Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Pflugers Arch ; 476(8): 1263-1277, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963545

ABSTRACT

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.


Subject(s)
Dopamine , Muscle Contraction , Vas Deferens , Male , Animals , Vas Deferens/drug effects , Vas Deferens/metabolism , Vas Deferens/physiology , Muscle Contraction/drug effects , Rats , Dopamine/metabolism , Dopamine/pharmacology , Rats, Wistar , Norepinephrine/pharmacology , Norepinephrine/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , Electric Stimulation , Epinephrine/pharmacology , Tyrosine 3-Monooxygenase/metabolism
2.
Brain Res ; 1839: 149017, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38768935

ABSTRACT

Parkinson's disease (PD) is a complex disorder, primarily of idiopathic origin, with environmental stressors like rotenone and manganese linked to its development. This study explores their potential interaction and resulting neurotoxicity, aiming to understand how environmental factors contribute to PD. In an eight-day experiment, male Wistar rats weighing 280-300 g were subjected to rotenone, manganese, or a combination of both. Various parameters were assessed, including body weight, behavior, serum markers, tissue damage, protein levels (tyrosine hydroxylase, Dopamine- and cAMP-regulated neuronal phosphoprotein -DARPP-32-, and α-synuclein), and mitochondrial function. Manganese heightened rotenone's impact on reducing food intake without causing kidney or liver dysfunction. However, the combined exposure intensified neurotoxicity, which was evident in augmented broken nuclei and decreased tyrosine hydroxylase and DARPP-32 levels in the striatum. While overall mitochondrial function was preserved, co-administration reduced complex IV activity in the midbrain and liver. In conclusion, our findings revealed a parallel toxic effect induced by rotenone and manganese. Notably, while these substances do not target the same dopaminergic regions, a notable escalation in toxicity is evident in the striatum, the brain region where their toxic effects converge. This study highlights the need for further exploration regarding the interaction of environmental factors and their possible impact on the etiology of PD.


Subject(s)
Manganese , Rats, Wistar , Rotenone , Tyrosine 3-Monooxygenase , Animals , Rotenone/toxicity , Male , Manganese/toxicity , Rats , Tyrosine 3-Monooxygenase/metabolism , Brain/drug effects , Brain/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , alpha-Synuclein/metabolism , Neurotoxicity Syndromes/metabolism , Corpus Striatum/metabolism , Corpus Striatum/drug effects
3.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Article in English | MEDLINE | ID: mdl-38499659

ABSTRACT

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Subject(s)
Disease Models, Animal , Parkinsonian Disorders , Reserpine , Sleep Deprivation , Animals , Male , Reserpine/pharmacology , Sleep Deprivation/complications , Mice , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Catalepsy/chemically induced , Oxidative Stress/physiology , Oxidative Stress/drug effects , Tyrosine 3-Monooxygenase/metabolism , Motor Activity/physiology , Motor Activity/drug effects , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Anhedonia/physiology , Anhedonia/drug effects
4.
Cent Nerv Syst Agents Med Chem ; 24(2): 196-205, 2024.
Article in English | MEDLINE | ID: mdl-38279716

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Even with scientific and technological advances, the therapeutic approaches used for the treatment of PD have shown to be largely ineffective in controlling the progression of symptoms in the long term. There is a growing demand for the development of novel therapeutic strategies for PD treatment. Different herbs and supplements have been considered as adjuvant to treat the symptoms of Parkinsonism. The carrot is one of the most consumed vegetable species worldwide, and its root is known for its content of anthocyanins, which possess antioxidant and antiinflammatory properties. This study evaluated the neuroprotective effect of purple carrot extract (CAR) in rats on the reserpine (RES)-induced progressive parkinsonism model. METHODS: Male rats (6-month-old) received orally the CAR (400 mg/kg) or vehicle and subcutaneously RES (0.01 mg/kg) or vehicle for 28 days (Preventive Phase). From the 29th day, rats received CAR or vehicle daily and RES (0.1 mg/kg) or vehicle every other day (for 23 days, Protective phase). Behavioral tests were conducted throughout the treatment. Upon completion, the animals' brain were processed for tyrosine hydroxylase (TH) immunohistochemical assessment. RESULTS: Our results showed that the chronic treatment of CAR protected against motor disabilities, reducing the time of catalepsy behavior and decreasing the frequency of oral movements, possibly by preserving TH levels in the Ventral Tegmental Area (VTA) and SNpc. CONCLUSION: CAR extract is effective to attenuate motor symptoms in rats associated with increased TH+ levels in the Ventral Tegmental Area (VTA) and SNpc, indicating the potential nutraceutical benefits of CAR extract in a progressive parkinsonism model induced by RES.


Subject(s)
Daucus carota , Neuroprotective Agents , Plant Extracts , Reserpine , Tyrosine 3-Monooxygenase , Animals , Reserpine/toxicity , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Daucus carota/chemistry , Tyrosine 3-Monooxygenase/metabolism , Rats, Wistar , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , Disease Models, Animal , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology
5.
Curr Vasc Pharmacol ; 21(4): 246-256, 2023.
Article in English | MEDLINE | ID: mdl-37349999

ABSTRACT

BACKGROUND: We previously reported that endothelins (ETs) regulate tyrosine hydroxylase (TH) activity and expression in the olfactory bulb (OB) of normotensive and hypertensive animals. Applying an ET receptor type A (ETA) antagonist to the brain suggested that endogenous ETs bind to ET receptor type B (ETB) to elicit effects. OBJECTIVE: The aim of the present work was to evaluate the role of central ETB stimulation on the regulation of blood pressure (BP) and the catecholaminergic system in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. METHODS: DOCA-salt hypertensive rats were infused for 7 days with cerebrospinal fluid or IRL-1620 (ETB receptor agonist) through a cannula placed in the lateral brain ventricle. Systolic BP (SBP) and heart rate were recorded by plethysmography. The expression of TH and its phosphorylated forms in the OB were determined by immunoblotting, TH activity by a radioenzymatic assay, and TH mRNA by quantitative real-time polymerase chain reaction. RESULTS: Chronic administration of IRL-1620 decreased SBP in hypertensive rats but not in normotensive animals. Furthermore, the blockade of ETB receptors also decreased TH-mRNA in DOCA-salt rats, but it did not modify TH activity or protein expression. CONCLUSION: These findings suggest that brain ETs through the activation of ETB receptors contribute to SBP regulation in DOCA-salt hypertension. However, the catecholaminergic system in the OB does not appear to be conclusively involved although mRNA TH was reduced. Present and previous findings suggest that in this salt-sensitive animal model of hypertension, the OB contributes to chronic BP elevation.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Desoxycorticosterone Acetate/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Olfactory Bulb/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Blood Pressure , Endothelins/metabolism , Endothelins/pharmacology , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , RNA, Messenger/metabolism , Endothelin-1/genetics , Endothelin-1/metabolism , Endothelin-1/pharmacology , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism
6.
Fly (Austin) ; 17(1): 2192457, 2023 12.
Article in English | MEDLINE | ID: mdl-36949021

ABSTRACT

In Drosophila melanogaster, several Gal4 drivers are used to direct gene/RNAi expression to different dopaminergic neuronal clusters. We previously developed a fly model of Parkinson's disease, in which dopaminergic neurons had elevated cytosolic Ca2+ due to the expression of a Plasma Membrane Ca2+ ATPase (PMCA) RNAi under the thyroxine hydroxylase (TH)-Gal4 driver. Surprisingly, TH-Gal4>PMCARNAi flies died earlier compared to controls and showed swelling in the abdominal area. Flies expressing the PMCARNAi under other TH drivers also showed such swelling and shorter lifespan. Considering that TH-Gal4 is also expressed in the gut, we proposed to suppress the expression specifically in the nervous system, while maintaining the activation in the gut. Therefore, we expressed Gal80 under the direction of the panneuronal synaptobrevin (nSyb) promoter in the context of TH-Gal4. nSyb-Gal80; TH-Gal4>PMCARNAi flies showed the same reduction of survival as TH-Gal4>PMCARNAi flies, meaning that the phenotype of abdomen swelling and reduced survival could be due to the expression of the PMCARNAi in the gut. In perimortem stages TH-Gal4>PMCARNAi guts had alteration in the proventriculi and crops. The proventriculi appeared to lose cells and collapse on itself, and the crop increased its size several times with the appearance of cellular accumulations at its entrance. No altered expression or phenotype was observed in flies expressing PMCARNAi in the dopaminergic PAM cluster (PAM-Gal4>PMCARNAi). In this work we show the importance of checking the global expression of each promoter and the relevance of the inhibition of PMCA expression in the gut.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Transcription Factors , Tyrosine 3-Monooxygenase , Animals , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Membrane/metabolism , Dopaminergic Neurons/metabolism , Down-Regulation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Longevity/genetics , Transcription Factors/genetics , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
7.
Int J Neuropsychopharmacol ; 26(3): 230-239, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36433759

ABSTRACT

BACKGROUND: Paroxetine (PX) is a widely used antidepressant with side effects such as weakness, dizziness, and trouble sleeping. In search of novel compounds with better efficacy and fewer side effects, we synthesized 3HPX, a hydroxylated analog of PX, and compared the 2 in silico for their pharmacokinetic and binding properties and in vivo for their antidepressant and potential neuroprotective effects. METHODS: In silico studies compared pharmacological properties as well as interactions of PX and 3HPX with the serotonin transporter. In vivo studies utilized an animal model of comorbid depression-Parkinson disease. Adult male Wistar rats were injected (sterotaxically) with lipopolysaccharide in the striatum (unilaterally), followed by 14 days of once-daily injections (i.p.) of 10 mg/kg PX or 3HPX. Animals were tested for motor asymmetry and locomotor activity as well as indices of anhedonia and helplessness using sucrose preference and forced swim tests, respectively. Brains of these animals were collected after the last test, and tyrosine hydroxylase-positive neurons in substantia nigra pars compacta and Iba-1-positive stained microglia in ipsilateral striatum were measured. RESULTS: In silico findings indicated that 3HPX could bind stronger to serotonin transporter and also have a better clearance and hence less toxicity compared with PX. In vivo results revealed a more effective reversal of immobility in the swim test, substantial increase in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta, and more ramified Iba-1+ cells by 3HPX compared with PX. CONCLUSION: The findings suggest superior effectiveness of 3HPX as an antidepressant and neuroprotectant compared with PX and hence potential utility in Parkinson disease depression co-morbidity.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Rats , Male , Animals , Paroxetine/pharmacology , Paroxetine/therapeutic use , Parkinson Disease/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Wistar , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Disease Models, Animal
8.
Neurochem Res ; 48(1): 142-160, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36028736

ABSTRACT

In the present study, we investigated the effects of physical exercise in the presence of Vitamin D3 (VD3), on 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. The animals were divided into sham-operated (SO), 6-OHDA-lesioned, and 6-OHDA-lesioned plus VD3 (1 µg/kg, 21 days), in the absence (no exercise, NE) and presence (with exercise, WE) of physical exercise on a treadmill (30 min, speed of 20 cm/s, once a day/21 days). This procedure started, 24 h after the stereotaxic surgery (injections of 6-OHDA into the right striatum). The animals were then subjected to behavioral (rotarod, open field, and apomorphine tests) and their brain areas were dissected for neurochemical, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) determinations, and immunohistochemical studies for tyrosine hydroxylase (TH), dopamine transporter (DAT), and vitamin D receptor (VD3R). The effects on the brain oxidative stress: nitrite/nitrate, glutathione (GSH), and malondialdehyde (MDA) measurements were also evaluated. Behavioral changes of the 6-OHDA lesioned group were improved by exercise plus VD3. Similar results were observed in dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations increased by exercise and VD3, compared with SO groups. Additionally, tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoexpressions were decreased in the 6-OHDA-lesioned groups, with values normalized after exercise and VD3. The VD3 receptor immunoexpression decreased in the 6-OHDA (NE) group, and this was attenuated by exercise, especially after VD3. While 6-OHDA lesions increased, VD3 supplementation decreased the oxidative stress, which was intensified by exercise. VD3 showed neuroprotective properties that were intensified by physical exercise. These VD3 actions on hemiparkinsonian rats are possibly related to its antioxidant and anti-inflammatory effects.


Subject(s)
Dopamine , Vitamin D , Rats , Animals , Dopamine/pharmacology , Oxidopamine/toxicity , Dopamine Plasma Membrane Transport Proteins , 3,4-Dihydroxyphenylacetic Acid , Cholecalciferol/pharmacology , Neuroinflammatory Diseases , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism , Brain/metabolism , Oxidative Stress , Exercise , Corpus Striatum/metabolism
9.
Neuroscience ; 507: 79-98, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36370934

ABSTRACT

Gut dysbiosis is considered a risk factor for Parkinson's disease (PD), and chronic treatment with probiotics could prevent it. Here we report the assessment of a probiotic mixture [Lacticaseibacillus rhamnosus GG (LGG), and Bifidobacterium animalis lactis BB-12 (BB-12)] administered to male rats 2 weeks before and 3 weeks after injecting 6-hydroxydopamine (6-OHDA) into the right striatum, a model that mimics the early stages of PD. Before and after lesion, animals were subjected to behavioral tests: narrow beam, cylinder test, and apomorphine (APO)-induced rotations. Dopaminergic (DA) denervation and microglia recruitment were assessed with tyrosine hydroxylase (TH+) and ionized calcium-binding protein-1 adapter (Iba1+) immunostaining, respectively. Post 6-OHDA injury, rats treated with sunflower oil (probiotics vehicle) developed significant decrease in crossing speed and increases in contralateral paw slips (narrow beam), forepaw use asymmetry (cylinder), and APO-induced rotations. In striatum, 6-OHDA eliminated ≈2/3 of TH+ area and caused significant increase of Iba1+ microglia population. Retrograde axonal degeneration suppressed ≈2/5 of TH+ neurons in the substantia nigra pars compacta (SNpc). In hemiparkinsonian rats, probiotics treatment significantly improved the crossing speed, and also reduced paw slips (postlesion days 14 and 21), the loss of TH+ neurons in SNpc, and the loss of TH+ area and of Iba1+ microglia count in striatum, without affecting the proportion of microglia morphological phenotypes. Probiotics treatment did not attenuate forepaw use asymmetry nor APO-induced rotations. These results indicate that the mixture of probiotics LGG and BB-12 protects nigrostriatal DA neurons against 6-OHDA-induced damage, supporting their potential as preventive treatment of PD.


Subject(s)
Bifidobacterium animalis , Lacticaseibacillus rhamnosus , Motor Disorders , Parkinson Disease , Probiotics , Rats , Male , Animals , Oxidopamine , Bifidobacterium animalis/metabolism , Parkinson Disease/pathology , Microglia/metabolism , Lacticaseibacillus , Substantia Nigra/metabolism , Motor Disorders/pathology , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Dopamine , Apomorphine/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Probiotics/pharmacology
10.
Mol Cell Endocrinol ; 558: 111756, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36084853

ABSTRACT

This study compared the effects of aerobic physical training and estradiol (E2) replacement on central pathways involved with thermoregulation in ovariectomized rats. Rats were assigned to untrained ovariectomized treated with placebo (UN-OVX), untrained ovariectomized treated with E2 (E2-OVX), and trained ovariectomized (TR-OVX) groups. Tail skin temperature (TST), internal temperature (Tint), and basal oxygen consumption (VO2) were recorded. Neuronal activity, brain expression of Kiss1, NKB and Prodyn, and central norepinephrine (NE) levels were measured. UN-OVX had the highest TST. Compared to UN-OVX rats, TR-OVX and E2-OVX had lower Fos expression in the paraventricular and arcuate (ARC) nuclei, and lower double labeling for Tyrosine Hydroxylase and Fos in the brainstem. Compared to UN-OVX, only TR-OVX group exhibited lower kisspeptin (Kiss1), neurokinin B (NKB), and prodynorphin expression in the ARC and higher central NE levels. Aerobic physical training before menopause may prevent the heat dissipation imbalance induced by reduction of E2, through central NE release, modulation of Kiss1, NKB and prodynorphin expression in neurons from ARC nucleus.


Subject(s)
Kisspeptins , Neurokinin B , Female , Humans , Rats , Animals , Kisspeptins/metabolism , Neurokinin B/metabolism , Tyrosine 3-Monooxygenase/metabolism , Ovariectomy , Estradiol/pharmacology , Norepinephrine/metabolism , Body Temperature Regulation
11.
J Chem Neuroanat ; 125: 102162, 2022 11.
Article in English | MEDLINE | ID: mdl-36115503

ABSTRACT

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by progressive dopaminergic neuron loss. Animal models have been used to develop a better understanding of the pathophysiologic mechanisms of PD. However, these models are usually conducted with young animals diverging of the age of PD patients, suggesting a bias in translational science. Thus, the aim of the study was to evaluate the effect of the age on rats in a progressive parkinsonism model induced by reserpine (RES). Adult (6 - 8 month-old) or elderly (18 - 24 month-old) male rats were assigned to six groups: control-elderly (CTL-ELDERLY), reserpine-elderly (RES-ELDERLY), reserpine-elderly withdrawal (RES-ELDERLY WITHDRAWAL), control-adult (CTL-ADULT), reserpine-adult (RES-ADULT), and reserpine-adult withdrawal (RES-ADULT WITHDRAWAL). Animals received 15 injections every other day of RES (0.1 mg / kg) or vehicle during 30 days. Throughout treatment, animals were evaluated in the catalepsy test (every 48 h) and open field test (24 h after the second injection), and weight assessment (every 4 days) was also made. Upon completion of behavioral tests, rat brains were collected for tyrosine hydroxylase (TH) immunohistochemical analysis. Main results demonstrated that RES-treated animals spent more time in the catalepsy bar compared with control groups, moreover the RES-elderly group showed a longer catalepsy time compared with the RES-ADULT group. A shorter time from RES treatment to the development of symptoms was observed in the RES-ADULT group, compared with the RES-ELDERLY group. In addition, RES-induced weight loss in both RES-ELDERLY and RES-ADULT when compared with their corresponding controls. Cessation of RES treatment was followed by weight gain only in the RES-ADULT group. A significant decrease in TH-immunoreactive cells was observed in the substantia nigra pars compacta (SNpc) and dorsal striatum (STR) in the rats in both the RES-ADULT and RES-ELDERLY groups and in the ventral tegmental area in rats in the RES-ADULT group. Furthermore, TH immunoreactivity decrease was not reversible in SNpc and STR in the RES-ELDERLY. These results show that RES has an age-dependent effect in rats, suggesting a greater sensitivity of the dopaminergic pathway to RES with advancing age. These suggest that the RES rat model of parkinsonism can be useful in improving our knowledge on the effect of aging on neurodegeneration.


Subject(s)
Motor Disorders , Parkinson Disease , Parkinsonian Disorders , Animals , Male , Rats , Tyrosine 3-Monooxygenase/metabolism , Reserpine/toxicity , Catalepsy , Motor Activity , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Dopamine/metabolism , Aging , Substantia Nigra/metabolism , Disease Models, Animal
12.
Med Biol Eng Comput ; 60(10): 2995-3007, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36018532

ABSTRACT

Computerized techniques for image analysis are critical for progress in cell biology. The complexity of the data in current methods eliminates the need for manual image analysis and usually requires the application of multiple algorithms sequentially to the images. Our aim was to develop a software for immunohistochemical analysis of brain dopaminergic neurons combining several computational approaches to automatically analyze and quantify their number in the substantia nigra after a neurotoxic injury. For this purpose, we used a Parkinson's disease animal model to test our application. The dopaminergic neurotoxin, 6-hydroxydopamine, was administered in adult male rats to damage dopaminergic neurons in substantia nigra and to induce hemiparkinsonism. The lesion was corroborated by behavioral evaluation in response to apomorphine and amphetamine. The animals were euthanized and their brains processed for tyrosine hydroxylase immunohistochemistry for dopamine neuron identification. Neurons positive for tyrosine hydroxylase were evaluated in substantia nigra by light microscopy. The images were used to show quantification applicability. To test our software counting accuracy and validity, automatic dopamine neuron number was correlated with the data obtained by three independent observers. Several parameters were used to depict neuronal function in dataset images from control and lesioned brains. In conclusion, we could perform an automated quantification of dopaminergic neurons and corroborate the validity and accuracy of a freely available software.


Subject(s)
Dopaminergic Neurons , Tyrosine 3-Monooxygenase , Animals , Dopaminergic Neurons/metabolism , Male , Oxidopamine/toxicity , Rats , Software , Substantia Nigra/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism
13.
J Chem Neuroanat ; 124: 102136, 2022 10.
Article in English | MEDLINE | ID: mdl-35809809

ABSTRACT

Senescence is a natural and progressive physiological event that leads to a series of morphophysiological alterations in the organism. The brain is the most vulnerable organ to both structural and functional changes during this process. Dopamine is a key neurotransmitter for the proper functioning of the brain, directly involved in circuitries related with emotions, learning, motivation and reward. One of the main dopamine- producing nuclei is the substantia nigra pars compacta (SNpc), which establish connections with the striatum forming the so-called nigrostriatal pathway. S100B is a calcium binding protein mainly expressed by astrocytes, involved in both intracellular and extracellular processes, and whose expression is increased following injury in the nervous tissue, being a useful marker in altered status of central nervous system. The present study aimed to analyze the impact of senescence on the cells immunoreactive for tyrosine hydroxylase (TH) and S100B along the nigrostriatal pathway of the rat. Our results show an decreased expression of S100B+ cells in SNpc. In addition, there was a significant decrease in TH immunoreactivity in both projection fibers and TH+ cell bodies. In the striatum, a decrease in TH immunoreactivity was also observed, as well as an enlargement of the white matter bundles. Our findings point out that senescence is related to the anatomical and neurochemical changes observed throughout the nigrostriatal pathway.


Subject(s)
Dopamine , Tyrosine 3-Monooxygenase , Animals , Astrocytes/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Rats , S100 Calcium Binding Protein beta Subunit/analysis , S100 Calcium Binding Protein beta Subunit/metabolism , S100 Calcium Binding Protein beta Subunit/pharmacology , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
14.
J Neuroendocrinol ; 34(9): e13164, 2022 09.
Article in English | MEDLINE | ID: mdl-35666232

ABSTRACT

Hypothalamic arginine vasopressin (AVP)-containing magnocellular neurosecretory neurons (AVPMNN) emit collaterals to synaptically innervate limbic regions influencing learning, motivational behaviour, and fear responses. Here, we characterize the dynamics of expression changes of two key determinants for synaptic strength, the postsynaptic density (PSD) proteins AMPAR subunit GluA1 and PSD scaffolding protein 95 (PSD95), in response to in vivo manipulations of AVPMNN neuronal activation state, or exposure to exogenous AVP ex vivo. Both long-term water deprivation in vivo, which powerfully upregulates AVPMNN metabolic activity, and exogenous AVP application ex vivo, in brain slices, significantly increased GluA1 and PSD95 expression as measured by western blotting, in brain regions reportedly receiving direct ascending innervations from AVPMNN (i.e., ventral hippocampus, amygdala and lateral habenula). By contrast, the visual cortex, a region not observed to receive AVPMNN projections, showed no such changes. Ex vivo application of V1a and V1b antagonists to ventral hippocampal slices ablated the AVP stimulated increase in postsynaptic protein expression measured by western blotting. Using a modified expansion microscopy technique, we were able to quantitatively assess the significant augmentation of PSD95 and GLUA1 densities in subcellular compartments in locus coeruleus tyrosine hydroxylase immunopositive fibres, adjacent to AVP axon terminals. Our data strongly suggest that the AVPMNN ascending system plays a role in the regulation of the excitability of targeted neuronal circuits through upregulation of key postsynaptic density proteins corresponding to excitatory synapses.


Subject(s)
Synapses , Tyrosine 3-Monooxygenase , Arginine Vasopressin/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Synapses/metabolism , Tyrosine 3-Monooxygenase/metabolism
15.
J Endocrinol ; 253(3): 85-96, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35302951

ABSTRACT

Obesogenic diets are known to induce obesity and changes in food intake in experimental animals. Obesity negatively affects the peripheral metabolism and neural aspects, such as changes in eating behavior. In obese animals, dopamine (DA) receptor levels are reduced. DA is one of the main peptides involved in the motivation and pleasure of eating. A combination of naltrexone/bupropion (NB) has shown promise in controlling metabolic alterations, but there are few studies on how they modulate dopaminergic expression. NB, in addition to reducing food intake and body weight, can modify tyrosine hydroxylase (Th) and DA receptor D2 (Drd2) levels in the mesolimbic areas of rats submitted to a high-fat diet (HF). The study evaluated the effect of NB on food intake, body weight, and expression levels of Th, Drd1a, and Drd2, in the nucleus accumbens and striatum of rats fed on HF diet. Wistar rats were grouped according to diet: standard (n = 20) and HF diet (n = 20). The food intake and body weight were analyzed. The gene expression of Th, Drd1a, and Drd2 was evaluated using real-time PCR. NB combination of 1 mg/kg and 20 mg/kg reduced food intake and body weight, increased Drd2 expression in rats on HF diet, and increased Th in rats on both experimental diets. The level of Drd1a was unchanged. We concluded that bodyweight reduction may be associated with decreased food intake in response to the increased Drd2 expression in the mesolimbic areas of rats that received an HF diet.


Subject(s)
Bupropion , Naltrexone , Animals , Body Weight , Bupropion/pharmacology , Diet, High-Fat , Eating , Gene Expression , Naltrexone/pharmacology , Obesity/genetics , Obesity/metabolism , Rats , Rats, Wistar , Receptors, Dopamine D2/genetics , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
16.
Nutr Neurosci ; 25(5): 1026-1040, 2022 May.
Article in English | MEDLINE | ID: mdl-33078695

ABSTRACT

Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesity.


Subject(s)
Encephalitis , Parkinson Disease , Animals , Brain/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Encephalitis/metabolism , Neuroinflammatory Diseases , Obesity/etiology , Obesity/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism
17.
Food Chem Toxicol ; 157: 112526, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34461193

ABSTRACT

Environmental factors are involved in the pathogenesis of neurodevelopmental disorders in addition to genetic factors. In this sense, we demonstrated here that the embryonic exposure of Drosophila melanogaster to Bisphenol A (BPA) 1 mM resulted in changes in development, behavior, and biochemical markers punctuated below. BPA did not alter the oviposition and viability of the eggs, however, it was evidenced a decrease in the rate of pupal eclosion and life span of the hatched flies of the generation filial 1 (F1). F1 flies also developed behavioral changes such as incompatibility in the social interaction between them, and hyperactivity demonstrated by increased locomotion in open field tests, increased grooming, and aggression episodes. Furthermore, decreases in dopamine levels and tyrosine hydroxylase activity have also been observed in flies' heads, possibly related to oxidative damage. Through analyzes of oxidative stress biomarkers, carried out on samples of flies' heads, we observed an increase in malondialdehyde and reactive species, decrease in the activity of the superoxide dismutase and catalase, which possibly culminated in the reduction of cell viability. Thus, it is important to emphasize that BPA developed atypical behaviors in Drosophila melanogaster, reinforce the importance of the environmental factor in the development of neurobehavioral diseases.


Subject(s)
Behavior, Animal/drug effects , Benzhydryl Compounds/toxicity , Dopamine/metabolism , Drosophila melanogaster/drug effects , Phenols/toxicity , Animals , Catalase/metabolism , Dopamine/physiology , Drosophila melanogaster/embryology , Drosophila melanogaster/growth & development , Female , Fertility/drug effects , Glutathione Transferase/metabolism , Male , Open Field Test/drug effects , Oxidative Stress/drug effects , Pupa/drug effects , Superoxide Dismutase/metabolism , Tyrosine/metabolism , Tyrosine 3-Monooxygenase/drug effects , Tyrosine 3-Monooxygenase/metabolism
18.
Sci Rep ; 11(1): 9579, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953275

ABSTRACT

It has been observed that there is a lower Parkinson's disease (PD) incidence in tobacco users. Nicotine is a cholinergic agonist and is the principal psychoactive compound in tobacco linked to cigarette addiction. Different studies have shown that nicotine has beneficial effects on sporadic and genetic models of PD. In this work we evaluate nicotine's protective effect in a Drosophila melanogaster model for PD where Synphilin-1 (Sph-1) is expressed in dopaminergic neurons. Nicotine has a moderate effect on dopaminergic neuron survival that becomes more evident as flies age. Nicotine is beneficial on fly survival and motility increasing tyrosine hydroxylase and dopamine levels, suggesting that cholinergic agonists may promote survival and metabolic function of the dopaminergic neurons that express Sph-1. The Sph-1 expressing fly is a good model for the study of early-onset phenotypes such as olfaction loss one of the main non-motor symptom related to PD. Our data suggest that nicotine is an interesting therapeutic molecule whose properties should be explored in future research on the phenotypic modulators of the disease and for the development of new treatments.


Subject(s)
Carrier Proteins/metabolism , Dopamine/metabolism , Nerve Tissue Proteins/metabolism , Nicotine/therapeutic use , Parkinson Disease/drug therapy , Tyrosine 3-Monooxygenase/metabolism , Animals , Carrier Proteins/genetics , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Drosophila melanogaster , Mice , Nerve Tissue Proteins/genetics , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Parkinson Disease/genetics , Parkinson Disease/metabolism
19.
Behav Brain Res ; 410: 113349, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33971246

ABSTRACT

Reserpine (RES) is an irreversible inhibitor of VMAT2 used to study Parkinson's disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low dose of reserpine was proposed as a model capable of emulating progressive neurochemical, motor and non-motor impairments in PD. Conversely, compared to Wistar rats, Spontaneously Hypertensive Rats (SHR) are resistant to motor changes induced by repeated treatment with a low dose of RES. However, such resistance has not yet been investigated for RES-induced non-motor impairments. We aimed to assess whether SHR would have differential susceptibility to the object recognition deficit induced by repeated low-dose reserpine treatment. We submitted male Wistar and SHR rats to repeated RES treatment (15 s.c. injections of 0.1 mg/kg, every other day) and assessed object memory acquisition and retrieval 48 h after the 6th RES injection (immediately before the appearance of motor impairments). Only RES Wistar rats displayed memory impairment after reserpine treatment. On the other hand, untreated SHR rats displayed object recognition memory deficit, but RES treatment restored such deficits. We also performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last RES injection. In a different set of animals submitted to the same treatment, we quantified DA, 5-HT and products of lipid peroxidation in the prefrontal cortex (PFC) and hippocampus (HPC). SHR presented increased constitutive levels of DA in the PFC and reduced immunoreactivity to TH in the medial PFC and dorsal HPC. Corroborating the behavioral findings, RES treatment restored those constitutive alterations in SHR. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potentially relevant targets to the study of susceptibility to diseases related to dopaminergic alterations.


Subject(s)
Cognition Disorders/chemically induced , Dopamine/metabolism , Hippocampus , Parkinson Disease, Secondary/chemically induced , Prefrontal Cortex , Recognition, Psychology/drug effects , Reserpine/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Animals , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Inbred SHR/metabolism , Rats, Wistar/metabolism , Reserpine/administration & dosage , Signal Transduction/drug effects
20.
Article in English | MEDLINE | ID: mdl-33772638

ABSTRACT

The dopaminergic system of zebrafish is complex and the numerous pathways and receptors in the central nervous system (CNS) are being extensively studied. A critical factor for the synthesis, activation and release of catecholamines (CAs) is the presence of tyrosine hydroxylase, an enzyme which converts L-tyrosine into levodopa. Levodopa thus is the intermediary in the synthesis of dopamine (DA) and norepinephrine (NE) and promotes its release; therefore, CAs play an important role in the CNS with hormonal functions. Here, we use levodopa/carbidopa to clarify the involvement of the dopaminergic pathway in the stress response in zebrafish submitted to an acute stress challenge. Acute stress was induced by chasing fish with a net for 2 min and assessed by measuring whole-body cortisol levels. Two experiments were carried out, the first with exposure to levodopa/carbidopa and the second with exposure to AMPT and levodopa/carbidopa. Levodopa/carbidopa balances the stress response through its action on the zebrafish hypothalamic-pituitary-adrenal (HPA) axis. Changes in cortisol levels suggest that DA was related to the balance of the stress response and that NE decreased this response. These effects were specific to stress since levodopa/carbidopa did not induce changes in cortisol in non-stressed fish.


Subject(s)
Adrenal Glands/drug effects , Carbidopa/pharmacology , Dopamine Agonists/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Hypothalamo-Hypophyseal System/drug effects , Levodopa/pharmacology , Stress, Physiological , Zebrafish/metabolism , Adrenal Glands/metabolism , Animals , Dopaminergic Neurons/metabolism , Drug Combinations , Enzyme Inhibitors/pharmacology , Female , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/metabolism , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/metabolism , alpha-Methyltyrosine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL