Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.958
Filter
1.
Nat Commun ; 15(1): 6723, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112511

ABSTRACT

Root-knot nematodes (RKNs) are a global menace to agricultural crop production. The role of root-associated microbes (RAMs) in plant protection against RKN infection remains unclear. Here we observe that cucumber (highly susceptible to Meloidogyne incognita) exhibits a consistently lower susceptibility to M. incognita in the presence of native RAMs in three distinct soils. Nematode infection alters the assembly of bacterial RAMs along the life cycle of M. incognita. Particularly, the loss of bacterial diversity of RAMs exacerbates plant susceptibility to M. incognita. A diverse range of native bacterial strains isolated from M. incognita-infected roots has nematode-antagonistic activity. Increasing the number of native bacterial strains causes decreasing nematode infection, which is lowest when six or more bacterial strains are present. Multiple simplified synthetic communities consisting of six bacterial strains show pronounced inhibitory effects on M. incognita infection in plants. These inhibitory effects are underpinned via multiple mechanisms including direct inhibition of infection, secretion of anti-nematode substances, and regulation of plant defense responses. This study highlights the role of native bacterial RAMs in plant resistance against RKNs and provides a useful insight into the development of a sustainable way to protect susceptible plants.


Subject(s)
Cucumis sativus , Plant Diseases , Plant Roots , Tylenchoidea , Animals , Plant Roots/parasitology , Plant Roots/microbiology , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Tylenchoidea/physiology , Cucumis sativus/parasitology , Cucumis sativus/microbiology , Soil Microbiology , Bacteria , Disease Resistance , Microbial Consortia
2.
Sci Rep ; 14(1): 17774, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090171

ABSTRACT

This study investigates the efficacy of Trichoderma spp. and Bacillus spp., as well as their gamma radiation-induced mutants, as potential biological control agents against Meloidogyne javanica (Mj) in tomato plants. The research encompasses in vitro assays, greenhouse trials, and molecular identification methodologies to comprehensively evaluate the biocontrol potential of these agents. In vitro assessments reveal significant nematicidal activity, with Bacillus spp. demonstrating notable effectiveness in inhibiting nematode egg hatching (16-45%) and inducing second-stage juvenile (J2) mortality (30-46%). Greenhouse trials further confirm the efficacy of mutant isolates, particularly when combined with chitosan, in reducing nematode-induced damage to tomato plants. The combination of mutant isolates with chitosan reduces the reproduction factor (RF) of root-knot nematodes by 94%. By optimizing soil infection conditions with nematodes and modifying the application of the effective compound, the RF of nematodes decreases by 65-76%. Molecular identification identifies B. velezensis and T. harzianum as promising candidates, exhibiting significant nematicidal activity. Overall, the study underscores the potential of combined biocontrol approaches for nematode management in agricultural settings. However, further research is essential to evaluate practical applications and long-term efficacy. These findings contribute to the development of sustainable alternatives to chemical nematicides, with potential implications for agricultural practices and crop protection strategies.


Subject(s)
Bacillus , Gamma Rays , Pest Control, Biological , Plant Diseases , Solanum lycopersicum , Tylenchoidea , Animals , Tylenchoidea/physiology , Bacillus/genetics , Bacillus/physiology , Solanum lycopersicum/parasitology , Solanum lycopersicum/microbiology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Pest Control, Biological/methods , Mutation , Hypocreales/genetics , Antinematodal Agents/pharmacology , Biological Control Agents/pharmacology , Chitosan/pharmacology
3.
BMC Plant Biol ; 24(1): 664, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992595

ABSTRACT

BACKGROUND: Meloidogyne incognita is one of the most important plant-parasitic nematodes and causes tremendous losses to the agricultural economy. Light is an important living factor for plants and pathogenic organisms, and sufficient light promotes root-knot nematode infection, but the underlying mechanism is still unclear. RESULTS: Expression level and genetic analyses revealed that the photoreceptor genes PHY, CRY, and PHOT have a negative impact on nematode infection. Interestingly, ELONGATED HYPOCOTYL5 (HY5), a downstream gene involved in the regulation of light signaling, is associated with photoreceptor-mediated negative regulation of root-knot nematode resistance. ChIP and yeast one-hybrid assays supported that HY5 participates in plant-to-root-knot nematode responses by directly binding to the SWEET negative regulatory factors involved in root-knot nematode resistance. CONCLUSIONS: This study elucidates the important role of light signaling pathways in plant resistance to nematodes, providing a new perspective for RKN resistance research.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Diseases , Tylenchoidea , Animals , Tylenchoidea/physiology , Plant Diseases/parasitology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/parasitology , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Signal Transduction , Disease Resistance/genetics , Light , Gene Expression Regulation, Plant , Light Signal Transduction
4.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961768

ABSTRACT

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Subject(s)
Endoplasmic Reticulum , Tylenchoidea , Animals , Endoplasmic Reticulum/metabolism , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Helminth Proteins/metabolism , Helminth Proteins/genetics , Plant Immunity , Nicotiana/parasitology , Nicotiana/immunology , Nicotiana/genetics , Solanum lycopersicum/parasitology , Solanum lycopersicum/immunology , Solanum lycopersicum/genetics , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Roots/parasitology , Plant Roots/immunology , Host-Parasite Interactions
5.
Sci Rep ; 14(1): 15547, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969662

ABSTRACT

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Subject(s)
Aspergillus flavus , Endophytes , Pest Control, Biological , Plant Diseases , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitology , Solanum tuberosum/microbiology , Animals , Endophytes/physiology , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Tylenchoidea/drug effects , Tylenchoidea/physiology , Pest Control, Biological/methods , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Aspergillus flavus/drug effects , Plant Roots/parasitology , Plant Roots/microbiology , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Trigonella/microbiology
6.
J Nat Prod ; 87(7): 1860-1871, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39012621

ABSTRACT

A chemical investigation of Laburnicola nematophila, isolated from cysts of the plant parasitic nematode Heterodera filipjevi, affored three dactylfungin derivatives (1-3) and three tetralone congeners (4-6). Dactylfungin C (1), laburnicolin (4), and laburnicolenone (5) are previously undescribed natural products. Chemical structures of the isolated compounds were determined based on 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry and comparison with data reported in the literature. The relative configurations of compounds 1, 2, and 4-6 were determined based on their ROESY data and analysis of their coupling constants (J values). The absolute configurations of 4-6 were determined through the comparison of their measured and calculated TDDFT-ECD spectra. Compounds 1-3 were active against azole-resistant Aspergillus fumigatus.


Subject(s)
Tetralones , Animals , Molecular Structure , Tetralones/pharmacology , Tetralones/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Tylenchoidea/drug effects
7.
PLoS Pathog ; 20(7): e1012395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074142

ABSTRACT

Plant-parasitic nematodes constrain global food security. During parasitism, they secrete effectors into the host plant from two types of pharyngeal gland cells. These effectors elicit profound changes in host biology to suppress immunity and establish a unique feeding organ from which the nematode draws nutrition. Despite the importance of effectors in nematode parasitism, there has been no comprehensive identification and characterisation of the effector repertoire of any plant-parasitic nematode. To address this, we advance techniques for gland cell isolation and transcriptional analysis to define a stringent annotation of putative effectors for the cyst nematode Heterodera schachtii at three key life-stages. We define 717 effector gene loci: 269 "known" high-confidence homologs of plant-parasitic nematode effectors, and 448 "novel" effectors with high gland cell expression. In doing so we define the most comprehensive "effectorome" of a plant-parasitic nematode to date. Using this effector definition, we provide the first systems-level understanding of the origin, deployment and evolution of a plant-parasitic nematode effectorome. The robust identification of the effector repertoire of a plant-parasitic nematode will underpin our understanding of nematode pathology, and hence, inform strategies for crop protection.


Subject(s)
Host-Parasite Interactions , Plant Diseases , Animals , Plant Diseases/parasitology , Tylenchoidea/genetics , Plants/parasitology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Nematoda/genetics
8.
J Agric Food Chem ; 72(28): 15512-15522, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959331

ABSTRACT

Root-knot nematodes pose a serious threat to crops by affecting production and quality. Over a period of time, substantial work has been done toward the development of effective and environmentally benign nematicidal compounds. However, due to the inefficiencies of previously reported synthetics in achieving the target of safe, selective, and effective treatment, it is necessary to develop new efficacious and safer nematicidal agents considering human health and environment on top priority. This work aims to highlight the efficient and convenient l-proline catalyzed synthesis of pyrano[3,2-c]pyridone and their use as potential nematicidal agents. In vitro results of larval mortality and egg hatching inhibition revealed maximum nematicidal activity against Meloidogyne incognita from compounds 15b, 15m, and 15w with LC50 values of 28.8, 46.8, and 49.18 µg/mL at 48 h, respectively. Under similar conditions, pyrano[3,2-c]pyridones derivatives 15b (LC50 = 28.8 µg/mL) was found at par with LC50 (26.92 µg/mL) of commercial nematicide carbofuran. The in vitro results were further validated with in silico studies with the most active compound 15b nematicidal within the binding to the pocket of acetylcholine esterase (AChE). In docking, binding free energy values for compound 15b were found to be -6.90 kcal/mol. Results indicated that pyrano[3,2-c]pyridone derivatives have the potential to control M. incognita.


Subject(s)
Antinematodal Agents , Drug Design , Molecular Docking Simulation , Pyridones , Tylenchoidea , Tylenchoidea/drug effects , Animals , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Antinematodal Agents/chemical synthesis , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Structure-Activity Relationship , Larva/drug effects , Larva/growth & development , Plant Diseases/parasitology , Molecular Structure
9.
Microbiome ; 12(1): 125, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004755

ABSTRACT

BACKGROUND: Soybean cyst nematodes (SCN) as animal parasites of plants are not usually interested in killing the host but are rather focused on completing their life cycle to increase population, resulting in substantial yield losses. Remarkably, some agricultural soils after long-term crop monoculture show a significant decline in SCN densities and suppress disease in a sustainable and viable manner. However, relatively little is known about the microbes and mechanisms operating against SCN in such disease-suppressive soils. RESULTS: Greenhouse experiments showed that suppressive soils (S) collected from two provinces of China and transplantation soils (CS, created by mixing 10% S with 90% conducive soils) suppressed SCN. However, SCN suppressiveness was partially lost or completely abolished when S soils were treated with heat (80 °C) and formalin. Bacterial community analysis revealed that the specific suppression in S and CS was mainly associated with the bacterial phylum Bacteroidetes, specifically due to the enrichment of Chitinophaga spp. and Dyadobacter sp., in the cysts. SCN cysts colonized by Chitinophaga spp. showed dramatically reduced egg hatching, with unrecognizable internal body organization of juveniles inside the eggshell due to chitinase activity. Whereas, Dyadobacter sp. cells attached to the surface coat of J2s increased soybean resistance against SCN by triggering the expression of defence-associated genes. The disease-suppressive potential of these bacteria was validated by inoculating them into conducive soil. The Dyadobacter strain alone or in combination with Chitinophaga strains significantly decreased egg densities after one growing cycle of soybeans. In contrast, Chitinophaga strains alone required more than one growing cycle to significantly reduce SCN egg hatching and population density. CONCLUSION: This study revealed how soybean monoculture for decades induced microbiota homeostasis, leading to the formation of SCN-suppressive soil. The high relative abundance of antagonistic bacteria in the cyst suppressed the SCN population both directly and indirectly. Because uncontrolled proliferation will likely lead to quick demise due to host population collapse, obligate parasites like SCN may have evolved to modulate virulence/proliferation to balance these conflicting needs. Video Abstract.


Subject(s)
Glycine max , Microbiota , Plant Diseases , Soil Microbiology , Tylenchoidea , Animals , Glycine max/parasitology , Glycine max/microbiology , Plant Diseases/microbiology , Plant Diseases/parasitology , Tylenchoidea/physiology , Soil/parasitology , China , Bacteroidetes/genetics , Bacteria/classification , Bacteria/genetics
10.
Plant Physiol Biochem ; 213: 108755, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875777

ABSTRACT

Pathogen-secreted polygalacturonases (PGs) alter plant cell wall structure by cleaving the α-(1 â†’ 4) linkages between D-galacturonic acid residues in homogalacturonan (HG), macerating the cell wall, facilitating infection. Plant PG inhibiting proteins (PGIPs) disengage pathogen PGs, impairing infection. The soybean cyst nematode, Heterodera glycines, obligate root parasite produces secretions, generating a multinucleate nurse cell called a syncytium, a byproduct of the merged cytoplasm of 200-250 root cells, occurring through cell wall maceration. The common cytoplasmic pool, surrounded by an intact plasma membrane, provides a source from which H. glycines derives nourishment but without killing the parasitized cell during a susceptible reaction. The syncytium is also the site of a naturally-occurring defense response that happens in specific G. max genotypes. Transcriptomic analyses of RNA isolated from the syncytium undergoing the process of defense have identified that one of the 11 G. max PGIPs, GmPGIP11, is expressed during defense. Functional transgenic analyses show roots undergoing GmPGIP11 overexpression (OE) experience an increase in its relative transcript abundance (RTA) as compared to the ribosomal protein 21 (GmRPS21) control, leading to a decrease in H. glycines parasitism as compared to the overexpression control. The GmPGIP11 undergoing RNAi experiences a decrease in its RTA as compared to the GmRPS21 control with transgenic roots experiencing an increase in H. glycines parasitism as compared to the RNAi control. Pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) components are shown to influence GmPGIP11 expression while numerous agricultural crops are shown to have homologs.


Subject(s)
Glycine max , Plant Proteins , Plant Roots , Tylenchoidea , Plant Roots/parasitology , Plant Roots/metabolism , Plant Roots/genetics , Glycine max/parasitology , Glycine max/genetics , Glycine max/metabolism , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Animals , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/parasitology , Gene Expression Regulation, Plant , Plants, Genetically Modified/parasitology , Host-Parasite Interactions
11.
Planta ; 260(2): 36, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922545

ABSTRACT

MAIN CONCLUSION: Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.


Subject(s)
Agriculture , Plant Diseases , Plant Roots , Animals , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Roots/parasitology , Agriculture/methods , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Host-Parasite Interactions , Disease Resistance , Crops, Agricultural/parasitology , Antinematodal Agents/pharmacology
12.
Sci Data ; 11(1): 637, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886380

ABSTRACT

As an economically important plant parasitic nematode (PPN), Heterodera filipjevi causes great damage on wheat, and now it was widely recorded in many countries. While multiple genomes of PPNs have been published, high-quality genome assembly and annotation on H. filipjevi have yet to be performed. This study presents a chromosome-scale genome assembly and annotation for H. filipjevi, utilizing a combination of Illumina short-read, PacBio long-read, and Hi-C sequencing technologies. The genome consists of 9 pseudo-chromosomes that contain 134.19 Mb of sequence, with a scaffold N50 length of 11.88 Mb. In total, 10,036 genes were annotated, representing 75.20% of the total predicted protein-coding genes. Our study provides the first chromosome-scale genome for H. filipjevi, which is also the inaugural high-quality genome of cereal cyst nematodes (CCNs). It provides a valuable genomic resource for further biological research and pest management of cereal cyst nematodes disease.


Subject(s)
Genome, Helminth , Tylenchoidea , Animals , Chromosomes/genetics , Edible Grain/parasitology , Molecular Sequence Annotation , Plant Diseases/parasitology , Triticum/parasitology , Tylenchoidea/genetics
13.
Sci Rep ; 14(1): 13915, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886543

ABSTRACT

The potato cyst nematode Globodera rostochiensis originates from the Andean Mountain region in South America and has unintentionally been introduced to all inhabited continents. Several studies have examined the population genetic structure of this pest in various countries by using microsatellite markers. However, merging microsatellite data produced from different laboratories is challenging and can introduce uncertainty when interpreting the results. To overcome this challenge and to explore invasion routes of this pest, we have genotyped 22 G. rostochiensis populations from all continents. Within populations, the highest genetic diversity was observed in the South American populations, the European populations showed an intermediate level of genetic diversity and the remaining populations were the less diverse. This confirmed pre-existing knowledge such as a first introduction event from South America to Europe, but the less diverse populations could originate either from South America or from Europe. At the continental scale, STRUCTURE genetic clustering output indicated that North America and Asia have experienced at least two introduction events. Comparing different evolutionary scenarios, the Approximate Bayesian Computation analysis showed that Europe served as a secondary distribution centre for the invasion of G. rostochiensis into all other continents (North America, Africa, Asia and Oceania).


Subject(s)
Genetic Variation , Microsatellite Repeats , Solanum tuberosum , Tylenchoidea , Animals , Europe , Solanum tuberosum/parasitology , Tylenchoidea/genetics , Introduced Species , Bayes Theorem , Genotype , Plant Diseases/parasitology , Genetics, Population , South America
14.
Nat Microbiol ; 9(8): 1993-2005, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886584

ABSTRACT

Cyst nematodes are the most damaging species of plant-parasitic nematodes. They antagonize the colonization of beneficial microbial symbionts that are important for nutrient acquisition of plants. The molecular mechanism of the antagonism, however, remains elusive. Here, through biochemical combined with structural analysis, we reveal that Heterodera glycines, the most notorious soybean cyst nematode, suppresses symbiosis by secreting an enzyme named HgCht2 to hydrolyse the key symbiotic signalling molecules, lipochitooligosaccharides (LCOs). We solved the three-dimensional structures of apo HgCht2, as well as its chitooligosaccharide-bound and LCO-bound forms. These structures elucidated the substrate binding and hydrolysing mechanism of the enzyme. We designed an HgCht2 inhibitor, 1516b, which successfully suppresses the antagonism of cyst nematodes towards nitrogen-fixing rhizobia and phosphorus-absorbing arbuscular mycorrhizal symbioses. As HgCht2 is phylogenetically conserved across all cyst nematodes, our study revealed a molecular mechanism by which parasitic cyst nematodes antagonize the establishment of microbial symbiosis and provided a small-molecule solution.


Subject(s)
Glycine max , Lipopolysaccharides , Mycorrhizae , Symbiosis , Tylenchoidea , Animals , Glycine max/parasitology , Glycine max/microbiology , Tylenchoidea/enzymology , Mycorrhizae/metabolism , Mycorrhizae/enzymology , Lipopolysaccharides/metabolism , Oligosaccharides/metabolism , Rhizobium/metabolism , Rhizobium/enzymology , Rhizobium/genetics , Phylogeny , Chitin/metabolism , Hydrolysis , Chitosan/metabolism
15.
Plant Cell Rep ; 43(7): 178, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907748

ABSTRACT

KEY MESSAGE: The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.


Subject(s)
Plant Diseases , Plants, Genetically Modified , RNA Interference , Solanum melongena , Tylenchoidea , Animals , Tylenchoidea/pathogenicity , Tylenchoidea/physiology , Solanum melongena/genetics , Solanum melongena/parasitology , Plant Diseases/parasitology , Plant Diseases/genetics , Plant Diseases/prevention & control , Host-Parasite Interactions/genetics
16.
PLoS One ; 19(6): e0302506, 2024.
Article in English | MEDLINE | ID: mdl-38843263

ABSTRACT

We present the chromosome-scale genome assembly of the allopolyploid root-knot nematode Meloidogyne javanica. We show that the M. javanica genome is predominantly allotetraploid, comprising two subgenomes, A and B, that most likely originated from hybridisation of two ancestral parental species. The assembly was annotated using full-length non-chimeric transcripts, comparison to reference databases, and ab initio prediction techniques, and the subgenomes were phased using ancestral k-mer spectral analysis. Subgenome B appears to show fission of chromosomal contigs, and while there is substantial synteny between subgenomes, we also identified regions lacking synteny that may have diverged in the ancestral genomes prior to or following hybridisation. This annotated and phased genome assembly forms a significant resource for understanding the origins and genetics of these globally important plant pathogens.


Subject(s)
Genome, Helminth , Tylenchoidea , Animals , Tylenchoidea/genetics , Plant Roots/parasitology , Plant Roots/genetics , Polyploidy , Chromosomes/genetics , Synteny , Reproduction, Asexual/genetics , Phylogeny
17.
BMC Plant Biol ; 24(1): 515, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851681

ABSTRACT

BACKGROUND: Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS: In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the ß-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION: The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.


Subject(s)
Arabidopsis , CRISPR-Cas Systems , Plant Diseases , Tylenchoidea , Animals , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Disease Susceptibility , Gene Knockout Techniques , Plant Diseases/parasitology , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/parasitology , Tylenchoidea/physiology
18.
Sci Rep ; 14(1): 13500, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38867066

ABSTRACT

The continuous search for natural product-based biopesticides from fungi isolated from untapped sources is an effective tool. In this study, we studied a pre-selected fungal endophyte, isolate Aa22, from the medicinal plant Artemisia absinthium, along with the antifungal, insect antifeedant and nematicidal compounds present in the extract. The endophyte Aa22 was identified as Stemphylium solani by molecular analysis. The antifungal activity was tested by broth microdilution against Fusarium solani, F. oxysporum, F. moniliforme and Botrytis cinerea, the insect antifeedant by choice bioassays against Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi and the in vitro mortality against the root-knot nematode Meloiydogyne javanica. The structures of bioactive compounds were determined on the basis of 1D and 2D NMR spectroscopy and mass spectrometry. The ethyl acetate extract obtained from the solid rice fermentation showed mycelial growth inhibition of fungal pathogens (EC50 0.08-0.31 mg/mL), was antifeedant to M. persicae (99%) and nematicidal (68% mortality). A bioguided fractionation led to the isolation of the new compound stempholone A (1), and the known stempholone B (2) and stemphol (3). These compounds exhibited antifeedant (EC50 0.50 mg/mL), antifungal (EC50 0.02-0.43 mg/L) and nematicidal (MLD 0.5 mg/mL) activities. The extract activities can be explained by 3 (antifungal), 1-3 (antifeedant) and 1 (nematicidal). Phytotoxicity tests on Lolium perenne and Lactuca sativa showed that the extract and 1 increased L. sativa root growth (121-130%) and 1 reduced L. perenne growth (48-49%). These results highlight the potential of the endophytic fungi Aa22 as biotechnological source of natural product-based biopesticides.


Subject(s)
Antifungal Agents , Antinematodal Agents , Endophytes , Animals , Endophytes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antinematodal Agents/pharmacology , Antinematodal Agents/isolation & purification , Antinematodal Agents/chemistry , Fusarium/drug effects , Spodoptera/drug effects , Spodoptera/growth & development , Ascomycota/drug effects , Botrytis/drug effects , Botrytis/growth & development , Microbial Sensitivity Tests , Tylenchoidea/drug effects
19.
BMC Microbiol ; 24(1): 194, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849775

ABSTRACT

Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.


Subject(s)
Ascomycota , Bacillus , Genome, Bacterial , Glycine max , Plant Diseases , Animals , Bacillus/genetics , Glycine max/microbiology , Glycine max/parasitology , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Genome, Bacterial/genetics , Ascomycota/genetics , Rhizoctonia/genetics , Pest Control, Biological , Biological Control Agents , Whole Genome Sequencing , Tylenchoidea , Phylogeny , Antibiosis , Brazil
20.
Phytopathology ; 114(6): 1244-1252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38916562

ABSTRACT

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.


Subject(s)
Antinematodal Agents , Molecular Docking Simulation , Pistacia , Plant Diseases , Plant Roots , Tylenchoidea , Animals , Tylenchoidea/drug effects , Antinematodal Agents/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Roots/parasitology , Pistacia/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL