Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.510
Filter
1.
Iran J Kidney Dis ; 18(3): 159-167, 2024 05.
Article in English | MEDLINE | ID: mdl-38904340

ABSTRACT

INTRODUCTION: Shenqi pill (SQP) can be used to treat various kidney related diseases, but its exact mechanism of action remains unclear. We intended to analyze the role and mechanism of SQP on renal interstitial fibrosis (RIF). METHODS: After performing unilateral ureteral obstruction (UUO) surgery following the Institutional Animal Care and Use Committee guidelines, all rats were assigned into the sham group, UUO group, UUO + SQP 1.5 g/kg, UUO + SQP 3 g/kg, and UUO + SQP 6 g/kg groups. After treatment with SQP for 4 weeks, the appearance of kidney, serum creatinine (SCr), and blood urea nitrogen (BUN) levels were monitored in each group. The pathological injury, extracellular matrix (ECM), and Notch1 pathway-related protein levels were measured using H&E staining, Masson staining, immunohistochemistry, and Western blot, respectively. RESULTS: SQP could obviously ameliorate the appearance of the kidney as well as the levels of SCr and BUN in UUO rats (SCr: 67.6 ± 4.64 µM, 59.66 ± 4.96 µM, 48.76 ± 4.44 µM, 40.43 ± 3.02 µM for UUO, low, medium, and high SQP treatment groups; BUN: 9.09 ± 0.97 mM, 7.72 ± 0.61 mM, 5.42 ± 0.42 mM, 4.24 ± 0.34 mM for UUO, low, medium, and high SQP treatment groups; P < .05). SQP also effectively mitigated renal tissue injury in UUO rats (P < .05). Moreover, we uncovered that SQP significantly inhibited Collagen I, α-SMA, Collagen IV, TGF-B1, Notch1, and Jag1 protein expressions in UUO rats kidney (P < .05). CONCLUSION: Our data elucidated that SQP can alleviate RIF, and the mechanism may be related to the Notch1/Jag1 pathway. DOI: 10.52547/ijkd.7703.


Subject(s)
Blood Urea Nitrogen , Drugs, Chinese Herbal , Fibrosis , Jagged-1 Protein , Kidney , Rats, Sprague-Dawley , Receptor, Notch1 , Signal Transduction , Ureteral Obstruction , Animals , Drugs, Chinese Herbal/pharmacology , Male , Receptor, Notch1/metabolism , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Rats , Signal Transduction/drug effects , Jagged-1 Protein/metabolism , Disease Models, Animal , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Creatinine/blood , Transforming Growth Factor beta1/metabolism , Actins/metabolism
2.
PLoS One ; 19(6): e0299389, 2024.
Article in English | MEDLINE | ID: mdl-38870184

ABSTRACT

Renal fibrosis is the most common pathway in progressive kidney diseases. The unilateral ureteral obstruction (UUO) model is used to induce progressive renal fibrosis. We evaluated the effects of irisin on renal interstitial fibrosis in UUO mice. The GSE121190, GSE36496, GSE42303, and GSE96101 datasets were downloaded from the Gene Expression Omnibus (GEO) database. In total, 656 differentially expressed genes (DEGs) were identified in normal and UUO mouse renal samples. Periostin and matrix metalloproteinase-2 (MMP-2) were selected to evaluate the effect of irisin on renal fibrosis in UUO mice. In UUO mice, irisin ameliorated renal function, decreased the expression of periostin and MMP-2, and attenuated epithelial-mesenchymal transition and extracellular matrix deposition in renal tissues. In HK-2 cells, irisin treatment markedly attenuated TGF-ß1-induced expression of periostin and MMP-2. Irisin treatment also inhibited TGF-ß1-induced epithelial-mesenchymal transition, extracellular matrix formation, and inflammatory responses. These protective effects of irisin were abolished by the overexpression of periostin and MMP-2. In summary, irisin treatment can improve UUO-induced renal interstitial fibrosis through the TGF-ß1/periostin/MMP-2 signaling pathway, suggesting that irisin may be used for the treatment of renal interstitial fibrosis.


Subject(s)
Cell Adhesion Molecules , Epithelial-Mesenchymal Transition , Fibronectins , Fibrosis , Kidney Diseases , Matrix Metalloproteinase 2 , Signal Transduction , Transforming Growth Factor beta1 , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/drug therapy , Fibronectins/metabolism , Mice , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Epithelial-Mesenchymal Transition/drug effects , Male , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Kidney Diseases/drug therapy , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL , Cell Line , Disease Models, Animal , Periostin
3.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849370

ABSTRACT

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Subject(s)
Apoptosis , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Receptors, Immunologic , STAT Transcription Factors , Signal Transduction , Animals , Macrophages/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Kidney/pathology , Kidney/metabolism , Mice, Knockout , Male , Fibrosis , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Cell Polarity , TOR Serine-Threonine Kinases/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics
4.
Urolithiasis ; 52(1): 87, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869700

ABSTRACT

Previous reports show increased severity of perinephric fat stranding (PFS) with elevated serum creatinine in obstructing ureterolithiasis. We sought to investigate this association with our institution's patient population.We reviewed charts of patients diagnosed with obstructive ureterolithiasis or nephrolithiasis in our emergency department between January and October 2018. Patient demographics, lab results, and computed tomography (CT) imaging were reviewed. A blinded radiologist reviewed all CTs and graded hydronephrosis and PFS. Subjects were stratified by degree of PFS and compared via paired t-test, chi-squared test, univariate analysis, and multivariate analysis.We identified 141 patients; 114 had no-mild (Group 1) PFS, while 27 had moderate-severe (Group 2) PFS. Group 1 had a mean age of 56 (SD = 16.1) and mean stone size of 7.3 mm (SD = 4.22); 77% of the cohort had symptoms under 24 h. Group 2 was older with a mean age of 65 (SD = 16.2, p = 0.01) and mean stone size of 10.1 mm (SD = 6.07, p < 0.01); 50% had symptoms less than 24 h (p = 0.01). PFS did not correlate with change in serum creatinine. Univariate and multivariate analysis showed increasing age increased the odds of moderate-severe PFS by 3.5% (OR = 1.035, p < 0.05) while increased stone size increased the odds of moderate-severe PFS by 13.7% (OR = 1.137, p = 0.01).Although increased PFS correlated with increased age and stone size, no correlation was found with presenting creatinine or change in creatinine. Degree of PFS is likely a poor predictor of renal disease severity in acute ureterolithiasis.


Subject(s)
Creatinine , Humans , Middle Aged , Female , Male , Creatinine/blood , Aged , Retrospective Studies , Age Factors , Adult , Ureteral Obstruction/blood , Ureteral Obstruction/complications , Ureteral Obstruction/etiology , Ureterolithiasis/complications , Ureterolithiasis/blood , Tomography, X-Ray Computed , Severity of Illness Index , Adipose Tissue/diagnostic imaging , Adipose Tissue/pathology , Kidney/diagnostic imaging , Kidney/pathology
5.
Investig Clin Urol ; 65(3): 293-299, 2024 May.
Article in English | MEDLINE | ID: mdl-38714520

ABSTRACT

PURPOSE: Urinary biomarkers are known to be able to diagnose renal damage caused by obstruction at an early stage. We evaluated the usefulness of urine N-acetyl-beta-D-glucosaminidase (NAG) to determine the prognosis of antenatal hydronephrosis. MATERIALS AND METHODS: From January 2019 to December 2021, a retrospective study was performed on patients with grade 3 or 4 hydronephrosis. We analyzed the ultrasonographic findings and the urinary NAG/Cr ratio between the laparoscopic pyeloplasty (LP) group and active surveillance (AS) group. RESULTS: A total of 21 children underwent LP for ureteropelvic junction (UPJ) obstruction and 14 children underwent AS. The mean age at the time of examination was 3.7 months (1.7-7.5 months) in the LP and 5.2 months (0.5-21.5 months) in the AS (p=0.564). The mean anteroposterior pelvic diameter was 30.0 mm (15.0-49.0 mm) in the LP and 16.7 mm (9.0-31.3 mm) in the AS (p=0.003). The mean renal parenchymal thickness was 2.6 mm (1.2-3.7 mm) in the LP and 3.8 mm (2.9-5.5 mm) in the AS (p=0.017). The urinary NAG/Cr ratio was 26.1 IU/g (9.8-47.4 IU/g) in the LP and 11.1 IU/g (2.6-18.1 IU/g) in the AS (p=0.003). After LP, the urinary NAG/Cr ratio was significantly reduced to 10.4 IU/g (3.4-14.2 IU/g) (p=0.023). CONCLUSIONS: The urinary NAG/Cr ratio, one of the biomarkers of acute renal injury, is closely related to the degree of hydronephrosis. Therefore, it may be useful to determine whether to perform surgery on the UPJ obstruction and to predict the prognosis.


Subject(s)
Acetylglucosaminidase , Biomarkers , Hydronephrosis , Humans , Acetylglucosaminidase/urine , Hydronephrosis/urine , Hydronephrosis/diagnostic imaging , Hydronephrosis/etiology , Retrospective Studies , Prognosis , Infant , Female , Male , Biomarkers/urine , Predictive Value of Tests , Ureteral Obstruction/urine , Ureteral Obstruction/diagnostic imaging , Ureteral Obstruction/complications , Ureteral Obstruction/surgery
6.
Nefrologia (Engl Ed) ; 44(2): 139-149, 2024.
Article in English | MEDLINE | ID: mdl-38697694

ABSTRACT

Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-ß1 (TGF-ß1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.


Subject(s)
Fibrosis , Losartan , Signal Transduction , Tumor Necrosis Factor-alpha , Losartan/pharmacology , Losartan/therapeutic use , Animals , Signal Transduction/drug effects , Rats , Male , Humans , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Rats, Sprague-Dawley , Kidney/pathology , Kidney/drug effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology
7.
Investig Clin Urol ; 65(3): 286-292, 2024 May.
Article in English | MEDLINE | ID: mdl-38714519

ABSTRACT

PURPOSE: To determine the non-contrast computer tomography imaging features of pyonephrosis and evaluate the predictive value of Hounsfield units (HUs) in different hydronephrotic region slices. MATERIALS AND METHODS: We retrospectively reviewed data from patients with hydronephrosis who had renal-ureteral calculi. All patients were categorized into pyonephrosis and simple hydronephrosis groups. Baseline characteristics, the mean HU values in the maximal hydronephrotic region (uHU) slice, and the range of uHU in different slices (ΔuHU) were compared between the two groups. Univariate and multivariate analyses were performed to identify risk factors for pyonephrosis. RESULTS: Among the 181 patients enrolled in the current study, 71 patients (39.2%) were diagnosed with pyonephrosis. The mean dilated pelvis surface areas were comparable between patients with pyonephrosis and simple hydronephrosis (822.61 mm² vs. 877.23 mm², p=0.722). Collecting system debris (p=0.022), a higher uHU (p=0.038), and a higher ΔuHU (p<0.001) were identified as independent risk factors for pyonephrosis based on multivariate analysis. The ΔuHU sensitivity and specificity were 88.7% and 86.4%, respectively, at a cutoff value of 6.56 (p<0.001), whereas the sensitivity and specificity for detecting pyonephrosis at a uHU cutoff value of 7.96 was 50.7% and 70.9%, respectively (p=0.003). CONCLUSIONS: Non-contrast computer tomography was shown to accurately distinguish simple hydronephrosis from pyonephrosis in patients with obstructive uropathy. Evaluation of the ΔuHU in different slices may be more reliable than the uHU acquired from a single slice in predicting pyonephrosis.


Subject(s)
Hydronephrosis , Predictive Value of Tests , Pyonephrosis , Tomography, X-Ray Computed , Humans , Pyonephrosis/diagnostic imaging , Pyonephrosis/complications , Female , Male , Retrospective Studies , Middle Aged , Hydronephrosis/diagnostic imaging , Hydronephrosis/etiology , Adult , Aged , Ureteral Calculi/complications , Ureteral Calculi/diagnostic imaging , Ureteral Obstruction/diagnostic imaging , Ureteral Obstruction/complications , Ureteral Obstruction/etiology , Kidney Calculi/complications , Kidney Calculi/diagnostic imaging
8.
Sci Rep ; 14(1): 9976, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693148

ABSTRACT

Inflammation and fibrosis often occur in the kidney after acute injury, resulting in chronic kidney disease and consequent renal failure. Recent studies have indicated that lymphangiogenesis can drive renal inflammation and fibrosis in injured kidneys. However, whether and how this pathogenesis affects the contralateral kidney remain largely unknown. In our study, we uncovered a mechanism by which the contralateral kidney responded to injury. We found that the activation of mineralocorticoid receptors and the increase in vascular endothelial growth factor C in the contralateral kidney after unilateral ureteral obstruction could promote lymphangiogenesis. Furthermore, mineralocorticoid receptor activation in lymphatic endothelial cells resulted in the secretion of myofibroblast markers, thereby contributing to renal fibrosis. We observed that this process could be attenuated by administering the mineralocorticoid receptor blocker eplerenone, which, prevented the development of fibrotic injury in the contralateral kidneys of rats with unilateral ureteral obstruction. These findings offer valuable insights into the intricate mechanisms underlying kidney injury and may have implications for the development of therapeutic strategies to mitigate renal fibrosis in the context of kidney disease.


Subject(s)
Eplerenone , Fibrosis , Kidney , Lymphangiogenesis , Mineralocorticoid Receptor Antagonists , Ureteral Obstruction , Animals , Eplerenone/pharmacology , Lymphangiogenesis/drug effects , Rats , Fibrosis/drug therapy , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/complications , Mineralocorticoid Receptor Antagonists/pharmacology , Male , Receptors, Mineralocorticoid/metabolism , Spironolactone/analogs & derivatives , Spironolactone/pharmacology , Vascular Endothelial Growth Factor C/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Rats, Sprague-Dawley , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Myofibroblasts/pathology
9.
Eur J Pharmacol ; 977: 176676, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815787

ABSTRACT

Wogonin, a vital bioactive compound extracted from the medicinal plant, Scutellaria baicalensis, has been wildly used for its potential in mitigating the progression of chronic diseases. Chronic kidney disease (CKD) represents a significant global health challenge due to its high prevalence, morbidity and mortality rates, and associated complications. This study aimed to assess the potential of wogonin in attenuating renal fibrosis and to elucidate the underlying molecular mechanisms using a unilateral ureteral obstruction (UUO) mouse model as a CKD mimic. Male mice, 8 weeks old, underwent orally administrated of either 50 mg/kg/day of wogonin or positive control of 5 mg/kg/day candesartan following UUO surgery. NRK52E cells were exposed to tumor growth factors-beta (TGF-ß) to evaluate the anti-fibrotic effects of wogonin. The results demonstrated that wogonin treatment effectively attenuated TGF-ß-induced fibrosis markers in NRK-52E cells. Additionally, administration of wogonin significantly improved histopathological alterations and downregulated the expression of pro-fibrotic factors (Fibronectin, α-smooth muscle actin, Collagen IV, E-cadherin, and TGF-ß), oxidative stress markers (Catalase, superoxide dismutase 2, NADPH oxidase 4, and thioredoxin reductase 1), inflammatory molecules (Cyclooxygenase-2 and TNF-α), and the infiltration of neutrophils and macrophages in UUO mice. Furthermore, wogonin treatment mitigated endoplasmic reticulum (ER) stress-associated molecular markers (GRP78, GRP94, ATF4, CHOP, and the caspase cascade) and suppressed apoptosis. The findings indicate that wogonin treatment ameliorates key fibrotic aspects of CKD by attenuating ER stress-related apoptosis, inflammation, and oxidative stress, suggesting its potential as a future therapeutic target.


Subject(s)
Apoptosis , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Fibrosis , Flavanones , Ureteral Obstruction , Animals , Endoplasmic Reticulum Stress/drug effects , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Ureteral Obstruction/drug therapy , Flavanones/pharmacology , Flavanones/therapeutic use , Apoptosis/drug effects , Male , Mice , Cell Line , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Inflammation/drug therapy , Inflammation/pathology , Transforming Growth Factor beta/metabolism , Rats , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Mice, Inbred C57BL
10.
Transl Res ; 271: 13-25, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38679230

ABSTRACT

Chronic kidney disease (CKD) is a serious health problem worldwide, which ultimately leads to end-stage renal disease (ESRD). Renal fibrosis is the common pathway and major pathological manifestation for various CKD proceeding to ESRD. However, the underlying mechanisms and effective therapies are still ambiguous. Early growth response 2 (EGR2) is reportedly involved in organ formation and cell differentiation. To determine the role of EGR2 in renal fibrosis, we respectively confirmed the increased expression of EGR2 in kidney specimens from both CKD patients and mice with location in proximal tubules. Genetic deletion of EGR2 attenuated obstructive nephropathy while EGR2 overexpression further promoted renal fibrosis in mice subjected to unilateral ureteral obstruction (UUO) due to extracellular matrix (ECM) deposition mediating by partial epithelial-mesenchymal transition (EMT) as well as imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs (TIMPs). We found that EGR2 played a critical role in Smad3 phosphorylation, and inhibition of EGR2 reduced partial EMT leading to blockade of ECM accumulation in cultured human kidney 2 cells (HK2) treated with transforming growth factor ß1 (TGF-ß1). In addition, the transcription co-stimulator signal transducer and activator of transcription 3 (STAT3) phosphorylation was confirmed to regulate the transcription level of EGR2 in TGF-ß1-induced HK2 cells. In conclusion, this study demonstrated that EGR2 played a pathogenic role in renal fibrosis by a p-STAT3-EGR2-p-Smad3 axis. Thus, targeting EGR2 could be a promising strategy for CKD treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Fibrosis , Smad3 Protein , Animals , Humans , Male , Mice , Cell Line , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Kidney/pathology , Kidney/metabolism , Mice, Inbred C57BL , Phosphorylation , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Ureteral Obstruction/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism
11.
Iran J Kidney Dis ; 18(2): 87-98, 2024 03.
Article in English | MEDLINE | ID: mdl-38660700

ABSTRACT

INTRODUCTION: One of the most significant clinical features of chronic  kidney disease is renal interstitial fibrosis (RIF). This study aimed  to investigate the role and mechanism of Shenqi Pill (SQP) on RIF. METHODS: RIF model was established by conducting unilateral  ureteral obstruction (UUO) surgery on rat or stimulating human  kidney-2 (HK-2) cell with transforming growth factor ß1 (TGFß1).  After modeling, the rats in the SQP low dose group (SQP-L), SQP  middle dose group (SQP-M) and SQP high dose group (SQP-H)  were treated with SQP at 1.5, 3 or 6 g/kg/d, and the cells in the  TGFß1+SQP-L/M/H were treated with 2.5%, 5%, 10% SQP-containing  serum. In in vivo assays, serum creatinine (SCr) and blood urea  nitrogen (BUN) content were measured, kidney histopathology  was evaluated., and α-smooth muscle actin (α-SMA) expression  was detected by immunohistochemistry. Interleukin-1ß (IL-1ß),  interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) content,  inhibitor of kappa B alpha (IKBα) and P65 phosphorylation were  assessed. Meanwhile, cell viability, inflammatory cytokines content,  α-SMA expression, IKBα and P65 phosphorylation were detected  in vitro experiment.  Results. SQP exhibited reno-protective effect by decreasing SCr  and BUN content, improving renal interstitial damage, blunting  fibronectin (FN) and α-SMA expression in RIF rats. Similarly, after  the treatment with SQP-containing serum, viability and α-SMA  expression were remarkably decreased in TGFß1-stimulated HK-2  cell. Furthermore, SQP markedly down-regulated IL-1ß, IL-6, and  TNF-α content, IKBα and RelA (P65) phosphorylation both in vivo and in vitro.  Conclusion. SQP has a reno-protective effect against RIF in vivo and in vitro, and the effect is partly linked to nuclear factor-kappa  B (NF-κB) pathway related inflammatory response, which indicates  that SQP may be a candidate drug for RIF. DOI: 10.52547/ijkd.7546.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Fibrosis , Kidney , NF-kappa B , Animals , Humans , Rats , Actins/metabolism , Blood Urea Nitrogen , Cell Line , Creatinine/blood , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Fibrosis/drug therapy , Fibrosis/metabolism , Fibrosis/pathology , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/drug therapy , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy
12.
Ren Fail ; 46(1): 2327498, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38666363

ABSTRACT

Iguratimod is a novel synthetic, small-molecule immunosuppressive agent used to treat rheumatoid arthritis. Through ongoing exploration of its role and mechanisms of action, iguratimod has been observed to have antifibrotic effects in the lung and skin; however, its effect on renal fibrosis remains unknown. This study aimed to investigate whether iguratimod could affect renal fibrosis progression. Three different concentrations of iguratimod (30 mg/kg/day, 10 mg/kg/day, and 3 mg/kg/day) were used to intervene in unilateral ureteral obstruction (UUO) model mice. Iguratimod at 10 mg/kg/day was observed to be effective in slowing UUO-mediated renal fibrosis. In addition, stimulating bone marrow-derived macrophages with IL-4 and/or iguratimod, or with TGF-ß and iguratimod or SRC inhibitors in vitro, suggested that iguratimod mitigates the progression of renal fibrosis in UUO mice, at least in part, by inhibiting the IL-4/STAT6 signaling pathway to attenuate renal M2 macrophage infiltration, as well as by impeding SRC activation to reduce macrophage-myofibroblast transition. These findings reveal the potential of iguratimod as a treatment for renal disease.


Subject(s)
Disease Models, Animal , Fibrosis , Interleukin-4 , Macrophages , STAT6 Transcription Factor , Sulfonamides , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Mice , Macrophages/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Interleukin-4/metabolism , STAT6 Transcription Factor/metabolism , Male , Myofibroblasts/drug effects , Chromones/pharmacology , Chromones/therapeutic use , Kidney/pathology , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Mice, Inbred C57BL , Immunosuppressive Agents/pharmacology
13.
Cell Commun Signal ; 22(1): 223, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594728

ABSTRACT

BACKGROUND: Autophagy is a lysosome-dependent degradation pathway that regulates macrophage activation, differentiation, and polarization. Autophagy related 5 (Atg5) is a key protein involved in phagocytic membrane elongation in autophagic vesicles that forms a complex with Atg12 and Atg16L1. Alterations in Atg5 are related to both acute and chronic kidney diseases in experimental models. However, the role of macrophage-expressed Atg5 in acute kidney injury remains unclear. METHODS: Using a myeloid cell-specific Atg5 knockout (MΦ atg5-/-) mouse, we established renal ischemia/reperfusion and unilateral ureteral obstruction models to evaluate the role of macrophage Atg5 in renal macrophage migration and fibrosis. RESULTS: Based on changes in the serum urea nitrogen and creatinine levels, Atg5 deletion had a minimal effect on renal function in the early stages after mild injury; however, MΦ atg5-/- mice had reduced renal fibrosis and reduced macrophage recruitment after 4 weeks of ischemia/reperfusion injury and 2 weeks of unilateral ureteral obstruction injury. Atg5 deficiency impaired the CCL20-CCR6 axis after severe ischemic kidneys. Chemotactic responses of bone marrow-derived monocytes (BMDMs) from MΦ atg5-/- mice to CCL20 were significantly attenuated compared with those of wild-type BMDMs, and this might be caused by the inhibition of PI3K, AKT, and ERK1/2 activation. CONCLUSIONS: Our data indicate that Atg5 deficiency decreased macrophage migration by impairing the CCL20-CCR6 axis and inhibited M2 polarization, thereby improving kidney fibrosis.


Subject(s)
Ureteral Obstruction , Animals , Mice , Autophagy-Related Protein 5/metabolism , Fibrosis , Ischemia/metabolism , Kidney/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Receptors, CCR6/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
14.
J Laparoendosc Adv Surg Tech A ; 34(4): 371-375, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502848

ABSTRACT

Aims: Retroperitoneoscopic simple nondismembered pyeloplasty (SNDP) with da Vinci Si assistance was developed because of a possible risk for alignment shift after retroperitoneoscopic diamond-shaped bypass pyeloplasty (Diamond-Bypass; DP). Outcomes of SNDP and DP were compared. Materials and Methods: For SNDP, a small longitudinal incision is made on the border of the dilated pelvis and narrowed ureter at the ureteropelvic junction (UPJ). Extending this incision toward the pelvis allows identification of mucosa while maintaining the integrity of surrounding tissues that are so thin and fragile that they will not influence lumen alignment. Data for DP were obtained from a previously published article. Results: For SNDP (n = 3), mean age at surgery was 2.67 years (range: 1-4), mean operative time was 176 minutes. Mean postoperative Society of Fetal Urology (SFU) grades for hydronephrosis were 1.2, 0.7, and 0.6, 1, 2, and 3 months after stent removal, respectively. Postoperative diethylenetriaminepentaacetic acid (DTPA) was normal (n = 3). For DP (n = 5) mean age at surgery was 4.3 years (range: 1-14), mean operative time was 189 minutes. Mean postoperative SFU grades were 2.8, 2.2, and 1.6, respectively. Postoperative DTPA was normal (n = 4) and delayed (n = 1). All SNDP and DP were asymptomatic by 3 months after stent removal. Conclusion: Both SNDP and DP have favorable outcomes. If the UPJ is located at the lowest end of the renal pelvis, SNDP may improve hydronephrosis more quickly.


Subject(s)
Hydronephrosis , Laparoscopy , Ureter , Ureteral Obstruction , Humans , Infant , Child, Preschool , Child , Adolescent , Ureter/surgery , Ureteral Obstruction/surgery , Ureteral Obstruction/complications , Laparoscopy/adverse effects , Kidney Pelvis/surgery , Hydronephrosis/etiology , Pentetic Acid , Urologic Surgical Procedures/adverse effects , Treatment Outcome
15.
Kidney Int ; 106(1): 98-114, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38521405

ABSTRACT

Epigenetic regulations, including DNA methylation, are critical to the development and progression of kidney fibrosis, but the underlying mechanisms remain elusive. Here, we show that fibrosis of the mouse kidney was associated with the induction of DNA methyltransferases and increases in global DNA methylation and was alleviated by the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza). Genome-wide analysis demonstrated the hypermethylation of 94 genes in mouse unilateral ureteral obstruction kidneys, which was markedly reduced by 5-Aza. Among these genes, Hoxa5 was hypermethylated at its gene promoter, and this hypermethylation was associated with reduced HOXA5 expression in fibrotic mouse kidneys after ureteral obstruction or unilateral ischemia-reperfusion injury. 5-Aza prevented Hoxa5 hypermethylation, restored HOXA5 expression, and suppressed kidney fibrosis. Downregulation of HOXA5 was verified in human kidney biopsies from patients with chronic kidney disease and correlated with the increased kidney fibrosis and DNA methylation. Kidney fibrosis was aggravated by conditional knockout of Hoxa5 and alleviated by conditional knockin of Hoxa5 in kidney proximal tubules of mice. Mechanistically, we found that HOXA5 repressed Jag1 transcription by directly binding to its gene promoter, resulting in the suppression of JAG1-NOTCH signaling during kidney fibrosis. Thus, our results indicate that loss of HOXA5 via DNA methylation contributes to fibrogenesis in kidney diseases by inducing JAG1 and consequent activation of the NOTCH signaling pathway.


Subject(s)
DNA Methylation , Fibrosis , Homeodomain Proteins , Jagged-1 Protein , Promoter Regions, Genetic , Receptors, Notch , Signal Transduction , Ureteral Obstruction , Animals , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Male , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Kidney/pathology , Kidney/metabolism , Mice, Knockout , Mice, Inbred C57BL , Disease Models, Animal , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Epigenesis, Genetic , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/etiology , Transcription Factors
16.
Eur J Med Res ; 29(1): 183, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500195

ABSTRACT

BACKGROUND: Renal fibrosis (RF) produced adverse effect on kidney function. Recently, intestinal dysbiosis is a key regulator that promotes the formation of renal fibrosis. This study will focus on exploring the protective mechanism of Kangxianling Formula (KXL) on renal fibrosis from the perspective of intestinal flora. METHODS: Unilateral Ureteral Obstruction (UUO) was used to construct rats' model with RF, and receive KXL formula intervention for 1 week. The renal function indicators were measured. Hematoxylin-eosin (HE), Masson and Sirus red staining were employed to detect the pathological changes of renal tissue in each group. The expression of α-SMA, Col-III, TGF-ß, FN, ZO-1, and Occuludin was detected by immunofluorescence and immunohistochemistry. Rat feces samples were collected and analyzed for species' diversity using high-throughput sequencing 16S rRNA. RESULTS: Rats in UUO groups displayed poor renal function as well as severe RF. The pro-fibrotic protein expression in renal tissues including α-SMA, Col-III, TGF-ß and FN was increased in UUO rats, while ZO-1 and Occuludin -1 expression was downregulated in colon tissues. The above changes were attenuated by KXL treatment. 16S rRNA sequencing results revealed that compared with the sham group, the increased abundance of pathogenic bacteria including Acinetobacter, Enterobacter and Proteobacteria and the decreased abundance of beneficial bacteria including Actinobacteriota, Bifidobacteriales, Prevotellaceae, and Lactobacillus were found in UUO group. After the administration of KXL, the growth of potential pathogenic bacteria was reduced and the abundance of beneficial bacteria was enhanced. CONCLUSION: KXL displays a therapeutical potential in protecting renal function and inhibiting RF, and its mechanism of action may be associated with regulating intestinal microbiota.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Kidney Diseases , Ureteral Obstruction , Rats , Animals , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rats, Sprague-Dawley , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Fibrosis , Transforming Growth Factor beta1
17.
Biomater Sci ; 12(8): 2086-2095, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38439626

ABSTRACT

Understanding the pharmacokinetic profiles of nanomaterials in living organisms is essential for their application in disease treatment. Bipyramidal DNA frameworks (BDFs) are a type of DNA nanomaterial that have shown prospects in the fields of molecular imaging and therapy. To serve as a reference for disease-related studies involving the BDF, we constructed a 68Ga-BDF and employed positron emission tomography (PET) imaging to establish its pharmacokinetic model in healthy mice. Our investigation revealed that the BDF was primarily eliminated from the body via the urinary system. Ureteral obstruction could significantly alter the metabolism of the urinary system. By utilizing the established pharmacokinetic model, we sensitively observed distinct imaging indicators in unilateral ureteral obstruction and acute kidney injury (a complication of ureteral obstruction) mouse models. Furthermore, we observed that the BDF showed therapeutic effects in an AKI model. We believe that the established pharmacokinetic model and unique renal excretion characteristics of the BDF will provide researchers with more information for studying kidney diseases.


Subject(s)
Acute Kidney Injury , Ureteral Obstruction , Mice , Animals , Ureteral Obstruction/diagnostic imaging , Ureteral Obstruction/complications , Precision Medicine , Kidney/diagnostic imaging , Positron-Emission Tomography , Acute Kidney Injury/diagnostic imaging , Disease Models, Animal
18.
J Pharmacol Exp Ther ; 389(2): 208-218, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38453525

ABSTRACT

Renal fibrosis is distinguished by the abnormal deposition of extracellular matrix and progressive loss of nephron function, with a lack of effective treatment options in clinical practice. In this study, we discovered that the Beclin-1-derived peptide MP1 significantly inhibits the abnormal expression of fibrosis and epithelial-mesenchymal transition-related markers, including α-smooth muscle actin, fibronectin, collagen I, matrix metallopeptidase 2, Snail1, and vimentin both in vitro and in vivo. H&E staining was employed to evaluate renal function, while serum creatinine (Scr) and blood urea nitrogen (BUN) were used as main indices to assess pathologic changes in the obstructed kidney. The results demonstrated that daily treatment with MP1 during the 14-day experiment significantly alleviated renal dysfunction and changes in Scr and BUN in mice with unilateral ureteral obstruction. Mechanistic research revealed that MP1 was found to have a significant inhibitory effect on the expression of crucial components involved in both the Wnt/ß-catenin and transforming growth factor (TGF)-ß/Smad pathways, including ß-catenin, C-Myc, cyclin D1, TGF-ß1, and p-Smad/Smad. However, MP1 exhibited no significant impact on either the LC3II/LC3I ratio or P62 levels. These findings indicate that MP1 improves renal physiologic function and mitigates the fibrosis progression by inhibiting the Wnt/ß-catenin pathway. Our study suggests that MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: This study indicated that the Beclin-1-derived peptide MP1 effectively mitigated renal fibrosis induced by unilateral ureteral obstruction through inhibiting the Wnt/ß-catenin pathway and transforming growth factor-ß/Smad pathway, thereby improving renal physiological function. Importantly, unlike other Beclin-1-derived peptides, MP1 exhibited no significant impact on autophagy in normal cells. MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis focusing on Beclin-1 derivatives and Wnt/ß-catenin pathway.


Subject(s)
Kidney Diseases , Prodrugs , Ureteral Obstruction , Animals , Mice , Beclin-1/metabolism , Beclin-1/pharmacology , beta Catenin/metabolism , beta Catenin/pharmacology , Fibrosis , Kidney , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Prodrugs/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism
19.
Nephron ; 148(7): 487-502, 2024.
Article in English | MEDLINE | ID: mdl-38354720

ABSTRACT

INTRODUCTION: Several mouse models with diverse disease etiologies are used in preclinical research for chronic kidney disease (CKD). Here, we performed a head-to-head comparison of renal transcriptome signatures in standard mouse models of CKD to assess shared and distinct molecular changes in three mouse models commonly employed in preclinical CKD research and drug discovery. METHODS: All experiments were conducted on male C57BL/6J mice. Mice underwent sham, unilateral ureter obstruction (UUO), or unilateral ischemic-reperfusion injury (uIRI) surgery and were terminated two- and 6-weeks post-surgery, respectively. The adenine-supplemented diet-induced (ADI) model of CKD was established by feeding with adenine diet for 6 weeks and compared to control diet feeding. For all models, endpoints included plasma biochemistry, kidney histology, and RNA sequencing. RESULTS: All models displayed increased macrophage infiltration (F4/80 IHC) and fibrosis (collagen 1a1 IHC). Compared to corresponding controls, all models were characterized by an extensive number of renal differentially expressed genes (≥11,000), with a notable overlap in transcriptomic signatures across models. Gene expression markers of fibrosis, inflammation, and kidney injury supported histological findings. Interestingly, model-specific transcriptome signatures included several genes representing current drug targets for CKD, emphasizing advantages and limitations of the three CKD models in preclinical target and drug discovery. CONCLUSION: The UUO, uIRI, and ADI mouse models of CKD have significant commonalities in their renal global transcriptome profile. Model-specific renal transcriptional signatures should be considered when selecting the specific model in preclinical target and drug discovery.


Subject(s)
Disease Models, Animal , Kidney , Mice, Inbred C57BL , Renal Insufficiency, Chronic , Transcriptome , Animals , Male , Mice , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Kidney/pathology , Kidney/metabolism , Fibrosis , Ureteral Obstruction/genetics , Ureteral Obstruction/complications , Reperfusion Injury/genetics
20.
Urology ; 186: 101-106, 2024 04.
Article in English | MEDLINE | ID: mdl-38350551

ABSTRACT

OBJECTIVE: To review the management of ovarian cancer (OCa) associated hydronephrosis (HN). Specifically, we aim to identify optimal management of HN in the acute setting, predictors of HN resolution, and the role of surgery (tumor debulking/(+/-)ureterolysis/hysterectomy). MATERIALS/METHODS: The study cohort included OCa patients managed at our institution from 2004-2019 that developed OCa-associated HN. Initial HN management was recorded as none, retrograde ureteral stent (RUS) or percutaneous nephrostomy tube (PCN). Primary outcomes included (1) HN management failure, (2) HN management complications, and (3) HN resolution. Patient, cancer, and treatment predictors of outcomes were assessed using logistic regression and fine-Gray competing risk models. RESULTS: Of 2580 OCa patients, 190 (7.4%) developed HN. HN was treated in 121; 90 (74.4%) with RUS, 31 (25.6%) with PCN. Complication rates were similar between PCN and RUS (83% vs 85.1%; P = .79; all Clavian Grade I/II). Initial HN treatment failure occurred in 28 patients, predicted by renal atrophy (hazard ratios (HR) 3.27, P <.01). HN resolution occurred in only 52 (27%) patients and was predicted by lower International Federation of Gynecology and Obstetrics (FIGO) stage (FIGO III/IV HR 0.42, P <.01) and surgical tumor debulking/ureterolysis (HR 2.83, P = .02). CONCLUSION: Resolution of HN associated with malignant obstruction from OCa is rare and is most closely associated with tumor debulking and International Federation of Gynecology and Obstetrics (FIGO) stage. Initial endoscopic treatment modality was not significantly associated with complications or resolution, though RUS failures were slightly more common. Ureteral reconstruction at time of debulking/ureterolysis is potentially underutilized.


Subject(s)
Hydronephrosis , Ovarian Neoplasms , Ureter , Ureteral Obstruction , Female , Humans , Hydronephrosis/surgery , Ovarian Neoplasms/complications , Ovarian Neoplasms/surgery , Retrospective Studies , Stents/adverse effects , Treatment Failure , Ureter/surgery , Ureteral Obstruction/surgery , Ureteral Obstruction/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...