Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
J Cancer Res Clin Oncol ; 150(6): 320, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914803

ABSTRACT

PURPOSE: Tumor-associated macrophages (TAMs) play a critical role in hepatocellular carcinoma (HCC) progression and metastasis. Systematic investigation of the cross-talk between TAMs and HCC may help in searching for the critical target to guard against HCC metastasis. METHODS AND RESULTS: Herein, we found that TREM1 highly expressed in HCC tissue by analyzing the data obtain from GEO database. Interestingly, the results indicated that TREM1 was primarily expressed by monocytes. Immune infiltration studies further validated that TREM1 expression was positively related with increased infiltration of macrophages in HCC tissues. In vitro, we observed that TREM1 knockdown significantly abrogated the effect of TAMs in promoting the metastasis and epithelial-mesenchymal transition (EMT) of HCC cells. Additionally, cytokine array detection identified CCL7 as the main responsive cytokine following with TREM1 knockdown in TAMs. CONCLUSION: Taken together, our findings strongly suggested that high expression of TREM1 was positively associated with metastasis and poor prognosis of HCC. Furthermore, TAMs expressing TREM1 contribute to EMT-based metastasis through secreting CCL7. These results provide a novel insight into the potential development of targeting the TREM1/CCL7 pathway for preventing metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular , Epithelial-Mesenchymal Transition , Liver Neoplasms , Triggering Receptor Expressed on Myeloid Cells-1 , Humans , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Prognosis , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Cell Line, Tumor , Male , Female , Neoplasm Metastasis
2.
Cell Rep Methods ; 4(6): 100800, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889689

ABSTRACT

The tumor microenvironment harbors a variety of different cell types that differentially impact tumor biology. In this issue of Cell Reports Methods, Raffo-Romero et al. standardized and optimized 3D tumor organoids to model the interactions between tumor-associated macrophages and tumor cells in vitro.


Subject(s)
Organoids , Tumor Microenvironment , Humans , Organoids/pathology , Neoplasms/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Animals
3.
BMC Cancer ; 24(1): 698, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849760

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) constitute a substantial part of human hepatocellular carcinoma (HCC). The present study was devised to explore TAM diversity and their roles in HCC progression. METHODS: Through the integration of multiple 10 × single-cell transcriptomic data derived from HCC samples and the use of consensus nonnegative matrix factorization (an unsupervised clustering algorithm), TAM molecular subtypes and expression programs were evaluated in detail. The roles played by these TAM subtypes in HCC were further probed through pseudotime, enrichment, and intercellular communication analyses. Lastly, vitro experiments were performed to validate the relationship between CD63, which is an inflammatory TAM expression program marker, and tumor cell lines. RESULTS: We found that the inflammatory expression program in TAMs had a more obvious interaction with HCC cells, and CD63, as a marker gene of the inflammatory expression program, was associated with poor prognosis of HCC patients. Both bulk RNA-seq and vitro experiments confirmed that higher TAM CD63 expression was associated with the growth of HCC cells as well as their epithelial-mesenchymal transition, metastasis, invasion, and the reprogramming of lipid metabolism. CONCLUSIONS: These analyses revealed that the TAM inflammatory expression program in HCC is closely associated with malignant tumor cells, with the hub gene CD63 thus representing an ideal target for therapeutic intervention in this cancer type.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Epithelial-Mesenchymal Transition , Liver Neoplasms , Tetraspanin 30 , Tumor-Associated Macrophages , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Tetraspanin 30/metabolism , Tetraspanin 30/genetics , Lipid Metabolism/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Cellular Reprogramming/genetics
4.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892411

ABSTRACT

Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.


Subject(s)
Breast Neoplasms , Lymphocytes, Tumor-Infiltrating , Myeloid-Derived Suppressor Cells , Neoplasm Metastasis , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Female , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , T-Lymphocytes/immunology , Animals
5.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923643

ABSTRACT

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Subject(s)
Antigens, CD , Exosomes , GPI-Linked Proteins , Matrix Metalloproteinase 9 , Neuroendocrine Tumors , Pancreatic Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Exosomes/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Animals , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Matrix Metalloproteinase 9/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Mice , Cell Line, Tumor , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules/metabolism , Cell Movement , Neoplasm Metastasis , Mice, Nude , Hypoxia/metabolism , Cell Hypoxia/physiology , Carcinoembryonic Antigen
6.
Tissue Cell ; 88: 102406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761792

ABSTRACT

BACKGROUND: Previous evidences has highlighted the pivotal role of NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated inflammasomes and pyroptosis activation in driving tumor malignancy and shaping the tumor microenvironment. Herein, we aimed to elucidate the impact of high-mobility group box 3 (HMGB3) released in glioma-derived exosomes on macrophage infiltration in gliomas, NLRP3 inflammasome activation and polarization. METHODS: Transcripts and protein levels of HMGB3, and cytokines associated with macrophage phenotypes and pyroptosis were assessed in glioma tissues and cell lines (U251, LN229, T98G, A172) using qRT-PCR and/or Western blot analysis. Exosomes secreted from LN229 and NHA cells were isolated via differential ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and analysis of exosome-related markers. PKH67 staining was employed to examine exosomes uptake by THP-1 differentiated macrophages. Flow cytometry was utilized to assess macrophage pyroptotic rates and polarization-related markers. RESULTS: HMGB3 expression was elevated in glioma tissues, serum samples and tumor cell lines. Kaplan-Meier curves revealed a positive correlation between higher HMGB3 expression and poor overall survival and recurrence-free survival. Moreover, glioma tissues with increased HMGB3 expression exhibited significant upregulation of M2 macrophages markers (CD68, CD206, Arg1) and NLRP3 inflammasome components (NLRP3, IL-1ß, ASC), suggesting that HMGB3 was closely associated with macrophage infiltration and NLRP3 inflammasome activation. Notably, HMGB3 was found to be enriched in glioma cell- secreted exosomes and could be internalized by macrophages. Knockdown of HMGB3 in glioma cell exosomes could restrain M2 macrophage polarization, NLRP3 inflammasome activation and pyroptosis. CONCLUSION: These findings suggested that glioma cells secreted exosomal HMGB3 could facilitate macrophage M2 polarization, pyroptosis and inflammatory infiltration, indicating HMGB3 might be a poor prognosis factor for glioma.


Subject(s)
Exosomes , Glioma , HMGB3 Protein , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Tumor-Associated Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Exosomes/metabolism , Glioma/pathology , Glioma/metabolism , Glioma/genetics , Humans , Inflammasomes/metabolism , Cell Line, Tumor , HMGB3 Protein/metabolism , HMGB3 Protein/genetics , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Male , Female , Tumor Microenvironment , Macrophages/metabolism , Macrophages/pathology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics
7.
Cell Cycle ; 23(6): 682-692, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38794797

ABSTRACT

Pumilio RNA-binding family member 1 (PUM1) has been implicated in both the progression of colorectal cancer and the regulation of inflammation. The role of PUM1 in the polarization of tumor-associated macrophages (TAMs) into the M2 phenotype has not yet been reported in hepatocellular carcinoma. Using the PUM1-knockout mice model, flow cytometry, and IHC, we validated the role of PUM1 in hepatocellular carcinoma (HCC) TAMs. One-way analysis of variance (ANOVA) or student's t-tests was used to compare the experimental groups. We found that PUM1 inhibited anti-tumor immunity in HCC through TAM-mediated inhibition of CD8+ T cells. We also showed that PUM1 promotes the transformation of TAMs into pro-tumorigenic M2-like phenotypes by activating cAMP signaling pathway. This study emphasized the potential of PUM1 as a target for immunotherapy in HCC through TAMs. The present study revealed the molecular mechanism underlying the pro-tumor role of PUM1 in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Macrophages , Mice, Knockout , RNA-Binding Proteins , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Macrophages/metabolism , Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Signal Transduction , Cell Line, Tumor
8.
Pathol Oncol Res ; 30: 1611586, 2024.
Article in English | MEDLINE | ID: mdl-38689823

ABSTRACT

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Subject(s)
Liposomes , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms , Tumor-Associated Macrophages , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays , Apoptosis , Disease Models, Animal , TNF-Related Apoptosis-Inducing Ligand/metabolism , E-Selectin/metabolism , Tumor Microenvironment/immunology
9.
PLoS One ; 19(5): e0302780, 2024.
Article in English | MEDLINE | ID: mdl-38713738

ABSTRACT

Reticulocalbin 1 (RCN1) is a calcium-binding protein involved in the regulation of calcium homeostasis in the endoplasmic reticulum. The aim of this study was to explore the clinical value and biological role of RCN1 in esophageal squamous cell carcinoma (ESCC). In addition, we investigated the effect of RCN1 on the polarization of tumor-associated macrophages (TAMs). The GSE53625 dataset from the Gene Expression Omnibus database was used to analyze the expression of RCN1 mRNA and its relationship with clinical value and immune cell infiltration. Immunohistochemistry was used to validate the expression of RCN1 and its correlation with clinicopathological characteristics. Subsequently, transwell and cell scratch assays were conducted to evaluate the migration and invasion abilities of ESCC cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot, while apoptosis was detected by flow cytometry and western blot. Additionally, qRT‒PCR was utilized to evaluate the role of RCN1 in macrophage polarization. RCN1 was significantly upregulated in ESCC tissues and was closely associated with lymphatic metastasis and a poor prognosis, and was an independent prognostic factor for ESCC in patients. Knockdown of RCN1 significantly inhibited the migration, invasion, and EMT of ESCC cells, and promoted cell apoptosis. In addition, RCN1 downregulation inhibited M2 polarization. RCN1 is upregulated in ESCC patients and is negatively correlated with patient prognosis. Knocking down RCN1 inhibits ESCC progression and M2 polarization. RCN1 can serve as a potential diagnostic and prognostic indicator for ESCC, and targeting RCN1 is a very promising therapeutic strategy.


Subject(s)
Calcium-Binding Proteins , Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Macrophages , Female , Humans , Male , Apoptosis , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Macrophages/metabolism , Prognosis , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
10.
J Transl Med ; 22(1): 442, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730286

ABSTRACT

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Choline , Endothelial Cells , Lung Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Choline/metabolism , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Middle Aged , Prognosis , Immunotherapy , Immunosuppression Therapy , Kaplan-Meier Estimate , Nomograms , Metabolic Reprogramming
11.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791110

ABSTRACT

Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.


Subject(s)
Brain Neoplasms , Pericytes , Tumor Microenvironment , Pericytes/immunology , Pericytes/pathology , Pericytes/metabolism , Humans , Tumor Microenvironment/immunology , Animals , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Glioma/immunology , Glioma/pathology , Glioma/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Disease Progression , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
12.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594444

ABSTRACT

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Subject(s)
Glioblastoma , NF-kappa B , Neoplastic Stem Cells , Signal Transduction , Tumor-Associated Macrophages , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Animals , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , NF-kappa B/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment
13.
Oncogene ; 43(23): 1742-1756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609499

ABSTRACT

Triple-negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer. Despite the recognized interplay between tumors and tumor-associated macrophages in fostering drug resistance and disease progression, the precise mechanisms leading these interactions remain elusive. Our study revealed that the upregulation of collagen type V alpha 1 (COL5A1) in TNBC tissues, particularly in chemoresistant samples, was closely linked to an unfavorable prognosis. Functional assays unequivocally demonstrated that COL5A1 played a pivotal role in fueling cancer growth, metastasis, and resistance to doxorubicin, both in vitro and in vivo. Furthermore, we found that the cytokine IL-6, produced by COL5A1-overexpressing TNBC cells actively promoted M2 macrophage polarization. In turn, TGFß from M2 macrophages drived TNBC doxorubicin resistance through the TGFß/Smad3/COL5A1 signaling pathway, establishing a feedback loop between TNBC cells and macrophages. Mechanistically, COL5A1 interacted with TGM2, inhibiting its K48-linked ubiquitination-mediated degradation, thereby enhancing chemoresistance and increasing IL-6 secretion. In summary, our findings underscored the significant contribution of COL5A1 upregulation to TNBC progression and chemoresistance, highlighting its potential as a diagnostic and therapeutic biomarker for TNBC.


Subject(s)
Collagen Type V , Disease Progression , Drug Resistance, Neoplasm , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Female , Collagen Type V/metabolism , Collagen Type V/genetics , Mice , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Macrophages/metabolism , Macrophages/pathology , Interleukin-6/metabolism , Interleukin-6/genetics , Doxorubicin/pharmacology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Signal Transduction , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Transforming Growth Factor beta/metabolism , Gene Expression Regulation, Neoplastic , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics
14.
Cell Rep ; 43(4): 114088, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602878

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) features an immunosuppressive tumor microenvironment (TME) that resists immunotherapy. Tumor-associated macrophages, abundant in the TME, modulate T cell responses. Bone marrow stromal antigen 2-positive (BST2+) macrophages increase in KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse models during PDAC progression. However, their role in PDAC remains elusive. Our findings reveal a negative correlation between BST2+ macrophage levels and PDAC patient prognosis. Moreover, an increased ratio of exhausted CD8+ T cells is observed in tumors with up-regulated BST2+ macrophages. Mechanistically, BST2+ macrophages secrete CXCL7 through the ERK pathway and bind with CXCR2 to activate the AKT/mTOR pathway, promoting CD8+ T cell exhaustion. The combined blockade of CXCL7 and programmed death-ligand 1 successfully decelerates tumor growth. Additionally, cGAS-STING pathway activation in macrophages induces interferon (IFN)α synthesis leading to BST2 overexpression in the PDAC TME. This study provides insights into IFNα-induced BST2+ macrophages driving an immune-suppressive TME through ERK-CXCL7 signaling to regulate CD8+ T cell exhaustion in PDAC.


Subject(s)
Bone Marrow Stromal Antigen 2 , GPI-Linked Proteins , Interferon-alpha , Pancreatic Neoplasms , Tumor-Associated Macrophages , Animals , Female , Humans , Mice , Antigens, CD/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , GPI-Linked Proteins/metabolism , Immune Tolerance , Interferon-alpha/metabolism , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Signal Transduction , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
15.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674108

ABSTRACT

Early evidence suggests a strong impact of tumour-infiltrating lymphocytes (TILs) on both the prognosis and clinical behaviour of ovarian cancer. Proven associations, however, have not yet translated to successful immunotherapies and further work in the field is urgently needed. We aimed to analyse the tumour microenvironment of a well-characterised cohort of ovarian cancer samples. Tumour markers were selected owing to their comparative underrepresentation in the current literature. Paraffin-embedded, formalin-fixed tumour tissue blocks of 138 patients representative of the population and including early stage disease were identified, stained for CD3, CD20, CD68 and CD163 and analysed for both the stromal and intertumoral components. Data were statistically analysed in relation to clinical details, histological subtype, borderline vs. malignant status, survival and management received. Mean stromal CD3, total CD3 count, mean stromal CD20 and total CD20 count all correlated negatively with survival. Malignant ovarian tumours consistently demonstrated significantly higher infiltration of all analysed immune cells than borderline tumours. Assessment of the stromal compartment produced a considerably higher proportion of significant results when compared to the intra-tumoural infiltrates. Customary assessment of solely intra-tumoural cells in advanced stage disease patients undergoing primary debulking surgery should be challenged, with recommendations for future scoring systems provided.


Subject(s)
Carcinoma, Ovarian Epithelial , Lymphocytes, Tumor-Infiltrating , Ovarian Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Female , Prognosis , Ovarian Neoplasms/pathology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/mortality , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Middle Aged , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/immunology , Tumor Microenvironment/immunology , Aged , Adult , Biomarkers, Tumor , Antigens, CD/metabolism , Aged, 80 and over
16.
J Cell Mol Med ; 28(8): e18348, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652105

ABSTRACT

Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.


Subject(s)
Neoplasms , Regulated Cell Death , Tumor Microenvironment , Tumor-Associated Macrophages , Animals , Humans , Apoptosis , Autophagy , Ferroptosis/immunology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Regulated Cell Death/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
18.
Medicine (Baltimore) ; 103(16): e37834, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640338

ABSTRACT

BACKGROUND: Evidence from clinical research suggests that the tumor-associated macrophages (TAMs) were associated with prognosis in hepatocellular carcinoma (HCC). The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of CD68 + TAMs in HCC. METHODS: This study conducted a systematic search in Pubmed, Embase, the Cochrane Library and China National Knowledge Internet from inception of the databases to November 2023. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. The Newcastle-Ottawa Scale was used to evaluate the risk of prejudice. RESULTS: We analyzed 4362 HCC patients. The present research indicated that the expression levels Of CD68 + TAMs were significantly associated with overall survival (OS) (HR = 1.55, 95% CI: 1.30-1.84) and disease-free survival (DFS) (HR = 1.44, 95% CI: 1.17-1.78). Subgroup analysis based on cutoff values showed that the "Median" subgroup showed a pooled HR of 1.66 with a 95% CI ranging from 1.32 to 2.08, which was slightly higher than the "Others" subgroup that exhibited a pooled HR of 1.40 and a 95% CI of 1.07 to 1.84. The "PT" subgroup had the highest pooled HR of 1.68 (95% CI: 1.19-2.37), indicating a worse OS compared to the "IT" (pooled HR: 1.50, 95% CI: 1.13-2.01) and "Mix" (pooled HR: 1.52, 95% CI: 1.03-2.26) subgroups. Moreover, in the sample size-based analysis, studies with more than 100 samples (>100) exhibited a higher pooled HR of 1.57 (95% CI: 1.28 to 1.93) compared to studies with fewer than 100 samples (<100), which had a pooled HR of 1.45 (95% CI: 1.00-2.10). CONCLUSIONS: The analysis suggests that CD68 + TAMs were significantly associated with unfavorable OS and DFS in HCC patients, and may be served as a promising prognostic biomarker in HCC. However, more large-scale trials are needed to study the clinical value of TAMs in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Tumor-Associated Macrophages , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Disease-Free Survival , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Prognosis , Tumor-Associated Macrophages/pathology , CD68 Molecule
19.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673975

ABSTRACT

Previously, we reported that epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (EMR1/ADGRE1) is abnormally expressed in colon cancer (CC) and is a risk factor for lymph node metastasis (LNM) and poor recurrence-free survival in patients with abundant tumor-associated macrophages (TAMs). However, the signaling pathways associated with EMR1 expression in CC progression remain unclear. In this study, we aimed to explore the role of EMR1 and its signaling interactions with macrophages in CC progression. Spatial transcriptomics of pT3 microsatellite unstable CC tissues revealed heightened Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in EMR1-HL CC with LNM compared to EMR1-N CC without LNM. Through in vitro coculture of CC cells with macrophages, EMR1 expression by CC cells was found to be induced by TAMs, ultimately interacting with upregulated JAK/STAT signaling, increasing cell proliferation, migration, and motility, and reducing apoptosis. JAK2/STAT3 inhibition decreased the levels of EMR1, JAK2, STAT1, and STAT3, significantly impeded the proliferation, migration, and mobility of cells, and increased the apoptosis of EMR1+ CC cells compared to their EMR1KO counterparts. Overall, TAMs-induced EMR1 upregulation in CC cells may promote LNM and CC progression via JAK2/STAT1,3 signaling upregulation. This study provides further insights into the molecular mechanisms involving macrophages and intracellular EMR1 expression in CC progression, suggesting its clinical significance and offering potential interventions to enhance patient outcomes.


Subject(s)
Colonic Neoplasms , Janus Kinase 2 , Signal Transduction , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Disease Progression , Up-Regulation , Cell Proliferation , Cell Line, Tumor , Cell Movement/genetics , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Apoptosis/genetics
20.
Biosci Rep ; 44(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38501293

ABSTRACT

BACKGROUND: The role of tumor-associated macrophages (TAMs) in patients with esophageal squamous cell carcinoma (ESCC) following surgery remains controversial. Hence, we performed the present study to systematically analyze the prognostic and clinical significance of distinct TAMs biomarkers and distributions in ESCC patients underwent surgery. METHODS: PubMed, Web of Science, and EMBASE databases were searched up to March 31, 2023. The pooled analysis was conducted to evaluate the effects of TAMs on overall survival (OS), disease-free survival (DFS), and clinicopathological characteristics using fixed-effects or random-effect model. RESULTS: Involving a total of 2,502 ESCC patients underwent surgery from 15 studies, the results suggested that the total count of CD68+ TAMs was inversely associated with OS and DFS in ESCC patients, which was also noticed in the relationship of CD68+ TAMs in tumor islet (TI) with OS (all P<0.05), although no association between CD68+ TAMs in tumor stroma (TS) and OS (P>0.05). Moreover, either islet or stromal CD163+ TAMs density was a prognostic factor ESCC (all P<0.05). Similarly, an elevated CD204+ TAMs density in TI predicted a poor DFS (P<0.05), although CD204+ TAMs in TI had no relationship with OS (P>0.05). Besides, a high CD68+ TAMs density was significantly associated with lymphatic vessel invasion, vascular invasion, and lymph node metastasis (all P<0.05). CONCLUSION: Our results demonstrated the prognostic and clinical significance of TAMs in ESCC patients underwent surgery. TAMs should be considered a target that could improve prognostic stratification and clinical outcomes in ESCC after surgery.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/pathology , Tumor-Associated Macrophages/pathology , Esophageal Neoplasms/surgery , Esophageal Neoplasms/pathology , Prognosis , Macrophages/pathology , Clinical Relevance , Biomarkers , Biomarkers, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...