receptors, Antigen, T-Cell , T-Lymphocytes , Mycobacterium tuberculosis/immunology , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , T-Lymphocytes/immunology , HLA-E Antigens , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Tuberculosis/immunology
17.
Front Immunol ; 15: 1347045, 2024.
Article En | MEDLINE | ID: mdl-38756781

It is essential to understand the interactions and relationships between Mycobacterium tuberculosis (Mtb) and macrophages during the infection in order to design host-directed, immunomodulation-dependent therapeutics to control Mtb. We had reported previously that ornithine acetyltransferase (MtArgJ), a crucial enzyme of the arginine biosynthesis pathway of Mtb, is allosterically inhibited by pranlukast (PRK), which significantly reduces bacterial growth. The present investigation is centered on the immunomodulation in the host by PRK particularly the activation of the host's immune response to counteract bacterial survival and pathogenicity. Here, we show that PRK decreased the bacterial burden in the lungs by upregulating the population of pro-inflammatory interstitial macrophages (IMs) and reducing the population of Mtb susceptible alveolar macrophages (AMs), dendritic cells (DCs), and monocytes (MO). Additionally, we deduce that PRK causes the host macrophages to change their metabolic pathway from fatty acid metabolism to glycolytic metabolism around the log phage of bacterial multiplication. Further, we report that PRK reduced tissue injury by downregulating the Ly6C-positive population of monocytes. Interestingly, PRK treatment improved tissue repair and inflammation resolution by increasing the populations of arginase 1 (Arg-1) and Ym1+Ym2 (chitinase 3-like 3) positive macrophages. In summary, our study found that PRK is useful not only for reducing the tubercular burden but also for promoting the healing of the diseased tissue.


Chromones , Disease Models, Animal , Mycobacterium tuberculosis , Animals , Mycobacterium tuberculosis/immunology , Mice , Chromones/pharmacology , Chromones/therapeutic use , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Mice, Inbred C57BL , Female , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/drug therapy , Lung/microbiology , Lung/immunology , Lung/pathology
18.
PLoS Pathog ; 20(5): e1012205, 2024 May.
Article En | MEDLINE | ID: mdl-38701094

Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.


Lysosomes , Macrophages, Alveolar , Monocytes , Mycobacterium tuberculosis , Lysosomes/metabolism , Lysosomes/microbiology , Animals , Monocytes/metabolism , Monocytes/microbiology , Mice , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/metabolism , Lung/microbiology , Lung/metabolism , Mice, Inbred C57BL , Chronic Disease , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Humans , Tuberculosis/microbiology , Tuberculosis/immunology , Tuberculosis/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
19.
Nat Commun ; 15(1): 4216, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760394

Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene ß-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Alanine , Antimicrobial Peptides , Macrophages , Mycobacterium tuberculosis , NF-kappa B , Tuberculosis , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/metabolism , Animals , Mice , NF-kappa B/metabolism , Humans , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Alanine/metabolism , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Tuberculosis/microbiology , Tuberculosis/immunology , Alanine Dehydrogenase/metabolism , Alanine Dehydrogenase/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Signal Transduction , Mice, Inbred C57BL , RAW 264.7 Cells , Female
20.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698289

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Macrophages , Mycobacterium tuberculosis , Transaminases , Mice , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Animals , RAW 264.7 Cells , Virulence , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Transaminases/metabolism , Transaminases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/pathogenicity , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/enzymology , Cytokines/metabolism , Toll-Like Receptor 4/metabolism , Humans , Immunity, Innate , Host-Pathogen Interactions/immunology , Tuberculosis/immunology , Tuberculosis/microbiology
...