Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.609
1.
J Nanobiotechnology ; 22(1): 328, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858780

Breast cancer bone metastasis is a terminal-stage disease and is typically treated with radiotherapy and chemotherapy, which causes severe side effects and limited effectiveness. To improve this, Sonodynamic therapy may be a more safe and effective approach in the future. Bacterial outer membrane vesicles (OMV) have excellent immune-regulating properties, including modulating macrophage polarization, promoting DC cell maturation, and enhancing anti-tumor effects. Combining OMV with Sonodynamic therapy can result in synergetic anti-tumor effects. Therefore, we constructed multifunctional nanoparticles for treating breast cancer bone metastasis. We fused breast cancer cell membranes and bacterial outer membrane vesicles to form a hybrid membrane (HM) and then encapsulated IR780-loaded PLGA with HM to produce the nanoparticles, IR780@PLGA@HM, which had tumor targeting, immune regulating, and Sonodynamic abilities. Experiments showed that the IR780@PLGA@HM nanoparticles had good biocompatibility, effectively targeted to 4T1 tumors, promoted macrophage type I polarization and DC cells activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to effectively kill tumors both in vitro and in vivo, which showed a promising therapeutic effect on breast cancer bone metastasis. Therefore, the nanoparticles we constructed provided a new strategy for effectively treating breast cancer bone metastasis.


Bacterial Outer Membrane , Bone Neoplasms , Breast Neoplasms , Mice, Inbred BALB C , Female , Animals , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Mice , Bone Neoplasms/secondary , Bone Neoplasms/therapy , Cell Line, Tumor , Ultrasonic Therapy/methods , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , RAW 264.7 Cells , Cell Membrane , Multifunctional Nanoparticles/chemistry
2.
Int J Hyperthermia ; 41(1): 2365975, 2024.
Article En | MEDLINE | ID: mdl-38862420

OBJECTIVE: This study aimed to investigate the feasibility, efficacy, and safety of focused ultrasound (FUS) for the treatment of vulvar low-grade squamous intraepithelial lesions (VLSIL) with persistent symptoms. METHODS: This retrospective analysis included 24 VLSIL patients who underwent FUS treatment. At each follow-up visit, the clinical response was assessed including changes in symptoms and signs. In addition, the histological response was assessed based on the vulvar biopsy results of the 3rd follow-up. Clinical and histological response were assessed to elucidate the efficacy. RESULTS: A total of 22 patients completed follow-up and post-treatment pathological biopsies. After treatment, the clinical scores of itching decreased from 2.55 ± 0.51 to 0.77 ± 0.81 (p < 0.05). Furthermore, the clinical response rate and histological response rate were 86.4% and 81.8%, respectively. Only two cured patients indicated recurrence in the 3rd and 4th year during the follow-up period and achieved cure after re-treatment. In terms of adverse effects, only one patient developed ulcers after treatment, which healed after symptomatic anti-inflammatory treatment without scarring, and no other treatment complications were found in any patients. None of the patients developed a malignant transformation during the follow-up period. CONCLUSION: This study revealed that FUS is feasible, effective, and safe for treating VLSIL patients with persistent symptoms, providing a new solution for the noninvasive treatment of symptomatic VLSIL.


Feasibility Studies , Squamous Intraepithelial Lesions , Humans , Female , Middle Aged , Adult , Squamous Intraepithelial Lesions/pathology , Squamous Intraepithelial Lesions/diagnostic imaging , Squamous Intraepithelial Lesions/therapy , Retrospective Studies , Vulvar Neoplasms/therapy , Vulvar Neoplasms/pathology , Vulvar Neoplasms/diagnostic imaging , Aged , Ultrasonic Therapy/methods
3.
Sci Rep ; 14(1): 13704, 2024 06 14.
Article En | MEDLINE | ID: mdl-38871832

Here we report the effects of low-intensity pulsed ultrasound (LIPUS) on symptoms in peripheral arterial disease patients with Buerger disease. A double-blinded and randomized study with active and inactive LIPUS was conducted. We assessed symptoms in leg circulation during a 24-week period of LIPUS irradiation in 12 patients with Buerger disease. Twelve patients without LIPUS irradiation served as controls. The pain intensity on visual analog score was significantly decreased after 24-week LIPUS treatment. Skin perfusion pressure was significantly increased in patients who received LIPUS treatment. There was no significant difference in symptoms and perfusion parameters in the control group. No severe adverse effects were observed in any of the patients who underwent LIPUS treatment. LIPUS is noninvasive, safe and effective option for improving symptoms in patients with Buerger disease.


Thromboangiitis Obliterans , Ultrasonic Therapy , Humans , Male , Female , Double-Blind Method , Middle Aged , Thromboangiitis Obliterans/therapy , Ultrasonic Therapy/methods , Adult , Ultrasonic Waves , Treatment Outcome , Skin/radiation effects , Aged
4.
Theranostics ; 14(8): 3150-3177, 2024.
Article En | MEDLINE | ID: mdl-38855178

Current pharmacological therapeutic approaches targeting chronic inflammation exhibit transient efficacy, often with adverse effects, limiting their widespread use - especially in the context of neuroinflammation. Effective interventions require the consideration of homeostatic function, pathway dysregulation, and pleiotropic effects when evaluating therapeutic targets. Signalling molecules have multiple functions dependent on the immune context, and this complexity results in therapeutics targeting a single signalling molecule often failing in clinical translation. Additionally, the administration of non-physiologic levels of neurotrophic or anti-inflammatory factors can alter endogenous signalling, resulting in unanticipated effects. Exacerbating these challenges, the central nervous system (CNS) is isolated by the blood brain barrier (BBB), restricting the infiltration of many pharmaceutical compounds into the brain tissue. Consequently, there has been marked interest in therapeutic techniques capable of modulating the immune response in a pleiotropic manner; ultrasound remains on this frontier. While ultrasound has been used therapeutically in peripheral tissues - accelerating healing in wounds, bone fractures, and reducing inflammation - it is only recently that it has been applied to the CNS. The transcranial application of low intensity pulsed ultrasound (LIPUS) has successfully mitigated neuroinflammation in vivo, in models of neurodegenerative disease across a broad spectrum of ultrasound parameters. To date, the underlying biological effects and signalling pathways modulated by ultrasound are poorly understood, with a diverse array of reported molecules implicated. The distributed nature of the beneficial response to LIPUS implies the involvement of an, as yet, undetermined upstream signalling pathway, homologous to the protective effect of febrile range hyperthermia in chronic inflammation. As such, we review the heat shock response (HSR), a protective signalling pathway activated by thermal and mechanical stress, as the possible upstream regulator of the anti-inflammatory effects of ultrasound.


Heat-Shock Response , Neuroinflammatory Diseases , Humans , Animals , Neuroinflammatory Diseases/immunology , Ultrasonic Therapy/methods , Inflammation/immunology , Blood-Brain Barrier/metabolism
5.
Biomed Mater ; 19(4)2024 Jun 20.
Article En | MEDLINE | ID: mdl-38857606

Chemotherapeutic agents hold significant clinical potential in combating tumors. However, delivering these drugs to the tumor site for controlled release remains a crucial challenge. In this study, we synthesize and construct a glutathione (GSH) and acid dual-responsive bismuth-based nano-delivery platform (BOD), aiming for sonodynamic enhancement of docetaxel (DTX)-mediated tumor therapy. The bismuth nanomaterial can generate multiple reactive oxygen species under ultrasound stimulation. Furthermore, the loading of DTX to form BOD effectively reduces the toxicity of DTX in the bloodstream, ensuring its cytotoxic effect is predominantly exerted at the tumor site. DTX can be well released in high expression of GSH and acidic tumor microenvironment. Meanwhile, ultrasound can also promote the release of DTX. Results from bothin vitroandin vivoexperiments substantiate that the synergistic therapy involving chemotherapy and sonodynamic therapy significantly inhibits the growth and proliferation of tumor cells. This study provides a favorable paradigm for developing a synergistic tumor treatment platform for tumor microenvironment response and ultrasound-promoted drug release.


Antineoplastic Agents , Bismuth , Docetaxel , Glutathione , Tumor Microenvironment , Ultrasonic Therapy , Bismuth/chemistry , Animals , Glutathione/metabolism , Docetaxel/pharmacology , Docetaxel/chemistry , Mice , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Ultrasonic Therapy/methods , Reactive Oxygen Species/metabolism , Neoplasms/therapy , Neoplasms/drug therapy , Mice, Inbred BALB C , Drug Liberation , Nanoparticles/chemistry , Female
6.
J Nanobiotechnology ; 22(1): 369, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38918812

INTRODUCTION: Breast cancer ranks second as the most common malignancy globally, after lung cancer. Among the various subtypes of breast cancer, HER2 positive breast cancer (HER2 BC)poses a particularly challenging prognosis due to its heightened invasiveness and metastatic potential. The objective of this study was to construct a composite piezoelectric nanoparticle based on poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) for imaging and treatment of HER2 BC. METHOD: By reshaping the crystal structure of P(VDF-TrFE) piezoelectric nanoparticles, improving hydrophilicity, and incorporating imaging capabilities, we developed piezoelectric composite nanoparticles (PGd@tNBs) that integrate imaging and therapeutic functions. The in vitro characterization encompassed the assessment of piezoelectric properties, hydrophilicity, imaging performance, and therapeutic efficacy of these particles. The targeting and therapeutic effectiveness of PGd@tNBs particles were further validated in the SK-BR3 cell line and subsequently confirmed in HER2-positive tumor-bearing mice. RESULTS: The nanoparticle demonstrated excellent biocompatibility and impressive multimodal imaging performance. Magnetic resonance imaging (MRI) observations revealed significant accumulation of PGd@tNBs particles in the HER2 positive tumor, exhibiting superior contrast-enhanced ultrasound performance compared to traditional ultrasound contrast agents, and small animal in vivo imaging showed that PGd@tNBs particles were primarily excreted through respiration and urinary metabolism. Piezoforce Microscopy characterization highlighted the outstanding piezoelectric properties of PGd@tNBs particles. Upon targeted binding to HER2-BC, ultrasound stimulation influenced the cell membrane potential, leading to reversible electroporation. This, in turn, affected the balance of calcium ions inside and outside the cells and the mitochondrial membrane potential. Following ingestion by cells, PGd@tNBs, when exposed to ultrasound, triggered the generation of reactive oxygen species (ROS), resulting in the consumption of glutathione and superoxide dismutase and achieving sonodynamic therapy. Notably, repeated ultrasound stimulation, post PGd@tNBs particles binding and entry into cells, increased ROS production and elevated the apoptosis rate by approximately 45%. CONCLUSION: In conclusion, the PGd@tNBs particles developed exhibit outstanding imaging and therapeutic efficacy, holding potential for precise diagnosis and personalized treatment of HER2 BC.


Breast Neoplasms , Nanoparticles , Receptor, ErbB-2 , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Humans , Mice , Cell Line, Tumor , Receptor, ErbB-2/metabolism , Nanoparticles/chemistry , Magnetic Resonance Imaging , Ultrasonic Therapy/methods , Mice, Nude , Mice, Inbred BALB C , Contrast Media/chemistry , Apoptosis/drug effects
8.
J Nanobiotechnology ; 22(1): 317, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38849886

Sonodynamic therapy (SDT), a promising strategy for cancer treatment with the ability for deep tissue penetration, has received widespread attention in recent years. Sonosensitizers with intrinsic characteristics for tumor-specific curative effects, tumor microenvironment (TME) regulation and tumor diagnosis are in high demand. Herein, amorphous CoBiMn-layered double hydroxide (a-CoBiMn-LDH) nanoparticles are presented as multifunctional sonosensitizers to trigger reactive oxygen species (ROS) generation for ultrasound (US) imaging-guided SDT. Hydrothermal-synthesized CoBiMn-LDH nanoparticles are etched via a simple acid treatment to obtain a-CoBiMn-LDH nanoparticles with abundant defects. The a-CoBiMn-LDH nanoparticles give greater ROS generation upon US irradiation, reaching levels ~ 3.3 times and ~ 8.2 times those of the crystalline CoBiMn-LDH nanoparticles and commercial TiO2 sonosensitizer, respectively. This excellent US-triggered ROS generation performance can be attributed to the defect-induced narrow band gap and promoted electrons and holes (e-/h+) separation. More importantly, the presence of Mn4+ enables the a-CoBiMn-LDH nanoparticles to regulate the TME by decomposing H2O2 into O2 for hypoxia relief and US imaging, and consuming glutathione (GSH) for protection against ROS clearance. Biological mechanism analysis shows that a-CoBiMn-LDH nanoparticles modified with polyethylene glycol can serve as a multifunctional sonosensitizer to effectively kill cancer cells in vitro and eliminate tumors in vivo under US irradiation by activating p53, apoptosis, and oxidative phosphorylation-related signaling pathways.


Hydroxides , Nanoparticles , Reactive Oxygen Species , Tumor Microenvironment , Ultrasonic Therapy , Tumor Microenvironment/drug effects , Animals , Reactive Oxygen Species/metabolism , Humans , Ultrasonic Therapy/methods , Hydroxides/chemistry , Hydroxides/pharmacology , Mice , Nanoparticles/chemistry , Cell Line, Tumor , Cobalt/chemistry , Ultrasonography/methods , Mice, Inbred BALB C , Neoplasms/therapy , Neoplasms/diagnostic imaging , Apoptosis/drug effects , Female , Mice, Nude
9.
Int J Hyperthermia ; 41(1): 2350759, 2024.
Article En | MEDLINE | ID: mdl-38719202

INTRODUCTION: Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thermal ablation is an effective noninvasive ultrasonic therapy to disrupt in vivo porcine tendon but is prone to inducing skin burns. We evaluated the safety profile of a novel hybrid protocol that minimizes thermal spread by combining long-pulse focused ultrasound followed by thermal ablation. METHODS: In-vivo Achilles tendons (hybrid N = 15, thermal ablation alone N = 21) from 15 to 20 kg Yorkshire pigs were randomly assigned to 6 treatment groups in two studies. The first (N = 21) was ablation (600, 900, or 1200 J). The second (N = 15) was hybrid: pulsed FUS (13.5 MPa peak negative pressure) followed by ablation (600, 900, or 1200 J). Measurements of ankle range of motion, tendon temperature, thermal dose (240 CEM43), and assessment of skin burn were performed in both groups. RESULTS: Rupture was comparable between the two protocols: 1/5 (20%), 5/5 (100%) and 5/5 (100%) for hybrid protocol, compared to 2/7 (29%), 6/7 (86%) and 7/7 (100%) for the ablation-only protocol with energies of 600, 900, and 1200 J, respectively. The hybrid protocol produced lower maximum temperatures, smaller areas of thermal dose, fewer thermal injuries to the skin, and fewer full-thickness skin burns. The standard deviation for the area of thermal injury was also smaller for the hybrid protocol, suggesting greater predictability. CONCLUSION: This study demonstrated a hybrid MRgFUS protocol combining long-pulse FUS followed by thermal ablation to be noninferior and safer than an ablation-only protocol for extracorporeal in-vivo tendon rupture for future clinical application for noninvasive release of contracted tendon.


Magnetic Resonance Imaging , Animals , Swine , Magnetic Resonance Imaging/methods , High-Intensity Focused Ultrasound Ablation/methods , Tendons/diagnostic imaging , Ultrasonic Therapy/methods
10.
PLoS One ; 19(5): e0304398, 2024.
Article En | MEDLINE | ID: mdl-38814913

OBJECTIVE: Minimally invasive surgery for spontaneous intracerebral hemorrhage is impeded by inadequate lysis of the target blood clot. Ultrasound is thought to expedite intravascular thrombolysis, thereby facilitating vascular recanalization. However, the impact of ultrasound on intracerebral blood clot lysis remains uncertain. This study aimed to explore the feasibility of combining ultrasound with urokinase to enhance blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage. METHODS: The blood clots were divided into four groups: control group, ultrasound group, urokinase group, and ultrasound + urokinase group. Using our experimental setup, which included a key-shaped bone window, we simulated a minimally invasive puncture and drainage procedure for spontaneous intracerebral hemorrhage. The blood clot was then irradiated using ultrasound. Blood clot lysis was assessed by weighing the blood clot before and after the experiment. Potential adverse effects were evaluated by measuring the temperature variation around the blood clot in the ultrasound + urokinase group. RESULTS: A total of 40 blood clots were observed, with 10 in each experimental group. The blood clot lysis rate in the ultrasound group, urokinase group, and ultrasound + urokinase group (24.83 ± 4.67%, 47.85 ± 7.09%, 61.13 ± 4.06%) was significantly higher than that in the control group (16.11 ± 3.42%) (p = 0.02, p < 0.001, p < 0.001). The blood clot lysis rate in the ultrasound + urokinase group (61.13 ± 4.06%) was significantly higher than that in the ultrasound group (24.83 ± 4.67%) (p < 0.001) or urokinase group (47.85 ± 7.09%) (p < 0.001). In the ultrasound + urokinase group, the mean increase in temperature around the blood clot was 0.26 ± 0.15°C, with a maximum increase of 0.38 ± 0.09°C. There was no significant difference in the increase in temperature regarding the main effect of time interval (F = 0.705, p = 0.620), the main effect of distance (F = 0.788, p = 0.563), or the multiplication interaction between time interval and distance (F = 1.100, p = 0.342). CONCLUSIONS: Our study provides evidence supporting the enhancement of blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage through the combined use of ultrasound and urokinase. Further animal experiments are necessary to validate the experimental methods and results.


Cerebral Hemorrhage , Urokinase-Type Plasminogen Activator , Urokinase-Type Plasminogen Activator/pharmacology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/therapy , Ultrasonic Therapy/methods , Humans , Thrombosis , Animals , Thrombolytic Therapy/methods , Fibrinolysis/drug effects , Blood Coagulation/drug effects
11.
Medicine (Baltimore) ; 103(19): e38092, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728468

Ultrasound therapy is a method of applying ultrasonic energy to the stimulation produced by human body to change the function and tissue state of the body in order to achieve the purpose of treating diseases. Chronic venous ulcer is a common chronic skin ulcer. GSE222503 for ultrasound therapy of chronic venous ulcers was downloaded from gene expression omnibus database, which were used to identify differentially expressed genes. Weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis and construction and analysis of protein-protein interaction network were performed. Draw gene expression heatmaps. Comparative toxicogenomics database analysis was performed. Two hundred thirty-five differentially expressed genes were obtained. According to gene ontology analysis, in biological process analysis, they were mainly enriched in positive regulation of cellular biosynthetic process, reproductive cell development, vasculogenesis, vascular morphogenesis, and inflammatory response. In cellular component analysis, they were mainly enriched in leading edge of growing cell, extracellular matrix binding organelle, F-actin capping protein complex. In molecular function analysis, they were mainly concentrated in receptor ligand activity, cytokine receptor binding. In Kyoto encyclopedia of genes and genomes analysis, they were mainly enriched in cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, HIF-1 signaling pathway, heme biosynthesis. In weighted gene co-expression network analysis, the soft threshold power was set to 9. Thirty modules were generated. PF4, NR1I2, TTC16, H3C12, KLRB1, CYP21A2 identified by 4 algorithms (MCC, EPC, closeness, stress). Heatmap of core gene expression showed that H3C12, KLRB1, PF4, NR1I2 were all underexpressed in samples of ultrasound-treated chronic venous ulcers and overexpressed in samples of untreated chronic venous ulcers. Comparative toxicogenomics database analysis showed that H3C12, KLRB1, PF4, NR1I2 are associated with thrombophlebitis, phlebitis, vascular malformations, metabolic syndrome, ulcers, and inflammation. In samples of chronic venous ulcer tissue treated with ultrasound, NR1I2 shows low expression, while in samples of chronic venous ulcer tissue without ultrasound treatment, it shows high expression. This finding suggests a potential role of NR1I2 in the process of ultrasound therapy for chronic venous ulcers, which may be related to the therapeutic effect of ultrasound therapy on chronic venous ulcers.


Pregnane X Receptor , Ultrasonic Therapy , Varicose Ulcer , Humans , Chronic Disease , Gene Expression Profiling/methods , Gene Ontology , Protein Interaction Maps , Ultrasonic Therapy/methods , Varicose Ulcer/therapy , Varicose Ulcer/genetics , Varicose Ulcer/metabolism , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism
12.
Phys Med Biol ; 69(12)2024 Jun 10.
Article En | MEDLINE | ID: mdl-38788727

Objective. Focused ultrasound spinal cord neuromodulation has been demonstrated in small animals. However, most of the tested neuromodulatory exposures are similar in intensity and exposure duration to the reported small animal threshold for possible spinal cord damage. All efforts must be made to minimize the risk and assure the safety of potential human studies, while maximizing potential treatment efficacy. This requires an understanding of ultrasound propagation and heat deposition within the human spine.Approach. Combined acoustic and thermal modelling was used to assess the pressure and heat distributions produced by a 500 kHz source focused to the C5/C6 level via two approaches (a) the posterior acoustic window between vertebral posterior arches, and (b) the lateral intervertebral foramen from which the C6 spinal nerve exits. Pulse trains of fifty 0.1 s pulses (pulse repetition frequency: 0.33 Hz, free-field spatial peak pulse-averaged intensity: 10 W cm-2) were simulated for four subjects and for ±10 mm translational and ±10∘rotational source positioning errors.Main results.Target pressures ranged between 20%-70% of free-field spatial peak pressures with the posterior approach, and 20%-100% with the lateral approach. When the posterior source was optimally positioned, peak spine heating values were below 1 ∘C, but source mispositioning resulted in bone heating up to 4 ∘C. Heating with the lateral approach did not exceed 2 ∘C within the mispositioning range. There were substantial inter-subject differences in target pressures and peak heating values. Target pressure varied three to four-fold between subjects, depending on approach, while peak heating varied approximately two-fold between subjects. This results in a nearly ten-fold range between subjects in the target pressure achieved per degree of maximum heating.Significance. This study highlights the utility of trans-spine ultrasound simulation software and need for precise source-anatomy positioning to assure the subject-specific safety and efficacy of focused ultrasound spinal cord therapies.


Ultrasonic Therapy , Humans , Ultrasonic Therapy/adverse effects , Ultrasonic Therapy/methods , Safety , Cervical Cord/diagnostic imaging , Pressure , Spinal Cord Stimulation/methods , Spinal Cord Stimulation/instrumentation , Models, Biological
13.
ACS Appl Mater Interfaces ; 16(22): 28104-28117, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38769350

Sonodynamic therapy (SDT), which involves the activation of sonosensitizers to generate cytotoxic reactive oxygen species under ultrasound irradiation, is a promising noninvasive modality for cancer treatment. However, the clinical translational application of SDT is impeded by the lack of efficient sonosensitizers, the inefficient accumulation of sonosensitizers at tumor sites, and the complicated immunosuppressive tumor microenvironment. Herein, we developed a facilely synthesized multifunctional porous organic polymer nanosonosensitizer (mHM@HMME) for enhanced SDT. Specifically, mHM@HMME nanosonosensitizers were prepared by incorporating chemotherapeutic mitoxantrone into the one-step synthesis process of disulfide bond containing porous organic polymers, followed by loading with organic sonosensitizer (HMME) and camouflaging with a cancer cell membrane. Due to the cancer cell membrane camouflage, this multifunctional mHM@HMME nanosonosensitizer showed prolonged blood circulation and tumor targeting aggregation. Under ultrasound irradiation, the mHM@HMME nanosonosensitizer exhibited a satisfactory SDT performance both in vitro and in vivo. Moreover, the potent SDT combined with glutathione-responsive drug release in tumor cells induced robust immunogenic cell death to enhance the antitumor effect of SDT in turn. Overall, this facilely synthesized multifunctional mHM@HMME nanosonosensitizer shows great potential application in enhanced SDT.


Polymers , Ultrasonic Therapy , Animals , Mice , Humans , Porosity , Ultrasonic Therapy/methods , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Female
14.
J Control Release ; 370: 438-452, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701885

Triggering pyroptosis is a major new weathervane for activating tumor immune response. However, biodegradable pyroptosis inducers for the safe and efficient treatment of tumors are still scarce. Herein, a novel tumor microenvironment (TME)-responsive activation nanoneedle for pyroptosis induction, copper-tannic acid (CuTA), was synthesized and combined with the sonosensitizer Chlorin e6 (Ce6) to form a pyroptosis amplifier (CuTA-Ce6) for dual activation and amplification of pyroptosis by exogenous ultrasound (US) and TME. It was demonstrated that Ce6-triggered sonodynamic therapy (SDT) further enhanced the cellular pyroptosis caused by CuTA, activating the body to develop a powerful anti-tumor immune response. Concretely, CuTA nanoneedles with quadruple mimetic enzyme activity could be activated to an "active" state in the TME, destroying the antioxidant defense system of the tumor cells through self-destructive degradation, breaking the "immunosilent" TME, and thus realizing the pyroptosis-mediated immunotherapy with fewer systemic side effects. Considering the outstanding oxygen-producing capacity of CuTA and the distinctive advantages of US, the sonosensitizer Ce6 was attached to CuTA via an amide reaction, which further amplified the pyroptosis and sensitized pyroptosis-induced immunotherapy with the two-pronged strategy of CuTA enzyme-catalyzed cascade and US-driven SDT pathway to generate a "reactive oxygen species (ROS) storm". Conclusively, this work provided a representative paradigm for achieving safe, reliable and efficient pyroptosis, which was further enhanced by SDT for more robust immunotherapy.


Chlorophyllides , Copper , Immunotherapy , Mice, Inbred BALB C , Porphyrins , Pyroptosis , Reactive Oxygen Species , Tumor Microenvironment , Pyroptosis/drug effects , Reactive Oxygen Species/metabolism , Porphyrins/administration & dosage , Immunotherapy/methods , Animals , Copper/administration & dosage , Cell Line, Tumor , Humans , Female , Ultrasonic Therapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Mice
15.
Front Endocrinol (Lausanne) ; 15: 1393251, 2024.
Article En | MEDLINE | ID: mdl-38752180

Objective: Research data suggests that ultrasound-assisted wound debridement (UAWD) can effectively promote the healing of diabetic foot ulcers (DFU). However, existing research is not consistent with this viewpoint. Therefore, we conducted this study to investigate the effect of UAWD on the healing of diabetic foot ulcers. Methods: From the establishment of the database to January 2024, we searched 8 databases to study the effectiveness and safety of UAWD in the treatment of DFU. Two authors independently screened the qualifications of the articles, while two authors extracted relevant data. Statistical analysis was conducted using Review Manager 5.4 and STATA 18.0 software. Results: A total of 11 randomized controlled studies were included, with 6 countries and 696 participants participating. Our findings showed that UAWD was associated with a significant benefit in healing rate (OR = 2.60, 95% CI: [1.67, 4.03], P < 0.0001, I2 = 25%), wound healing time (MD = -11.94, 95% CI: [-23.65, -0.23], P = 0.05, I2 = 99%), percentage reduction in wound size (MD = 14.2, 95% CI: [10.8, 17.6], P = 0.47, I2 = 32%), effectiveness of treatment (OR = 10.3, 95% CI: [4.68, 22.66], P < 0.00001, I2 = 0%). Moreover, UAWD did not cause any significant adverse reactions. However, there was no obvious difference in wound blood perfusion (MD = 0.25, 95% CI: [-0.01, 0.52], P = 0.06, I2 = 90%), transcutaneous oxygen partial pressure (MD = 14.34, 95% CI: [-10.03, 38.71], P = 0.25, I2 = 98%). Conclusion: UAWD can significantly improve wound healing rate, shorten wound healing time, accelerate wound area reduction, and improve clinical treatment effectiveness without significant adverse reactions. Although there is no significant difference in transcutaneous oxygen pressure and wound blood flow perfusion between UAWD and SWC. So we look forward to more scientifically blinded, placebo-controlled, high-quality studies in the future, to enable researchers to obtain more complete and accurate analytical data, in order to improve the scientific and credibility of the evidence. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024501198.


Debridement , Diabetic Foot , Randomized Controlled Trials as Topic , Ultrasonic Therapy , Wound Healing , Diabetic Foot/therapy , Humans , Debridement/methods , Ultrasonic Therapy/methods , Treatment Outcome
16.
Acta Biomater ; 181: 67-97, 2024 06.
Article En | MEDLINE | ID: mdl-38697383

Sonodynamic therapy (SDT), utilizing ultrasound (US) as the trigger, has gained popularity recently as a therapeutic approach with significant potential for treating various diseases. Metal-organic frameworks (MOFs), characterized by structural flexibility, are prominently emerging in the SDT realm as an innovative type of sonosensitizer, offering functional tunability and biocompatibility. However, due to the inherent limitations of MOFs, such as low reactivity to reactive oxygen species and challenges posed by the complex tumor microenvironment, MOF-based sonosensitizers with singular functions are unable to demonstrate the desired therapeutic efficacy and may pose risks of toxicity, limiting their biological applications to superficial tissues. MOFs generally possess distinctive crystalline structures and properties, and their controlled coordination environments provide a flexible platform for exploring structure-effect relationships and guiding the design and development of MOF-based nanomaterials to unlock their broader potential in biological fields. The primary focus of this paper is to summarize cases involving the modification of different MOF materials and the innovative strategies developed for various complex conditions. The paper outlines the diverse application areas of functionalized MOF-based sonosensitizers in tumor synergistic therapies, highlighting the extensive prospects of SDT. Additionally, challenges confronting SDT are briefly summarized to stimulate increased scientific interest in the practical application of MOFs and the successful clinical translation of SDT. Through these discussions, we strive to foster advancements that lead to early-stage clinical benefits for patients. STATEMENT OF SIGNIFICANCE: 1. An overview for the progresses in SDT explored from a novel and fundamental perspective. 2. Different modification strategies to improve the MOFs-mediated SDT efficacy are provided. 3. Guidelines for the design of multifunctional MOFs-based sonosensitizers are offered. 4. Powerful tumor ablation potential is reflected in SDT-led synergistic therapies. 5. Future challenges in the field of MOFs-based SDT in clinical translation are suggested.


Metal-Organic Frameworks , Neoplasms , Ultrasonic Therapy , Metal-Organic Frameworks/chemistry , Humans , Neoplasms/therapy , Neoplasms/pathology , Ultrasonic Therapy/methods , Animals
17.
Ultrason Sonochem ; 107: 106928, 2024 Jul.
Article En | MEDLINE | ID: mdl-38820932

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by infiltration of inflammatory cells, hyperplasia of synovium, and destruction of the joint cartilage. Owing to the low drug delivery efficiency and limited immunosuppression effect, complete cure for RA remains a formidable challenge. Here, we show that live macrophages (Mφs) carrying protoporphyrin-loaded Fe3O4 nanoparticles can migrate to the RA tissues and inhibit the inflammation by sonodynamic therapy. The inflammation of RA leads to the release of cytokines, which guides the migration of the Mφs into the RA tissues, realizing precise delivery of therapeutics. The following sonodynamic therapy induced by ultrasound and protoporphyrin destructs the proliferating synovial cells and also infiltrated inflammatory cells, demonstrating significant therapeutic effect for RA. Meanwhile, the cytokines and relapse of RA can be remarkably suppressed because of the efficient damage to the resident inflammatory cells.


Arthritis, Rheumatoid , Macrophages , Protoporphyrins , Ultrasonic Therapy , Arthritis, Rheumatoid/therapy , Macrophages/drug effects , Macrophages/metabolism , Protoporphyrins/chemistry , Protoporphyrins/pharmacology , Animals , Ultrasonic Therapy/methods , Mice , RAW 264.7 Cells , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Cytokines/metabolism , Humans
18.
Int Immunopharmacol ; 134: 112233, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38735256

Immunotherapy has become a revolutionary method for treating tumors, offering new hope to cancer patients worldwide. Immunotherapy strategies such as checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapy, and cancer vaccines have shown significant potential in clinical trials. Despite the promising results, there are still limitations that impede the overall effectiveness of immunotherapy; the response to immunotherapy is uneven, the response rate of patients is still low, and systemic immune toxicity accompanied with tumor cell immune evasion is common. Ultrasound technology has evolved rapidly in recent years and has become a significant player in tumor immunotherapy. The introductions of high intensity focused ultrasound and ultrasound-stimulated microbubbles have opened doors for new therapeutic strategies in the fight against tumor. This paper explores the revolutionary advancements of ultrasound combined with immunotherapy in this particular field.


Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/diagnostic imaging , Immunotherapy/methods , Animals , Ultrasonography/methods , Cancer Vaccines/therapeutic use , Cancer Vaccines/immunology , Immune Checkpoint Inhibitors/therapeutic use , Microbubbles , Immunotherapy, Adoptive/methods , Combined Modality Therapy , Ultrasonic Therapy/methods
19.
J Plast Reconstr Aesthet Surg ; 94: 20-26, 2024 Jul.
Article En | MEDLINE | ID: mdl-38733713

BACKGROUND: Ultrasound-assisted liposuction (UAL) has become popular because of its favorable outcomes in fat emulsification, blood loss reduction, and skin tightening. This study aimed to compare the effects of two UAL devices on the abdomen by assessing postsurgery skin biomechanical properties. METHODS: This single-blind, prospective study (2020-2022) involved 13 liposuction procedures performed on patients without chronic diseases. Each patient's abdomen was divided vertically from the xiphoid to the perineum. Vibration amplification of sound energy at resonance (VASER)-assisted liposuction (Solta Medical, Inc., Hayward, CA) was performed on one half, while the other half underwent liposuction with high-frequency ultrasound energy (HEUS)-assisted technology. Skin biomechanical measurements, including distensibility, net elasticity, biological elasticity, hydration, erythema, melanin, and skin firmness, were taken at 12 and 24 months postsurgery, focusing on the anterior abdomen, 8 cm to the right and left of the umbilicus. RESULTS: Analysis of the above skin biomechanical measurements revealed no significant differences between the HEUS and VASER devices, except for skin firmness, which showed a notable increase following HEUS surgery. Patient-perceived clinical differences were assessed via nonvalidated questionnaires, revealing no distinctions between devices. CONCLUSION: Biomechanical skin results post-UAL surgery with these devices on the abdomen were not significantly different, although HEUS revealed increased skin firmness. This suggests that HEUS-assisted technology, akin to other devices, is a viable option for UAL procedures.


Lipectomy , Humans , Lipectomy/methods , Lipectomy/instrumentation , Female , Prospective Studies , Adult , Single-Blind Method , Middle Aged , Male , Abdomen/surgery , Ultrasonic Therapy/methods , Skin Physiological Phenomena
20.
Reprod Biol Endocrinol ; 22(1): 51, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671458

BACKGROUND: Ovarian damage and follicle loss are major side effects of chemotherapy in young female patients with cancer. However, effective strategies to prevent these injuries are still lacking. The purpose of this study was to verify low-intensity pulsed ultrasound (LIPUS) can reduce ovarian injury caused by chemotherapy and to explore its underlying mechanisms in mice model. METHODS: The mice were randomly divided into the Control group, Cisplatin group, and Cisplatin + LIPUS group. The Cisplatin group and Cisplatin + LIPUS group were intraperitoneally injected with cisplatin every other day for a total of 10 injections, and the Control group was injected with saline. On the second day of each injection, the Cisplatin + LIPUS group received irradiation, whereas the other two groups received sham irradiation. We used a variety of biotechnologies to detect the differences in follicle count, granulosa cell apoptosis, fibrosis, transcriptome level, oxidative damage, and inflammation in differently treated mice. RESULT: LIPUS was able to reduce primordial follicle pool depletion induced by cisplatin and inhibit the apoptosis of granulosa cells. Transcriptomic results confirmed that LIPUS can reduce ovarian tissue injury. We demonstrated that LIPUS can relieve ovarian fibrosis by inhibiting TGF-ß1/Smads pathway. Meanwhile, it can reduce the oxidative damage and reduced the mRNA levels of proinflammatory cytokines caused by chemotherapy. CONCLUSION: LIPUS can reduce the toxic effects of chemotherapy drugs on ovaries, inhibit ovarian fibrosis, reduce the inflammatory response, and redcue the oxidative damage, reduce follicle depletion and to maintain the number of follicle pools.


Antineoplastic Agents , Cisplatin , Ovary , Ultrasonic Waves , Animals , Female , Mice , Cisplatin/adverse effects , Ovary/drug effects , Ovary/radiation effects , Ovary/pathology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Apoptosis/radiation effects , Ovarian Follicle/drug effects , Ovarian Follicle/radiation effects , Ultrasonic Therapy/methods
...