Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.207
Filter
1.
PLoS One ; 19(6): e0305398, 2024.
Article in English | MEDLINE | ID: mdl-38917117

ABSTRACT

The Arctic faces increasing exposure to environmental chemicals such as metals, posing health risks to humans and wildlife. Biomonitoring of polar bears (Ursus maritimus) can be used to quantify chemicals in the environment and in traditional foods consumed by the Inuit. However, typically, these samples are collected through invasive or terminal methods. The biomonitoring of feces could be a useful alternative to the current metal monitoring method within the Arctic. Here, we aim to 1) quantify the relationship between concentrations of metals in the feces and tissues (muscle, liver, and fat) of polar bears using predictive modeling, 2) develop an easy-to-use conversion tool for use in community-based monitoring programs to non-invasively estimate contaminant concentrations in polar bears tissues and 3) demonstrate the application of these models by examining potential exposure risk for humans from consumption of polar bear muscle. Fecal, muscle, liver, and fat samples were harvested from 49 polar bears through a community-based monitoring program. The samples were analyzed for 32 metals. Exploratory analysis indicated that mean metal concentrations generally did not vary by age or sex, and many of the metals measured in feces were positively correlated with the internal tissue concentration. We developed predictive linear regression models between internal (muscle, liver, fat) and external (feces) metal concentrations and further explored the mercury and methylmercury relationships for utility risk screening. Using the cross-validated regression coefficients, we developed a conversion tool that contributes to the One Health approach by understanding the interrelated health of humans, wildlife, and the environment in the Arctic. The findings support using feces as a biomonitoring tool for assessing contaminants in polar bears. Further research is needed to validate the developed models for other regions in the Arctic and assess the impact of environmental weathering on fecal metal concentrations.


Subject(s)
Feces , Ursidae , Feces/chemistry , Animals , Female , Male , Arctic Regions , Metals/analysis , Biological Monitoring/methods , Food Contamination/analysis , Humans , Environmental Monitoring/methods , Environmental Pollutants/analysis , Liver/chemistry , Liver/metabolism
2.
Sci Total Environ ; 944: 173625, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38848927

ABSTRACT

Climate change can pose a significant threat to terrestrial ecosystems by disrupting the circulation of soil nitrogen. However, experimental analyses on the effect of climate change on soil nitrogen cycles and the implications for the conservation of key wildlife species (i.e., the giant panda, Ailuropoda melanoleuca) remain understudied. We investigated the effects of a 1.5 °C, 3 °C, and 4.5 °C temperature increase on nitrogen distribution in different soil layers of bamboo forest via an in-situ experiment and assessed the implications for the growth and survival of arrow bamboo (Bashania faberi), a critical food resource for giant pandas. Our results showed that warming treatments generally increased soil N content, while effects differed between surface soil and subsurface soil and at different warming treatments. Particularly an increase of 1.5 °C raised the subsurface soil NO3-N content, as well as the content of N in bamboo leaves. We found a significant positive correlation between the subsurface soil NO3-N content and the N content of arrow bamboo. An increase of 3-4.5 °C raised the content of total N and NO3-N in the surface soil and led to a reduction in the total aboveground biomass and survival rate of arrow bamboo. Limited warming (e.g., the increase of 0-1.5 °C) may promote the soil N cycle, raise the N-acetylglucosaminidase (NAG) enzyme activity, increase NO3-N in subsurface soil, increase the N content of bamboo, and boost the biomass of bamboo - all of which could be beneficial to giant panda survival. However, higher warming (e.g., an increase of 3-4.5 °C) resulted in mass death of bamboo and a large reduction in aboveground biomass. Our findings provide a cautiously optimistic scenario for bamboo forest ecosystems under low levels of warming over a short period of time, but risks from higher levels of warming may be serious, especially considering the unpredictability of global climatic change.


Subject(s)
Climate Change , Ecosystem , Nitrogen Cycle , Nitrogen , Soil , Ursidae , Ursidae/physiology , Animals , Soil/chemistry , Nitrogen/analysis , Poaceae , Sasa , China
3.
Environ Sci Technol ; 58(24): 10504-10514, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838208

ABSTRACT

Some persistent hydrophobic pollutants biomagnify, i.e., achieve higher contaminant levels in a predator than in its prey (Cpredator/Cprey > 1). This ratio is called the biomagnification factor (BMF) and is traditionally determined using tissues from carcasses or biopsies. Using a noninvasive method that relies on equilibrium sampling in silicone-film-coated vessels and chemical analysis of paired diet and feces, we determined on three occasions the thermodynamic biomagnification limit (BMFlim) and feces-based biomagnification factor (BMFF) for three zoo-housed polar bears who experience seasonal periods of hyperphagia and hypophagia. All bears had high biomagnification capabilities (BMFlim was up to 200) owing to very efficient lipid assimilation (up to 99.5%). The bears differed up to a factor of 3 in their BMFlim. BMFlim and BMFF of a bear increased by up to a factor of 4 during the hypophagic period, when the ingestion rate was greatly reduced. Much of that variability can be explained by differences in the lipid assimilation efficiency, even though this efficiency ranged only from 98.1 to 99.5%. A high BMFlim was associated with a high abundance of Bacteroidales and Lachnospirales in the gut microbiome. Biomagnification varies to a surprisingly large extent between individuals and within the same individual over time. Future work should investigate whether this can be attributed to the influence of the gut microbiome on lipid assimilation by studying more individual bears at different key physiological stages.


Subject(s)
Gastrointestinal Microbiome , Ursidae , Animals , Feces/microbiology , Diet
4.
Front Cell Infect Microbiol ; 14: 1356907, 2024.
Article in English | MEDLINE | ID: mdl-38863832

ABSTRACT

Introduction: Microbial community composition is closely associated with host disease onset and progression, underscoring the importance of understanding host-microbiota dynamics in various health contexts. Methods: In this study, we utilized full-length 16S rRNA gene sequencing to conduct species-level identification of the microorganisms in the oral cavity of a giant panda (Ailuropoda melanoleuca) with oral malignant fibroma. Results: We observed a significant difference between the microbial community of the tumor side and non-tumor side of the oral cavity of the giant panda, with the latter exhibiting higher microbial diversity. The tumor side was dominated by specific microorganisms, such as Fusobacterium simiae, Porphyromonas sp. feline oral taxon 110, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline oral taxon 078, that have been reported to be associated with tumorigenic processes and periodontal diseases in other organisms. According to the linear discriminant analysis effect size analysis, more than 9 distinct biomarkers were obtained between the tumor side and non-tumor side samples. Furthermore, the Kyoto Encyclopedia of Genes and Genomes analysis revealed that the oral microbiota of the giant panda was significantly associated with genetic information processing and metabolism, particularly cofactor and vitamin, amino acid, and carbohydrate metabolism. Furthermore, a significant bacterial invasion of epithelial cells was predicted in the tumor side. Discussion: This study provides crucial insights into the association between oral microbiota and oral tumors in giant pandas and offers potential biomarkers that may guide future health assessments and preventive strategies for captive and aging giant pandas.


Subject(s)
Campylobacter , Fusobacterium , Microbiota , Mouth , Porphyromonas , RNA, Ribosomal, 16S , Ursidae , Ursidae/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Porphyromonas/genetics , Porphyromonas/isolation & purification , Porphyromonas/classification , Campylobacter/genetics , Campylobacter/isolation & purification , Campylobacter/classification , Mouth/microbiology , Fusobacterium/genetics , Fusobacterium/isolation & purification , Fibroma/microbiology , Fibroma/veterinary , Neisseria/isolation & purification , Neisseria/genetics , Neisseria/classification , Mouth Neoplasms/microbiology , Mouth Neoplasms/veterinary , Mouth Neoplasms/pathology , Phylogeny , Sequence Analysis, DNA
6.
J Wildl Dis ; 60(3): 786-791, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38747050

ABSTRACT

A free-living female Cantabrian brown bear (Ursus arctos arctos) cub severely affected by mange in Asturias (northern Spain) represented the first report of demodicosis for this species. After antimicrobial, antiparasitic, anti-inflammatory, and analgesic therapy it recovered and was released back into the wild to the eastern Cantabrian brown bear subpopulation.


Subject(s)
Endangered Species , Mite Infestations , Ursidae , Animals , Ursidae/parasitology , Spain/epidemiology , Female , Mite Infestations/veterinary , Mite Infestations/epidemiology , Mite Infestations/parasitology , Animals, Wild/parasitology
7.
Sci Rep ; 14(1): 12027, 2024 05 26.
Article in English | MEDLINE | ID: mdl-38797747

ABSTRACT

Increasing Arctic temperatures are facilitating the northward expansion of more southerly hosts, vectors, and pathogens, exposing naïve populations to pathogens not typical at northern latitudes. To understand such rapidly changing host-pathogen dynamics, we need sensitive and robust surveillance tools. Here, we use a novel multiplexed magnetic-capture and droplet digital PCR (ddPCR) tool to assess a sentinel Arctic species, the polar bear (Ursus maritimus; n = 68), for the presence of five zoonotic pathogens (Erysipelothrix rhusiopathiae, Francisella tularensis, Mycobacterium tuberculosis complex, Toxoplasma gondii and Trichinella spp.), and observe associations between pathogen presence and biotic and abiotic predictors. We made two novel detections: the first detection of a Mycobacterium tuberculosis complex member in Arctic wildlife and the first of E. rhusiopathiae in a polar bear. We found a prevalence of 37% for E. rhusiopathiae, 16% for F. tularensis, 29% for Mycobacterium tuberculosis complex, 18% for T. gondii, and 75% for Trichinella spp. We also identify associations with bear age (Trichinella spp.), harvest season (F. tularensis and MTBC), and human settlements (E. rhusiopathiae, F. tularensis, MTBC, and Trichinella spp.). We demonstrate that monitoring a sentinel species, the polar bear, could be a powerful tool in disease surveillance and highlight the need to better characterize pathogen distributions and diversity in the Arctic.


Subject(s)
Ursidae , Zoonoses , Ursidae/microbiology , Ursidae/parasitology , Animals , Arctic Regions , Zoonoses/parasitology , Zoonoses/microbiology , Zoonoses/epidemiology , Canada/epidemiology , Toxoplasma/genetics , Toxoplasma/isolation & purification , Trichinella/isolation & purification , Trichinella/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Francisella tularensis/isolation & purification , Francisella tularensis/genetics , Female , Male
8.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728939

ABSTRACT

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Escherichia coli , Feces , Multilocus Sequence Typing , Ursidae , beta-Lactamases , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , beta-Lactamases/genetics , Ursidae/microbiology , China , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Bacterial Proteins/genetics , Ecosystem , Phylogeny , Microbial Sensitivity Tests , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics
9.
Parasit Vectors ; 17(1): 241, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807241

ABSTRACT

BACKGROUND: The endangered Formosan black bear (Ursus thibetanus formosanus) is the largest native carnivorous mammal in Taiwan. Diseases, poor management, illegal hunting, and habitat destruction are serious threats to the survival of bear populations. However, studies on the impact of diseases on bear populations are limited. Therefore, this study aimed to establish a database of the hematological and plasma profiles of free-ranging Formosan black bears and investigate the occurrence of ectoparasites, blood parasites, and vector-borne pathogens. METHODS: Formosan black bears were captured in Yushan National Park (YNP) and Daxueshan Forest Recreation Area (DSY) in Taiwan. Blood samples were collected from each bear for hematological analysis and plasma biochemistry using a hematology analyzer. Parasites and pathogens were detected using a thin blood smear with Wright-Giemsa staining and polymerase chain reaction (PCR) assay. Additionally, macroscopic ectoparasites were collected from bears to detect blood parasites and other pathogens. Moreover, the relationships between the bear variables (sex, age, and occurrence of parasites or pathogens), ectoparasites, and infectious agents were also analyzed. RESULTS: In all, 21 wild bears (14 in YNP and 7 in DSY) were captured and released during the satellite tracking studies. Hematological analysis and plasma biochemistry indicated significant differences in white blood cells (WBC), segments, creatine kinase (CK), and lactate dehydrogenase (LDH) levels between foot snare and culvert-captured bears. Additionally, there were significant differences in total plasma protein (TPP), creatinine, Ca2+, Mg2+, and K+ levels between male and female bears. Moreover, pathogen-infected bears had significantly higher erythrocyte sedimentation rate (ESR; 30 min and 1 h) and globulin levels than uninfected bears. In total, 240 ticks were collected from 13 bears, among which eight adult tick species were identified, including Haemaphysalis flava, Haemaphysalis hystricis, Amblyomma testudinarium, Ixodes ovatus, Dermacentor taiwanensis, Haemaphysalis longicornis, Ixodes acutitarsus, Amblyomma javanense, and nymphs belonging to Haemaphysalis spp. PCR revealed that 13 (61.90%) and 8 (38.10%) bears harbored Hepatozoon ursi and Babesia DNA, respectively. Among the ticks examined, 157 (65.41%) and 128 (53.33%) samples were positive for H. ursi and Babesia, respectively. CONCLUSIONS: To the best of our knowledge, this is the first study to establish a database of the hematological and plasma profiles of wild Formosan black bears and investigate ectoparasite infestation and Hepatozoon and Babesia spp. INFECTION: In conclusion, these findings may serve as a reference for monitoring the health and population of locally endangered bears.


Subject(s)
Ursidae , Animals , Ursidae/parasitology , Ursidae/blood , Male , Female , Taiwan/epidemiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/blood , Ticks/parasitology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Tick Infestations/blood , Animals, Wild/parasitology
10.
Elife ; 132024 May 16.
Article in English | MEDLINE | ID: mdl-38752835

ABSTRACT

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.


Many animals use hibernation as a tactic to survive harsh winters. During this dormant, inactive state, animals reduce or limit body processes, such as heart rate and body temperature, to minimise their energy use. To conserve energy during hibernation, animals can use different approaches. For example, garden dormice undergo periodic states of extremely low core temperatures (down to 4­8oC); whereas Eurasian brown bears see milder temperature drops (down to 23­25oC). An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals must change how their skeletal muscle uses energy. Traditionally, active myosin ­ a protein found in muscles that helps muscles to contract ­ was thought to be responsible for most of the energy use by skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation and whether they could impact the metabolism of hibernating animals. Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during hibernation and during activity. Experiments showed changes in resting myosin in squirrels and dormice (whose temperature drops to 4­8oC during hibernation) but not in bears. Further analysis revealed that cooling samples from non-hibernating muscle to 4­8oC increased energy use in resting myosin, thereby generating heat. However, no increase in energy use was found after cooling hibernating muscle samples to 4­8oC. This suggest that resting myosin generates heat at cool temperatures ­ a mechanism that is switched off in hibernating animals to allow them to cool their body temperature. These findings reveal key insights into how animals conserve energy during hibernation. In addition, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin may be a potential drug target in metabolic diseases, such as obesity.


Subject(s)
Hibernation , Animals , Hibernation/physiology , Energy Metabolism , Skeletal Muscle Myosins/metabolism , Ursidae/metabolism , Ursidae/physiology , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/metabolism , Proteomics
11.
MMWR Morb Mortal Wkly Rep ; 73(20): 456-459, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781100

ABSTRACT

Trichinellosis is a parasitic zoonotic disease transmitted through the consumption of meat from animals infected with Trichinella spp. nematodes. In North America, human trichinellosis is rare and is most commonly acquired through consumption of wild game meat. In July 2022, a hospitalized patient with suspected trichinellosis was reported to the Minnesota Department of Health. One week before symptom onset, the patient and eight other persons shared a meal that included bear meat that had been frozen for 45 days before being grilled and served rare with vegetables that had been cooked with the meat. Investigation identified six trichinellosis cases, including two in persons who consumed only the vegetables. Motile Trichinella larvae were found in remaining bear meat that had been frozen for >15 weeks. Molecular testing identified larvae from the bear meat as Trichinella nativa, a freeze-resistant species. Persons who consume meat from wild game animals should be aware that that adequate cooking is the only reliable way to kill Trichinella parasites and that infected meat can cross-contaminate other foods.


Subject(s)
Disease Outbreaks , Meat , Trichinellosis , Trichinellosis/epidemiology , Trichinellosis/diagnosis , Humans , Animals , Male , Minnesota/epidemiology , Female , Adult , South Dakota/epidemiology , Arizona/epidemiology , Meat/parasitology , Middle Aged , Trichinella/isolation & purification , Ursidae/parasitology , Adolescent , Aged , Young Adult
12.
Monoclon Antib Immunodiagn Immunother ; 43(2): 53-58, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593441

ABSTRACT

The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.


Subject(s)
Antibodies, Monoclonal , Ursidae , Cricetinae , Mice , Animals , Humans , Cricetulus , CHO Cells , Endothelial Cells/metabolism , Membrane Glycoproteins , Antibody Specificity , Transcription Factors
13.
Sci Total Environ ; 931: 172523, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38657804

ABSTRACT

Landscape features can impede dispersal, gene flow, and population demography, resulting in the formation of several meta-populations within a continuous landscape. Understanding a species' ability to overcome these barriers is critical for predicting genetic connectivity and population persistence, and implementing effective conservation strategies. In the present study, we conducted a fine-scale spatial genetic analysis to understand the contemporary gene flow within red panda populations in the Eastern Himalayas. Employing geometric aspects of reserve design, we delineated the critical core habitats for red pandas, which comprise 14.5 % of the landscape (12,189.75 Km2), with only a mere 443 Km2 falling within the protected areas. We identified corridors among the core habitats, which may be vital for the species' long-term genetic viability. Furthermore, we identified substantial landscape barriers, including Sela Pass in the western region, Siang river in the central region, and the Dibang river, Lohit river, along with Dihang, Dipher, and Kumjawng passes in the eastern region, which hinder gene flow. We suggest managing red panda populations through the creation of Community Conservation Reserves in the identified core habitats, following landscape-level management planning based on the core principles of geometric reserve design. This includes a specific emphasis on identified core habitats of red panda (CH-RP 5 and CH-RP 8) to facilitate corridors and implement meta-population dynamics. We propose the development of a comprehensive, long-term conservation and management plan for red pandas in the transboundary landscape, covering China, Nepal, and Bhutan.


Subject(s)
Conservation of Natural Resources , Ecosystem , Gene Flow , Ursidae , Animals , Ursidae/genetics , China , Animal Distribution , Himalayas
14.
Sci Rep ; 14(1): 9775, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684693

ABSTRACT

This comprehensive study examines fossil remains from Niedzwiedzia Cave in the Eastern Sudetes, offering detailed insights into the palaeobiology and adversities encountered by the Pleistocene cave bear Ursus spelaeus ingressus. Emphasising habitual cave use for hibernation and a primarily herbivorous diet, the findings attribute mortality to resource scarcity during hibernation and habitat fragmentation amid climate shifts. Taphonomic analysis indicates that the cave was extensively used by successive generations of bears, virtually unexposed to the impact of predators. The study also reveals that alkaline conditions developed in the cave during the post-depositional taphonomic processes. Mortality patterns, notably among juveniles, imply dwindling resources, indicative of environmental instability. Skeletal examination reveals a high incidence of forelimb fractures, indicating risks during activities like digging or confrontations. Palaeopathological evidence unveils vulnerabilities to tuberculosis, abscesses, rickets, and injuries, elucidating mobility challenges. The cave's silts exhibit a high zinc concentration, potentially derived from successive bear generations consuming zinc-rich plants. This study illuminates the lives of late cave bears, elucidating unique environmental hurdles faced near their species' end.


Subject(s)
Caves , Fossils , Ursidae , Animals , Poland , Ursidae/physiology , Paleopathology , Ecosystem , Paleontology
15.
Ecology ; 105(6): e4317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687245

ABSTRACT

Humans are perceived as predators by many species and may generate landscapes of fear, influencing spatiotemporal activity of wildlife. Additionally, wildlife might seek out human activity when faced with predation risks (human shield hypothesis). We used the anthropause, a decrease in human activity resulting from the COVID-19 pandemic, to test ecology of fear and human shield hypotheses and quantify the effects of bear-viewing ecotourism on grizzly bear (Ursus arctos) activity. We deployed camera traps in the Khutze watershed in Kitasoo Xai'xais Territory in the absence of humans in 2020 and with experimental treatments of variable human activity when ecotourism resumed in 2021. Daily bear detection rates decreased with more people present and increased with days since people were present. Human activity was also associated with more bear detections at forested sheltered sites and less at exposed sites, likely due to the influence of habitat on bear perception of safety. The number of people negatively influenced adult male detection rates, but we found no influence on female with young detections, providing no evidence that females responded behaviorally to a human shield effect from reduced male activity. We also observed apparent trade-offs of risk avoidance and foraging. When salmon levels were moderate to high, detected bears were more likely to be females with young than adult males on days with more people present. Should managers want to minimize human impacts on bear activity and maintain baseline age-sex class composition at ecotourism sites, multiday closures and daily occupancy limits may be effective. More broadly, this work revealed that antipredator responses can vary with intensity of risk cues, habitat structure, and forage trade-offs and manifest as altered age-sex class composition of individuals using human-influenced areas, highlighting that wildlife avoid people across multiple spatiotemporal scales.


Subject(s)
COVID-19 , Fear , Ursidae , Ursidae/physiology , Animals , Male , Female , Humans , COVID-19/psychology , Ecosystem , Human Activities , Behavior, Animal , Predatory Behavior
16.
Ying Yong Sheng Tai Xue Bao ; 35(3): 780-788, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646766

ABSTRACT

The primary goal of national parks is to protect ecological environment, but also with the functions of scientific research, education, and recreation. Aiming for the realization of universal sharing, we used the analytic hierarchy process (AHP) to construct an ecotourism suitability evaluation system by selecting four factors, including landscape resources, ecological environment carrying capacity, recreation utilization capacity and social condition, taking Xiaoxiangling area of Giant Panda National Park and the surrounding communities as an example. We evaluated the ecotourism suitability based on GIS, and conducted a questionnaire survey of tourists, to propose suggestions on the functional zoning in terms of ecotourism suitability and subjective choice preferences of tourists. The results showed that the ecotourism suitability of the evaluation area could be classified into five levels. The most suitable areas were located nearby the natural landscape resources and far away from the core conservation area, and the least suitable areas distributed at the edge of the core conservation area. According to the results of suitability analysis, the evaluation area was divided into suitable development area, moderate development area, and restricted development area. Combined with the tourist preferences, we divided the recreational activities in the evaluation area into seven activities, namely, ecotourism, eco-camping, science education, leisure vacation, agricultural and animal husbandry culture experience, eco-education, and mountain adventure. These findings could help provide suitable services for different tourists and offer reference for the ecotourism developmental planning of the Xiaoxiangling area of the Giant Panda National Park.


Subject(s)
Conservation of Natural Resources , Ecosystem , Geographic Information Systems , Parks, Recreational , Ursidae , Animals , China , Recreation
17.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608030

ABSTRACT

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Ursidae , Animals , Mice , Autistic Disorder/genetics , Peptide Elongation Factor 2 , Phosphorylation , Autism Spectrum Disorder/genetics , Biological Assay
18.
J Hazard Mater ; 471: 134252, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657507

ABSTRACT

The microbiome is a key source of antibiotic resistance genes (ARGs), significantly influenced by diet, which highlights the interconnectedness between diet, gut microbiome, and ARGs. Currently, our understanding is limited on the co-occurrence among gut microbiome, antibiotic resistome in the captive giant panda and the perturbation of dietary uptake, especially for the composition and forms in dietary nutrition. Here, a qPCR array with 384 primer sets and 16 S rRNA gene amplicon sequencing were used to characterize the antibiotic resistome and microbiomes in panda feces, dietary bamboo, and soil around the habitat. Diet nutrients containing organic and mineral substances in soluble and insoluble forms were also quantified. Organic and mineral components in water-unextractable fractions were 7.5 to 139 and 637 to 8695 times higher than those in water-extractable portions in bamboo and feces, respectively, while the latter contributed more to the variation (67.5 %) of gut microbiota. Streptococcus, Prevotellaceae, and Bacteroides were the dominant genera in giant pandas. The ARG patterns in panda guts showed higher diversity in old individuals but higher abundance in young ones, driven directly by the bacterial community change and mobile genetic element mediation and indirectly by dietary intervention. Our results suggest that dietary nutrition mainly accounts for the shift of gut microbiota, while bacterial community and mobile genetic elements influenced the variation of gut antibiotic resistome.


Subject(s)
Anti-Bacterial Agents , Diet , Feces , Gastrointestinal Microbiome , Ursidae , Animals , Ursidae/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , Soil Microbiology , Drug Resistance, Bacterial/genetics
19.
Ecology ; 105(4): e4266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425026

ABSTRACT

Large carnivores have recently increased in number and recolonized in human-dominated landscapes; however, their ecological roles in these landscapes have not been well studied. In the Shiretoko World Heritage (SWH) site, brown bears have recolonized a previously abandoned mosaic landscape of natural forests and conifer plantations after land abandonment. We previously reported that the bears had recently begun to dig for cicada nymphs in association with the creation of larch plantations. As a result, this digging activity decreased soil nutrients. To deepen the understanding of the novel ecological role of brown bears within human-modified landscapes, we examined the impacts of brown bear digging on the growth of larch trees. We found that brown bear digging decreased fine root biomass of larch, soil water, and nitrogen availability. Brown bear digging negatively affected needle nitrogen content, but not carbon isotope ratios, a water stress index of trees. Tree ring data suggest that digging negatively affected the radial growth of larches. The results imply that digging decreases tree growth due to limited soil nitrogen uptake. Our findings indicate that the ecological roles of large carnivores may differ between natural and anthropogenic landscapes.


Subject(s)
Carnivora , Ursidae , Animals , Forests , Nitrogen , Soil , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...