Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 182
1.
Bioorg Chem ; 147: 107321, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604018

Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.


DNA , Drug Discovery , Enzyme Inhibitors , N-Acetylglucosaminyltransferases , Small Molecule Libraries , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , DNA/chemistry , DNA/metabolism , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Uridine Diphosphate/metabolism , Uridine Diphosphate/chemistry
2.
Chembiochem ; 24(23): e202300549, 2023 12 01.
Article En | MEDLINE | ID: mdl-37728070

A promiscuous CDP-tyvelose 2-epimerase (TyvE) from Thermodesulfatator atlanticus (TaTyvE) belonging to the nucleotide sugar active short-chain dehydrogenase/reductase superfamily (NS-SDRs) was recently discovered. TaTyvE performs the slow conversion of NDP-glucose (NDP-Glc) to NDP-mannose (NDP-Man). Here, we present the sequence fingerprints that are indicative of the conversion of UDP-Glc to UDP-Man in TyvE-like enzymes based on the heptagonal box motifs. Our data-mining approach led to the identification of 11 additional TyvE-like enzymes for the conversion of UDP-Glc to UDP-Man. We characterized the top two wild-type candidates, which show a 15- and 20-fold improved catalytic efficiency, respectively, on UDP-Glc compared to TaTyvE. In addition, we present a quadruple variant of one of the identified enzymes with a 70-fold improved catalytic efficiency on UDP-Glc compared to TaTyvE. These findings could help the design of new nucleotide production pathways starting from a cheap sugar substrate like glucose or sucrose.


Hexoses , Racemases and Epimerases , Humans , Carbohydrates , Uridine Diphosphate/chemistry , Nucleotides , Glucose
3.
Biotechnol Adv ; 67: 108182, 2023 10.
Article En | MEDLINE | ID: mdl-37268151

Glycosyltransferases catalyse the transfer of a glycosyl moiety from a donor to an acceptor. Members of this enzyme class are ubiquitous throughout all kingdoms of life and are involved in the biosynthesis of countless types of glycosides. Family 1 glycosyltransferases, also referred to as uridine diphosphate-dependent glycosyltransferases (UGTs), glycosylate small molecules such as secondary metabolites and xenobiotics. In plants, UGTs are recognised for their multiple functionalities ranging from roles in growth regulation and development, in protection against pathogens and abiotic stresses and in adaptation to changing environments. In this study, we review UGT-mediated glycosylation of phytohormones, endogenous secondary metabolites, and xenobiotics and contextualise the role this chemical modification plays in the response to biotic and abiotic stresses and plant fitness. Here, the potential advantages and drawbacks of altering the expression patterns of specific UGTs along with the heterologous expression of UGTs across plant species to improve stress tolerance in plants are discussed. We conclude that UGT-based genetic modification of plants could potentially enhance agricultural efficiency and take part in controlling the biological activity of xenobiotics in bioremediation strategies. However, more knowledge of the intricate interplay between UGTs in plants is needed to unlock the full potential of UGTs in crop resistance.


Glycosyltransferases , Uridine Diphosphate , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Uridine Diphosphate/chemistry , Uridine Diphosphate/metabolism , Crop Protection , Xenobiotics , Glycosylation , Plants/genetics , Phylogeny
4.
Org Lett ; 24(11): 2170-2174, 2022 03 25.
Article En | MEDLINE | ID: mdl-35271284

Nucleoside diphosphate sugar (NDP-sugar) substrates provide the inspiration for nucleoside analogue inhibitor scaffolds. By employing solid-phase synthesis, we provide a method to access a library of peptidouridine inhibitors with both minimal compound handling and purification steps. Specifically, this strategy is exemplified by generating uridine diphosphate sugar (UDP-sugar) mimics, which allow for compound elaboration by altering the dipeptide composition, the N-terminal linkage, and a pendant aryl group. To exemplify the versatility, 41 unique nucleoside analogues are presented.


Solid-Phase Synthesis Techniques , Uridine Diphosphate , Nucleosides , Sugars , Uridine Diphosphate/chemistry
5.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 379-389, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-35234151

Capsaicinoids are phenolic compounds that have health benefits. However, the pungency and poor water solubility of these compounds limit their exploitation. Glycosylation is a powerful method to improve water solubility and reduce pungency while preserving bioactivity. PaGT3, a uridine diphosphate glycosyltransferase (UGT) from Phytolacca americana, is known for its ability to glycosylate capsaicinoids and other phenolic compounds. While structural information on several UGTs is available, structures of UGTs that can glycosylate a range of phenolic compounds are rare. To fill this gap, crystal structures of PaGT3 with a sugar-donor analogue (UDP-2-fluoroglucose) and the acceptors capsaicin and kaempferol were determined. PaGT3 adopts a GT-B-fold structure that is highly conserved among UGTs. However, the acceptor-binding pocket in PaGT3 is hydrophobic and large, and is surrounded by longer loops. The larger acceptor-binding pocket in PaGT3 allows the enzyme to bind a range of compounds, while the flexibility of the longer loops possibly plays a role in accommodating the acceptors in the binding pocket according to their shape and size. This structural information provides insights into the acceptor-binding mechanism in UGTs that bind multiple substrates.


Glycosyltransferases , Phytolacca americana , Glycosylation , Glycosyltransferases/chemistry , Uridine Diphosphate/chemistry , Uridine Diphosphate/metabolism
6.
Protein Expr Purif ; 190: 106002, 2022 02.
Article En | MEDLINE | ID: mdl-34666163

UDP-Xyl, a nucleotide sugar involved in the biosynthesis of various glycoconjugates, is difficult to obtain and quite expensive. Biocatalysis using a one-pot multi-enzyme cascade is one of the most valuable biotransformation processes widely used in the industry. Herein, two enzymes, UDP-glucose (UDP-Glc) dehydrogenase (CGIUGD) and UDP-Xyl synthase (CGIUXS) from the Pacific oyster Crassostrea gigas, which are coupled together for the biotransformation of UDP-Xyl, were characterized. The optimum pH was determined to be pH 9.0 for CGIUGD and pH 7.5 for CGIUXS. Both enzymes showed the highest activity at 37 °C. Neither enzyme is metal ion-dependent. On this basis, a single factor and orthogonal test were applied to optimize the condition of biotransformation of UDP-Xyl from UDP-Glc. Orthogonal design L9 (33) was conducted to optimize processing variables of enzyme amount, pH, and temperature. The conversion of UDP-Xyl was selected as an analysis indicator. Optimum variables were the ratio of CGIUGD to CGIUXS of 2:5, enzymatic pH of 8.0, and temperature of 37 °C, which is confirmed by three repeated validation experiments. The UDP-Xyl conversion was 69.921% in a 1 mL reaction mixture by optimized condition for 1 h. This is the first report for the biosynthesis of UDP-Xyl from oyster enzymes.


Biocatalysis , Crassostrea/genetics , Ligases/chemistry , Oxidoreductases/chemistry , Uridine Diphosphate/chemical synthesis , Animals , Crassostrea/enzymology , Ligases/genetics , Oxidoreductases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Uridine Diphosphate/chemistry
7.
J Struct Biol ; 213(3): 107777, 2021 09.
Article En | MEDLINE | ID: mdl-34391905

Glycosylation is one of the common modifications of plant metabolites, playing a major role in the chemical/biological diversity of a wide range of compounds. Plant metabolite glycosylation is catalyzed almost exclusively by glycosyltransferases, mainly by Uridine-diphosphate dependent Glycosyltransferases (UGTs). Several X-ray structures have been determined for primary glycosyltransferases, however, little is known regarding structure-function aspects of sugar-sugar/branch-forming O-linked UGTs (SBGTs) that catalyze the transfer of a sugar from the UDP-sugar donor to an acceptor sugar moiety of a previously glycosylated metabolite substrate. In this study we developed novel insights into the structural basis for SBGT catalytic activity by modelling the 3d-structures of two enzymes; a rhamnosyl-transferase Cs1,6RhaT - that catalyzes rhamnosylation of flavonoid-3-glucosides and flavonoid-7-glucosides and a UGT94D1 - that catalyzes glucosylation of (+)-Sesaminol 2-O-ß-d-glucoside at the C6 of the primary sugar moiety. Based on these structural models and docking studies a glutamate (E290 or E268 in Cs1,6RhaT or UGT94D1, respectively) and a tryptophan (W28 or W15 in Cs1,6RhaT or UGT94D1, respectively) appear to interact with the sugar acceptor and are suggested to be important for the recognition of the sugar-moiety of the acceptor-substrate. Functional analysis of substitution mutants for the glutamate and tryptophan residues in Cs1,6RhaT further support their role in determining sugar-sugar/branch-forming GT specificity. Phylogenetic analysis of the UGT family in plants demonstrates that the glutamic-acid residue is a hallmark of SBGTs that is entirely absent from the corresponding position in primary UGTs.


Glycosyltransferases , Uridine Diphosphate , Glutamic Acid , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Phylogeny , Plant Proteins/chemistry , Substrate Specificity , Sugars , Uridine Diphosphate/chemistry
8.
Int J Biol Macromol ; 166: 277-287, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33129904

Glycosylated secondary metabolites constitute a large proportion of nutrients or ingredients in consumed plants and related products. The glycosyl decoration largely depends on the activity of plant UDP-glycosyltransferases (UGTs). Mechanisms underlying the substrate selectivity and specificity of these reactions remain elusive. Here we report the cloning and functional characterization of a UGT, UGT78H2 in blackberry fruits. In vitro enzyme substrate specificity analysis and enzymatic kinetics evidenced that UGT78H2 glycosylate exclusively quercetin using uridine-5' diphosphate glucuronic acid (UDP-glucuronic acid) and uridine-5' diphosphate galactose (UDP-galactose). Site-directed mutagenesis was introduced into two residuals (N340P, K360N) previously unexplored. The mutation enhanced the protein catalyzing efficiency, especially toward UDP-galactose (23% higher), and expanded the sugar donor selectivity, which can use UDP-glucose as well. Molecular modeling and biochemical analysis results enable identification of the 23rd residue (360th in UGT78H2) of the PSPG (plant secondary product glycosyltransferase) motif as a key residue in defining this sugar selecting spectrum. Additionally, promoter of UGT78H2 was obtained. Transgenic analysis using the UGT78H2pro::GUS reporter system demonstrated that transcripts controlled by the promoter predominantly expressed in younger tissues. Subcellular localization study revealed that UGT78H2 was a soluble protein in the nucleus and cytoplasm. These results clarified the bio-function of UGT78H2 and provided a valid approach for substrate selectivity modification in horticultural plants, particularly for sugar donor selectivity.


Amino Acid Substitution , Catalytic Domain , Glycosyltransferases/chemistry , Plant Proteins/chemistry , Rubus/enzymology , Galactose/chemistry , Galactose/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Molecular Docking Simulation , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Transport , Substrate Specificity , Uridine Diphosphate/chemistry , Uridine Diphosphate/metabolism
9.
Biochem Biophys Res Commun ; 534: 73-78, 2021 01 01.
Article En | MEDLINE | ID: mdl-33310191

Glycosylation catalyzed by uridine diphosphate-dependent glycosyltransferases (UGT) contributes to the chemical and functional diversity of a number of natural products. Bacillus subtilis Bs-YjiC is a robust and versatile UGT that holds potentials in the biosynthesis of unnatural bioactive ginsenosides. To understand the molecular mechanism underlying the substrate promiscuity of Bs-YjiC, we solved crystal structures of Bs-YjiC and its binary complex with uridine diphosphate (UDP) at resolution of 2.18 Å and 2.44 Å, respectively. Bs-YjiC adopts the classical GT-B fold containing the N-terminal and C-terminal domains that accommodate the sugar acceptor and UDP-glucose, respectively. Molecular docking indicates that the spacious sugar-acceptor binding pocket of Bs-YjiC might be responsible for its broad substrate spectrum and unique glycosylation patterns toward protopanaxadiol-(PPD) and PPD-type ginsenosides. Our study reveals the structural basis for the aglycone promiscuity of Bs-YjiC and will facilitate the protein engineering of Bs-YjiC to synthesize novel bioactive glycosylated compounds.


Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Bacterial Proteins/genetics , Binding Sites , Crystallography, X-Ray , Ginsenosides/chemistry , Ginsenosides/metabolism , Glycosylation , Glycosyltransferases/genetics , Models, Molecular , Molecular Docking Simulation , Protein Domains , Sapogenins/metabolism , Substrate Specificity , Uridine Diphosphate/chemistry , Uridine Diphosphate/metabolism , Uridine Diphosphate Glucose/metabolism
10.
Chem Commun (Camb) ; 56(82): 12387-12390, 2020 Oct 21.
Article En | MEDLINE | ID: mdl-32931537

Selective profiling of steviol-catalyzing UDP-glycosyltransferases in plants was accomplished with a probe metabolically synthesized from two substrate-derived components comprising an alkynylated sugar receptor (steviol) module and a diazirine-modified sugar donor (UDP-glucose) module, thereby illustrating a facile approach for harnessing biosynthetic enzymes of natural glycosides in plants for synthetic biology.


Diterpenes, Kaurane/metabolism , Glucuronosyltransferase/metabolism , Molecular Probes/metabolism , Alkynes/chemistry , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Biological Products/chemistry , Biological Products/metabolism , Diazomethane/chemistry , Diterpenes, Kaurane/chemistry , Molecular Probes/chemistry , Substrate Specificity , Uridine Diphosphate/chemistry , Uridine Diphosphate/metabolism
11.
Sci Adv ; 6(11): eaaz2094, 2020 03.
Article En | MEDLINE | ID: mdl-32195351

We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.


ADP Ribose Transferases , Bacterial Proteins , Bacterial Toxins , Glycosyltransferases , Yersinia , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Crystallography, X-Ray , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Glycosylation , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , HeLa Cells , Humans , Protein Domains , Uridine Diphosphate/chemistry , Uridine Diphosphate/metabolism , Yersinia/chemistry , Yersinia/enzymology
12.
J Agric Food Chem ; 67(42): 11694-11702, 2019 Oct 23.
Article En | MEDLINE | ID: mdl-31558015

Sucrose synthase (SUS) plays an important role in carbohydrate metabolism in plants. The SUS genes in licorice remain unknown. To reveal the sucrose metabolic pathway in licorice, all the 12 putative SUS genes of Glycyrrhiza uralensis were systematically identified by genome mining, and two novel SUSs (GuSUS1 and GuSUS2) were isolated and characterized for the first time. Furthermore, we found that the flexible N-terminus was responsible for the low stability of plant SUSs, and deletion of redundant N-terminus improved the stability of GuSUS1 and GuSUS2. The half-life of both GuSUS1 and GuSUS2 mutants was increased by 2-fold. Finally, the GuSUS1 mutant was coupled with UGT73C11 for the glycosylation of glycyrrhetinic acid (GA) with uridine 5'-diphosphate disodium salt hydrate (UDP) in situ recycling, and GA conversion was increased by 7-fold. Our study not only identified the SUS genes in licorice but also provided a stable SUS mutant for the construction of an efficient UDP-recycling system for GA glycosylation.


Glucosyltransferases/metabolism , Glycyrrhiza uralensis/enzymology , Plant Proteins/metabolism , Uridine Diphosphate/metabolism , Biocatalysis , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glycosylation , Glycyrrhetinic Acid/metabolism , Glycyrrhiza uralensis/chemistry , Glycyrrhiza uralensis/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Uridine Diphosphate/chemistry
13.
J Am Chem Soc ; 141(34): 13442-13453, 2019 08 28.
Article En | MEDLINE | ID: mdl-31373799

O-Linked α-N-acetylgalactosamine (O-GalNAc) glycans constitute a major part of the human glycome. They are difficult to study because of the complex interplay of 20 distinct glycosyltransferase isoenzymes that initiate this form of glycosylation, the polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). Despite proven disease relevance, correlating the activity of individual GalNAc-Ts with biological function remains challenging due to a lack of tools to probe their substrate specificity in a complex biological environment. Here, we develop a "bump-hole" chemical reporter system for studying GalNAc-T activity in vitro. Individual GalNAc-Ts were rationally engineered to contain an enlarged active site (hole) and probed with a newly synthesized collection of 20 (bumped) uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) analogs to identify enzyme-substrate pairs that retain peptide specificities but are otherwise completely orthogonal to native enzyme-substrate pairs. The approach was applicable to multiple GalNAc-T isoenzymes, including GalNAc-T1 and -T2 that prefer nonglycosylated peptide substrates and GalNAcT-10 that prefers a preglycosylated peptide substrate. A detailed investigation of enzyme kinetics and specificities revealed the robustness of the approach to faithfully report on GalNAc-T activity and paves the way for studying substrate specificities in living systems.


Acetylgalactosamine/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Protein Engineering , Uridine Diphosphate/metabolism , Acetylgalactosamine/chemistry , Amino Acid Sequence , Catalytic Domain , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Models, Molecular , Mutagenesis , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , Substrate Specificity , Uridine Diphosphate/chemistry , Polypeptide N-acetylgalactosaminyltransferase
14.
J Struct Biol ; 207(2): 158-168, 2019 08 01.
Article En | MEDLINE | ID: mdl-31088716

Staphylococcus aureus is an important cause of resistant healthcare-associated infections. It has been shown that the wall teichoic acid (WTA) may be an important drug target acting on antibiotic-resistant cells. The UDP-N-acetylglucosamine 2-epimerase, MnaA, is one of the first enzymes on the pathway for the biosynthesis of the WTA. Here, detailed molecular dynamics simulations of S. aureus MnaA were used to characterize the conformational changes that occur in the presence of UDP and UDP-GlcNac and also the energetic landscape associated with these changes. Using different simulation techniques, such as ABMD and GAMD, it was possible to assess the energetic profile for the protein with and without ligands in its active site. We found that there is a dynamic energy landscape that has its minimum changed by the presence of the ligands, with a closed structure of the enzyme being more frequently observed for the bound state while the unbound enzyme favors an opened conformation. Further structural analysis indicated that positively charged amino acids associated with UDP and UDP-GlcNac interactions play a major role in the enzyme opening movement. Finally, the energy landscape profiled in this work provides important conclusions for the design of inhibitor candidates targeting S. aureus MnaA.


Staphylococcal Infections/enzymology , Staphylococcus aureus/enzymology , Teichoic Acids/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/ultrastructure , Catalytic Domain/drug effects , Cell Wall/enzymology , Drug Resistance, Bacterial/genetics , Energy Metabolism/genetics , Glucosamine/analogs & derivatives , Glucosamine/chemistry , Humans , Ligands , Molecular Dynamics Simulation , Protein Conformation/drug effects , Protein Domains/genetics , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Uridine Diphosphate/chemistry
15.
Biochim Biophys Acta Gen Subj ; 1863(3): 609-622, 2019 03.
Article En | MEDLINE | ID: mdl-30550897

O-linked N-acetylglucosamine transferase (OGT) is an essential enzyme that catalyzes the covalent bonding of N-acetylglucosamine (GlcNAc) to the hydroxyl group of a serine or threonine in the target protein. It plays an important role in many important cellular physiological catalytic reactions. Here, we determine the binding mode and the binding free energy of the OGT product (uridine diphosphate, UDP) as well as the hydrogen-bond-dependent release mechanism using extensive molecular dynamic simulations. The Lys634, Asn838, Gln839, Lys842, His901, and Asp925 residues were identified to play a major role in the UDP stabilization in the active site of OGT, where hydrogen bonding and π-π interactions mainly occur. The calculations on the mutant forms support our results. Sixteen possible release channels were identified while the two most favorable channels were determined using random acceleration molecular dynamics (RAMD) simulations combined with the constant velocity pulling (PCV) method. The thermodynamic and dynamic properties as along with the corresponding mechanism were determined and discussed according to the umbrella sampling technique. For the most optimal channel, the main free energy barrier is 13 kcal/mol, which probably originates from the hydrogen bonds between UDP and the Ala896 and Asp925 residues. Moreover, the unstable hydrogen bonds and the rollback of the ligand likely cause the other two small obstacles. This work clarifies the ligand transport mechanism in the OGT enzymatic process and is a great resource for designing inhibitors based on UDP or UDP-GlcNAc.


N-Acetylglucosaminyltransferases/metabolism , Uridine Diphosphate/pharmacokinetics , Catalysis , Catalytic Domain , Humans , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , N-Acetylglucosaminyltransferases/chemistry , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Substrate Specificity , Thermodynamics , Uridine Diphosphate/chemistry
16.
Nature ; 563(7733): 705-709, 2018 11.
Article En | MEDLINE | ID: mdl-30464342

Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of difficult-to-treat, often fatal infections in humans1,2. Most humans have antibodies against S. aureus, but these are highly variable and often not protective in immunocompromised patients3. Previous vaccine development programs have not been successful4. A large percentage of human antibodies against S. aureus target wall teichoic acid (WTA), a ribitol-phosphate (RboP) surface polymer modified with N-acetylglucosamine (GlcNAc)5,6. It is currently unknown whether the immune evasion capacities of MRSA are due to variation of dominant surface epitopes such as those associated with WTA. Here we show that a considerable proportion of the prominent healthcare-associated and livestock-associated MRSA clones CC5 and CC398, respectively, contain prophages that encode an alternative WTA glycosyltransferase. This enzyme, TarP, transfers GlcNAc to a different hydroxyl group of the WTA RboP than the standard enzyme TarS7, with important consequences for immune recognition. TarP-glycosylated WTA elicits 7.5-40-fold lower levels of immunoglobulin G in mice than TarS-modified WTA. Consistent with this, human sera contained only low levels of antibodies against TarP-modified WTA. Notably, mice immunized with TarS-modified WTA were not protected against infection with tarP-expressing MRSA, indicating that TarP is crucial for the capacity of S. aureus to evade host defences. High-resolution structural analyses of TarP bound to WTA components and uridine diphosphate GlcNAc (UDP-GlcNAc) explain the mechanism of altered RboP glycosylation and form a template for targeted inhibition of TarP. Our study reveals an immune evasion strategy of S. aureus based on averting the immunogenicity of its dominant glycoantigen WTA. These results will help with the identification of invariant S. aureus vaccine antigens and may enable the development of TarP inhibitors as a new strategy for rendering MRSA susceptible to human host defences.


Cell Wall/chemistry , Cell Wall/immunology , Immune Evasion , Methicillin-Resistant Staphylococcus aureus/cytology , Methicillin-Resistant Staphylococcus aureus/immunology , Pentosephosphates/immunology , Teichoic Acids/immunology , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Adult , Animals , Bacteriophages/pathogenicity , Female , Glycosylation , Glycosyltransferases/metabolism , Humans , Male , Methicillin-Resistant Staphylococcus aureus/chemistry , Mice , Middle Aged , Models, Molecular , Pentosephosphates/chemistry , Pentosephosphates/metabolism , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Uridine Diphosphate/chemistry , Uridine Diphosphate/metabolism , Young Adult
17.
Purinergic Signal ; 14(3): 271-284, 2018 09.
Article En | MEDLINE | ID: mdl-30019187

Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 µM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 µM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.


Glaucoma , Intraocular Pressure/drug effects , Purinergic P2Y Receptor Agonists/pharmacology , Receptors, Purinergic P2/drug effects , Animals , Humans , Rabbits , Uridine Diphosphate/chemistry , Uridine Diphosphate/pharmacology
18.
Chembiochem ; 19(18): 1918-1921, 2018 09 17.
Article En | MEDLINE | ID: mdl-29979493

Metabolic chemical reporters (MCRs) of protein glycosylation are analogues of natural monosaccharides that bear reactive groups, like azides and alkynes. When they are added to living cells and organisms, these small molecules are biosynthetically transformed into nucleotide donor sugars and then used by glycosyltransferases to modify proteins. Subsequent installation of tags by bioorthogonal chemistries can then enable the visualization and enrichment of these glycoproteins. Although this two-step procedure is powerful, the use of MCRs has the potential to change the endogenous production of the natural repertoire of donor sugars. A major route for the generation of these glycosyltransferase substrates is the hexosamine biosynthetic pathway (HBP), which results in uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). Interestingly, the rate-determining enzyme of the HBP, glutamine fructose-6-phosphate amidotransferase (GFAT), is feedback inhibited by UDP-GlcNAc. This raises the possibility that a build-up of UDP-MCRs would block the biosynthesis of UDP-GlcNAc, resulting in off target effects. Here, we directly test this possibility with recombinant human GFAT and a small panel of synthetic UDP-MCRs. We find that MCRs with larger substitutions at the N-acetyl position do not inhibit GFAT, whereas those with modifications of the 2- or 6-hydroxy group do. These results further illuminate the considerations that should be applied to the use of MCRs.


Alkynes/metabolism , Azides/metabolism , Biosynthetic Pathways , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Hexosamines/metabolism , Uridine Diphosphate/metabolism , Alkynes/chemistry , Azides/chemistry , Click Chemistry , Glycosylation , Humans , Recombinant Proteins/metabolism , Uridine Diphosphate/chemistry
19.
Glycobiology ; 28(10): 802-812, 2018 10 01.
Article En | MEDLINE | ID: mdl-29982582

The gene epsN of Bacillus subtilis 168 was cloned and overexpressed in Escherichia coli. Purified recombinant EpsN is shown to be a pyridoxal 5'-phosphate (PLP)-dependent aminotransferase by absorption spectroscopy, l-cycloserine inhibition and reverse phase HPLC studies. EpsN catalyzes the conversion of UDP-2,6-dideoxy 2-acetamido 4-keto glucose to UDP-2,6-dideoxy 2-acetamido 4-amino glucose. Lys190 was found by sequence comparison and site-directed mutagenesis to form Schiff base with PLP. Mutagenesis studies showed that, in addition to Lys190, Ser185, Glu164, Gly58 and Thr59 are essential for aminotransferase activity.


Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Glucose/analogs & derivatives , Polysaccharides, Bacterial/metabolism , Transaminases/metabolism , Uridine Diphosphate/metabolism , Bacillus subtilis/metabolism , Biocatalysis , Glucose/chemistry , Glucose/metabolism , Molecular Structure , Mutagenesis, Site-Directed , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Uridine Diphosphate/chemistry
20.
Chemistry ; 24(33): 8382-8392, 2018 Jun 12.
Article En | MEDLINE | ID: mdl-29601100

The family of polypeptide N-acetylgalactosamine (GalNAc) transferases (GalNAc-Ts) orchestrates the initiating step of mucin-type protein O-glycosylation by transfer of GalNAc moieties to serine and threonine residues in proteins. Deficiencies and dysregulation of GalNAc-T isoenzymes are related to different diseases. Recently, it has been demonstrated that an inactive GalNAc-T2 mutant (F104S), which is not located at the active site, induces low levels of high-density lipoprotein cholesterol (HDL-C) in humans. Herein, the molecular basis for F104S mutant inactivation has been deciphered. Saturation transfer difference NMR spectroscopy experiments demonstrate that the mutation induces loss of binding to peptide substrates. Analysis of the crystal structure of the F104S mutant bound to UDP-GalNAc (UDP=uridine diphosphate), combined with molecular dynamics (MD) simulations, has revealed that the flexible loop is disordered and displays larger conformational changes in the mutant enzyme than that in the wild-type (WT) enzyme. 19 F NMR spectroscopy experiments reveal that the WT enzyme only reaches the active state in the presence of UDP-GalNAc, which provides compelling evidence that GalNAc-T2 adopts a UDP-GalNAc-dependent induced-fit mechanism. The F104S mutation precludes the enzyme from achieving the active conformation and concomitantly binding peptide substrates. This study provides new insights into the catalytic mechanism of the large family of GalNAc-Ts and how these enzymes orchestrate protein O-glycosylation.


Mucin-1/analysis , Mucin-1/chemistry , Mucins/chemistry , N-Acetylgalactosaminyltransferases/analysis , N-Acetylgalactosaminyltransferases/chemistry , Uridine Diphosphate/chemistry , Catalysis , Catalytic Domain , Glycosylation , Humans , Molecular Dynamics Simulation , Polypeptide N-acetylgalactosaminyltransferase
...