Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.152
Filter
1.
Oncol Res ; 32(8): 1265-1285, 2024.
Article in English | MEDLINE | ID: mdl-39055896

ABSTRACT

Uveal and conjunctival melanomas are relatively rare tumors; nonetheless, they pose a significant risk of mortality for a large number of affected individuals. The pathogenesis of melanoma at different sites is very similar, however, the prognosis for patients with ocular melanoma remains unfavourable, primarily due to its distinctive genetic profile and tumor microenvironment. Regardless of considerable advances in understanding the genetic characteristics and biological behaviour, the treatment of uveal and conjunctival melanoma remains a formidable challenge. To enhance the prospect of success, collaborative efforts involving medical professionals and researchers in the fields of ocular biology and oncology are essential. Current data show a lack of well-designed randomized clinical trials and limited benefits in current forms of treatment for these tumors. Despite advancements in the development of effective melanoma therapeutic strategies, all current treatments for uveal melanoma (UM) and conjunctival melanoma (CoM) remain unsatisfactory, resulting in a poor long-term prognosis. Ongoing trials offer hope for positive outcomes in advanced and metastatic tumors. A more comprehensive understanding of the genetic and molecular abnormalities involved in the development and progression of ocular melanomas opens the way for the development of personalized therapy, with various potential therapeutic targets currently under consideration. Increased comprehension of the molecular pathogenesis of UM and CoM and their specificities may aid in the development of new and more effective systemic therapeutic agents, with the hope of improving the prognosis for patients with metastatic disease.


Subject(s)
Conjunctival Neoplasms , Melanoma , Uveal Neoplasms , Humans , Melanoma/pathology , Melanoma/therapy , Melanoma/genetics , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Conjunctival Neoplasms/therapy , Conjunctival Neoplasms/pathology , Conjunctival Neoplasms/genetics , Prognosis
2.
Invest Ophthalmol Vis Sci ; 65(8): 37, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39042403

ABSTRACT

Purpose: Cell lines are being used in preclinical uveal melanoma (UM) research. Because not all cell lines harbor typical GNAQ or GNA11 hotspot mutations, we aimed at better classifying them and determining whether we could find genetic causes to explain the protein and mRNA expression profiles of the cell lines. Methods: We studied protein and mRNA expression of 14 UM cell lines and determined the presence of single nucleotide variants and small insertions and deletions with next-generation sequencing and copy number alterations with a single nucleotide polymorphism array. The lists of differentially expressed proteins and genes were merged, and shared lists were created, keeping only terms with concordant mRNA and protein expression. Enrichment analyses were performed on the shared lists. Results: Cell lines Mel285 and Mel290 are separate from GNA-mutated cell lines and show downregulation of melanosome-related markers. Both lack typical UM mutations but each harbors four putatively deleterious variants in CTNNB1, PPP1R10, LIMCH1, and APC in Mel285 and ARID1A, PPP1R10, SPG11, and RNF43 in Mel290. The upregulated terms in Mel285 and Mel290 did not point to a convincing alternative origin. Mel285 shows loss of chromosomes 1p, 3p, partial 3q, 6, and partial 8p, whereas Mel290 shows loss of 1p and 6. Expression in the other 12 cell lines was related to BAP1 expression. Conclusions: Although Mel285 and Mel290 have copy number alterations that fit UM, multi-omics analyses show that they belong to a separate group compared to the other analyzed UM cell lines. Therefore, they may not be representative models to test potential therapeutic targets for UM.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , GTP-Binding Protein alpha Subunits , Gene Expression Regulation, Neoplastic , Melanoma , Mutation , RNA, Messenger , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Uveal Neoplasms , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Humans , Ubiquitin Thiolesterase/genetics , RNA, Messenger/genetics , GTP-Binding Protein alpha Subunits/genetics , Tumor Suppressor Proteins/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Cell Line, Tumor , DNA Copy Number Variations , Polymorphism, Single Nucleotide , DNA Mutational Analysis
3.
Cells ; 13(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39056751

ABSTRACT

Uveal melanoma (UM) is the most common intraocular tumor in adults, and nearly 50% of patients develop metastatic disease with a high mortality rate. Therefore, the development of relevant preclinical in vivo models that accurately recapitulate the metastatic cascade is crucial. We exploited the chick embryo chorioallantoic membrane (CAM) xenograft model to quantify both experimental and spontaneous metastasis by qPCR analysis. Our study found that the transplanted UM cells spread predominantly and early in the liver, reflecting the primary site of metastasis in patients. Visible signs of pigmented metastasis were observed in the eyes, liver, and distal CAM. Lung metastases occurred rarely and brain metastases progressed more slowly. However, UM cell types of different origins and genetic profiles caused an individual spectrum of organ metastases. Metastasis to multiple organs, including the liver, was often associated with risk factors such as high proliferation rate, hyperpigmentation, and epithelioid cell type. The severity of liver metastasis was related to the hepatic metastatic origin and chromosome 8 abnormalities rather than monosomy 3 and BAP1 deficiency. The presented CAM xenograft model may prove useful to study the metastatic potential of patients or to test individualized therapeutic options for metastasis in different organs.


Subject(s)
Chorioallantoic Membrane , Melanoma , Uveal Neoplasms , Animals , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Chorioallantoic Membrane/pathology , Chorioallantoic Membrane/metabolism , Melanoma/pathology , Melanoma/genetics , Chick Embryo , Humans , Neoplasm Metastasis , Cell Line, Tumor , Disease Models, Animal , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Heterografts
4.
NPJ Syst Biol Appl ; 10(1): 75, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013872

ABSTRACT

Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration. In the present study, we first develop a mechanistic mathematical model of a G-protein coupled receptor signaling network that is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive, oncogenic mutations (Gαq/11 and CysLT2R) revealed the potential for previously unknown qualitative differences between seemingly interchangeable disease-promoting mutations, and our experiments confirmed oncogenic CysLT2R was impaired at activating the FAK/YAP/TAZ pathway relative to Gαq/11. This led us to hypothesize that CYSLTR2 mutations in UM must co-occur with other mutations to activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this pathway. Overall, this work highlights the power of mechanism-based computational systems biology as a discovery tool that can leverage available information to open new research areas.


Subject(s)
Mutation , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Signal Transduction/genetics , Signal Transduction/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Mutation/genetics , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Systems Biology/methods , Models, Biological , Melanoma/genetics , Melanoma/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism
5.
J Transl Med ; 22(1): 605, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951874

ABSTRACT

BACKGROUND: Uveal melanoma (UM), the most common adult intraocular tumor, is characterized by high malignancy and poor prognosis in advanced stages. Angiogenesis is critical for UM development, however, not only the role of vascular endothelial dysfunction in UM remains unknown, but also their analysis at the single-cell level has been lacking. A comprehensive analysis is essential to clarify the role of the endothelium in the development of UM. METHODS: By using single-cell RNA transcriptomics data of 11 cases of primary and liver metastasis UM, we analyzed the endothelial cell status. In addition, we analyzed and validated ECs in the in vitro model and collected clinical specimens. Subsequently, we explored the impact of endothelial dysfunction on UM cell migration and explored the mechanisms responsible for the endothelial cell abnormalities and the reasons for their peripheral effects. RESULTS: UM metastasis has a significantly higher percentage of vascular endothelial cells compared to in situ tumors, and endothelial cells in metastasis show significant senescence. Senescent endothelial cells in metastatic tumors showed significant Krüppel-like factor 4 (KLF4) upregulation, overexpression of KLF4 in normal endothelial cells induced senescence, and knockdown of KLF4 in senescent endothelium inhibited senescence, suggesting that KLF4 is a driver gene for endothelial senescence. KLF4-induced endothelial senescence drove tumor cell migration through a senescence-associated secretory phenotype (SASP), of which the most important component of the effector was CXCL12 (C-X-C motif chemokine ligand 12), and participated in the composition of the immunosuppressive microenvironment. CONCLUSION: This study provides an undesirable insight of senescent endothelial cells in promoting UM metastasis.


Subject(s)
Cell Movement , Cellular Senescence , Endothelial Cells , Kruppel-Like Factor 4 , Liver Neoplasms , Melanoma , Single-Cell Analysis , Uveal Neoplasms , Humans , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Melanoma/pathology , Melanoma/genetics , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Line, Tumor , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Gene Expression Regulation, Neoplastic , Female , Male
6.
Invest Ophthalmol Vis Sci ; 65(8): 3, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953846

ABSTRACT

Purpose: To investigate the correlation between apparent diffusion coefficient (ADC) histograms and high-risk clinicopathologic features related to uveal melanoma (UM) prognosis. Methods: This retrospective study included 53 patients with UM who underwent diffusion-weighted imaging (DWI) between August 2015 and March 2024. Axial DWI was performed with a single-shot spin-echo echo-planar imaging sequence. ADC histogram parameters of ADCmean, ADC50%, interquartile range (IQR), skewness, kurtosis, and entropy were obtained from DWI. The relationships between histogram parameters and high-risk clinicopathological characteristics including tumor size, preoperative retinal detachment, histological subtypes, Ki-67 index, and chromosome status, were analyzed by Spearman correlation analysis, Mann-Whitney U test, or Kruskal-Wallis test. Results: A total of 53 patients (mean ± SD age, 55 ± 15 years; 22 men) were evaluated. The largest basal diameter (LBD) was correlated with kurtosis (r = 0.311, P = 0.024). Tumor prominence (TP) was correlated with entropy (r = 0.581, P < 0.001) and kurtosis (r = 0.273, P = 0.048). Additionally, significant correlations were identified between the Ki-67 index and ADCmean (r = -0.444, P = 0.005), ADC50% (r = -0.487, P = 0.002), and skewness (r = 0.394, P = 0.014). Finally, entropy was correlated with monosomy 3 (r = 0.541, P = 0.017). Conclusions: The ADC histograms provided valuable insights into high-risk clinicopathologic features of UM and hold promise in the early prediction of UM prognosis.


Subject(s)
Diffusion Magnetic Resonance Imaging , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Male , Female , Middle Aged , Melanoma/pathology , Retrospective Studies , Prognosis , Diffusion Magnetic Resonance Imaging/methods , Adult , Aged , Echo-Planar Imaging/methods
7.
Hereditas ; 161(1): 22, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987843

ABSTRACT

BACKGROUND: Uveal melanoma (UVM) stands as the predominant type of primary intraocular malignancy among adults. The clinical significance of N7-methylguanosine (m7G), a prevalent RNA modifications, in UVM remains unclear. METHODS: Primary information from 80 UVM patients were analyzed as the training set, incorporating clinical information, mutation annotations and mRNA expression obtained from The Cancer Genome Atlas (TCGA) website. The validation set was carried out using Gene Expression Omnibus (GEO) database GSE22138 and GSE84976. Kaplan-Meier and Cox regression of univariate analyses were subjected to identify m7G-related regulators as prognostic genes. RESULT: A prognostic risk model comprising EIF4E2, NUDT16, SNUPN and WDR4 was established through Cox regression of LASSO. Evaluation of the model's predictability for UVM patients' prognosis by Receiver Operating Characteristic (ROC) curves in the training set, demonstrated excellent performance Area Under the Curve (AUC) > 0.75. The high-risk prognosis within the TCGA cohort exhibit a notable worse outcome. Additionally, an independent correlation between the risk score and overall survival (OS) among UVM patients were identified. External validation of this model was carried out using the validation sets (GSE22138 and GSE84976). Immune-related analysis revealed that patients with high score of m7G-related risk model exhibited elevated level of immune infiltration and immune checkpoint gene expression. CONCLUSION: We have developed a risk prediction model based on four m7G-related regulators, facilitating effective estimate UVM patients' survival by clinicians. Our findings shed novel light on essential role of m7G-related regulators in UVM and suggest potential novel targets for the diagnosis, prognosis and therapy of UVM.


Subject(s)
Guanosine , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/mortality , Melanoma/genetics , Prognosis , Guanosine/analogs & derivatives , Female , Male , Middle Aged , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , ROC Curve , Kaplan-Meier Estimate
8.
Front Immunol ; 15: 1427348, 2024.
Article in English | MEDLINE | ID: mdl-38966635

ABSTRACT

Uveal melanoma (UM) is a highly aggressive and fatal tumor in the eye, and due the special biology of UM, immunotherapy showed little effect in UM patients. To improve the efficacy of immunotherapy for UM patients is of great clinical importance. Single-cell RNA sequencing(scRNA-seq) provides a critical perspective for deciphering the complexity of intratumor heterogeneity and tumor microenvironment(TME). Combing the bioinformatics analysis, scRNA-seq could help to find prognosis-related molecular indicators, develop new therapeutic targets especially for immunotherapy, and finally to guide the clinical treatment options.


Subject(s)
Immunotherapy , Melanoma , Single-Cell Analysis , Tumor Microenvironment , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Melanoma/therapy , Melanoma/genetics , Melanoma/immunology , Single-Cell Analysis/methods , Immunotherapy/methods , Sequence Analysis, RNA , Biomarkers, Tumor/genetics , Genetic Heterogeneity , Animals , Computational Biology/methods , Gene Expression Regulation, Neoplastic
9.
Vestn Oftalmol ; 140(3): 5-10, 2024.
Article in Russian | MEDLINE | ID: mdl-38962973

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNAs (18-25 nucleotides in length) that are important participants in the regulation of gene expression. In 2003, their active role in oncogenesis was demonstrated. In 2008, the first report on the isolation of miRNAs from uveal melanoma (UM) tissue was published. Four years later (2012), the presence of miRNAs in the plasma of patients with this category was shown. To date, changes in the expression level of 100 miRNAs in the plasma of cancer patients (with cancer of various localizations) out of the 2654 miRNAs described in mirbase.org have been proven. In the plasma of patients with UM, changes in the expression of only 13 miRNAs have been confirmed. As a rule, studies were conducted in patients at the stage of hematogenous metastasis of UM. PURPOSE: This study analyzed the expression pattern of miRNA-223 and miRNA-126 in patients with localized choroidal melanoma (CM) taking into account biometric parameters in the absence of metastases. MATERIAL AND METHODS: Blood plasma of 84 patients with M0N0 CM aged 35-86 years (mean age 63.4±1.2 years) was investigated. The basis for the diagnosis of CM was the results of ophthalmological examination, optical coherence tomography, and ultrasound scanning. In all cases, the absence of metastases was proven (using computed tomography or magnetic resonance imaging). Control - plasma of 28 volunteers (mean age 62.9±1.42 years, age range 45-78 years), who did not have tumoral, autoimmune, or chronic inflammatory processes. The expression levels of miRNAs circulating in blood plasma were determined by real-time polymerase chain reaction. RESULTS: An increase in the expression levels of miRNA-223 and miRNA-126 in the plasma of all 84 patients with CM was confirmed compared to the control group. Features of the miRNA expression pattern that emerged with changes in the tumor's quantitative parameters were identified. CONCLUSION: Evaluation of the levels of miRNA-223 and miRNA-126 in the blood plasma of patients with CM can be used in clinical practice to clarify the diagnosis of CM, as well as to predict the development of hematogenous metastases.


Subject(s)
Biomarkers, Tumor , Choroid Neoplasms , Gene Expression Regulation, Neoplastic , Melanoma , MicroRNAs , Humans , Melanoma/genetics , Melanoma/diagnosis , Choroid Neoplasms/genetics , Choroid Neoplasms/diagnosis , Middle Aged , Male , Female , MicroRNAs/genetics , MicroRNAs/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Epigenesis, Genetic , Aged , Uveal Neoplasms/genetics , Uveal Neoplasms/diagnosis
10.
J Transl Med ; 22(1): 695, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075441

ABSTRACT

BACKGROUND: Although there has been some progress in the treatment of primary uveal melanoma (UVM), distant metastasis remains the leading cause of death in patients. Monitoring, staging, and treatment of metastatic disease have not yet reached consensus. Although more than half of metastatic tumors (62%) are diagnosed within five years after primary tumor treatment, the remainder are only detected in the following 25 years. The mechanisms of UVM metastasis and its impact on prognosis are not yet fully understood. METHODS: scRNA-seq data of UVM samples were obtained and processed, followed by cell type identification and characterization of macrophage subpopulations. High-dimensional weighted gene co-expression network analysis (HdWGCNA) was performed to identify key gene modules associated with metastatic protective macrophages (MPMφ) in primary samples, and functional analyses were conducted. Non-negative matrix factorization (NMF) clustering and immune cell infiltration analyses were performed using the MPMφ gene signatures. Machine learning models were developed using the identified metastatic protective macrophages related genes (MPMRGs) to distinguish primary from metastatic patients. A deep learning convolutional neural network (CNN) model was constructed based on MPMRGs and cell type associations. Lastly, a prognostic model was established using the MPMRGs and validated in independent cohorts. RESULTS: Single-cell RNA-seq analysis revealed a unique immune microenvironment landscape in primary samples compared to metastatic samples, with an enrichment of macrophage cells. Using HdWGCNA, MPMφ and marker genes were identified. Functional analysis showed an enrichment of genes related to antigen processing progress and immune response. Machine learning and deep learning models based on key genes showed significant effectiveness in distinguishing between primary and metastatic patients. The prognostic model based on key genes demonstrated substantial predictive value for the survival of UVM patients. CONCLUSION: Our study identified key macrophage subpopulations related to metastatic samples, which have a profound impact on shaping the tumor immune microenvironment. A prognostic model based on macrophage cell genes can be used to predict the prognosis of UVM patients.


Subject(s)
Deep Learning , Macrophages , Melanoma , Neoplasm Metastasis , Single-Cell Analysis , Uveal Neoplasms , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Humans , Melanoma/pathology , Melanoma/genetics , Melanoma/immunology , Macrophages/metabolism , Macrophages/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Gene Expression Profiling , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male
11.
Invest Ophthalmol Vis Sci ; 65(8): 11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967943

ABSTRACT

Purpose: Ocular melanoma is a common primary malignant ocular tumor in adults with limited effective treatments. Epigenetic regulation plays an important role in tumor development. The switching/sucrose nonfermentation (SWI/SNF) chromatin remodeling complex and bromodomain and extraterminal domain family proteins are epigenetic regulators involved in several cancers. We aimed to screen a candidate small molecule inhibitor targeting these regulators and investigate its effect and mechanism in ocular melanoma. Methods: We observed phenotypes caused by knockdown of the corresponding gene and synergistic effects with BRD inhibitor treatment and SWI/SNF complex knockdown. The effect of JQ-1 on ocular melanoma cell cycle and apoptosis was analyzed with flow cytometry. Via RNA sequencing, we also explored the mechanism of BRD4. Results: The best tumor inhibitory effect was observed for the BRD4 inhibitor (JQ-1), although there were no statistically obvious changes in the shBRD4 and shBRD9 groups. Interestingly, the inhibitory effect of JQ-1 was decrease in the shBRD4 group. JQ-1 inhibits the growth of melanoma in various cell lines and in tumor-bearing mice. We found 17 of these 28 common differentially expressed genes were downregulated after MEL270 and MEL290 cells treated with JQ-1. Four of these 17 genes, TP53I11, SH2D5, SEMA5A, and MDGA1, were positively correlated with BRD4. In TCGA database, low expression of TP53I11, SH2D5, SEMA5A, and MDGA1 improved the overall survival rate of patients. Furthermore, the disease-free survival rate was increased in the groups with low expression of TP53I11, SH2D5, and SEMA5A. Conclusions: JQ-1 may act downstream of BRD4 and suppress ocular melanoma growth by inducing G1 cell cycle arrest.


Subject(s)
Apoptosis , Azepines , Cell Cycle Checkpoints , Cell Cycle Proteins , Melanoma , Transcription Factors , Triazoles , Animals , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Mice , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Azepines/pharmacology , Triazoles/pharmacology , Triazoles/therapeutic use , Cell Cycle Checkpoints/drug effects , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Uveal Neoplasms/drug therapy , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/metabolism , Flow Cytometry , Xenograft Model Antitumor Assays , Mice, Nude , Bromodomain Containing Proteins
12.
Front Immunol ; 15: 1383125, 2024.
Article in English | MEDLINE | ID: mdl-38903495

ABSTRACT

Background: Screening for gene mutations has become routine clinical practice across numerous tumor entities, including melanoma. BAP1 gene mutations have been identified in various tumor types and acknowledged as a critical event in metastatic uveal melanoma, but their role in non-uveal melanoma remains inadequately characterized. Methods: A retrospective analysis of all melanomas sequenced in our department from 2014-2022 (n=2650) was conducted to identify BAP1 mutated samples. Assessment of clinical and genetic characteristics was performed as well as correlations with treatment outcome. Results: BAP1 mutations were identified in 129 cases and distributed across the entire gene without any apparent hot spots. Inactivating BAP1 mutations were more prevalent in uveal (55%) compared to non-uveal (17%) melanomas. Non-uveal BAP1 mutated melanomas frequently exhibited UV-signature mutations and had a significantly higher mutation load than uveal melanomas. GNAQ and GNA11 mutations were common in uveal melanomas, while MAP-Kinase mutations were frequent in non-uveal melanomas with NF1, BRAF V600 and NRAS Q61 mutations occurring in decreasing frequency, consistent with a strong UV association. Survival outcomes did not differ among non-uveal melanoma patients based on whether they received targeted or immune checkpoint therapy, or if their tumors harbored inactivating BAP1 mutations. Conclusion: In contrast to uveal melanomas, where BAP1 mutations serve as a significant prognostic indicator of an unfavorable outcome, BAP1 mutations in non-uveal melanomas are primarily considered passenger mutations and do not appear to be relevant from a prognostic or therapeutic perspective.


Subject(s)
Melanoma , Mutation , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Uveal Neoplasms , Humans , Ubiquitin Thiolesterase/genetics , Melanoma/genetics , Melanoma/mortality , Melanoma/therapy , Uveal Neoplasms/genetics , Uveal Neoplasms/mortality , Uveal Neoplasms/therapy , Male , Tumor Suppressor Proteins/genetics , Female , Middle Aged , Aged , Retrospective Studies , Adult , Aged, 80 and over , Prognosis
14.
Cells ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38920653

ABSTRACT

Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Uveal Neoplasms/diagnosis , Melanoma/genetics , Melanoma/therapy , Melanoma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Tumor Microenvironment/genetics , Mutation/genetics
15.
Sci Signal ; 17(840): eadn8376, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861613

ABSTRACT

Uveal melanoma (UM) is the deadliest form of eye cancer in adults. Inactivating mutations and/or loss of expression of the gene encoding BRCA1-associated protein 1 (BAP1) in UM tumors are associated with an increased risk of metastasis. To investigate the mechanisms underlying this risk, we explored the functional consequences of BAP1 deficiency. UM cell lines expressing mutant BAP1 grew more slowly than those expressing wild-type BAP1 in culture and in vivo. The ability of BAP1 reconstitution to restore cell proliferation in BAP1-deficient cells required its deubiquitylase activity. Proteomic analysis showed that BAP1-deficient cells had decreased phosphorylation of ribosomal S6 and its upstream regulator, p70S6K1, compared with both wild-type and BAP1 reconstituted cells. In turn, expression of p70S6K1 increased S6 phosphorylation and proliferation of BAP1-deficient UM cells. Consistent with these findings, BAP1 mutant primary UM tumors expressed lower amounts of p70S6K1 target genes, and S6 phosphorylation was decreased in BAP1 mutant patient-derived xenografts (PDXs), which grew more slowly than wild-type PDXs in the liver (the main metastatic site of UM) in mice. BAP1-deficient UM cells were also more resistant to amino acid starvation, which was associated with diminished phosphorylation of S6. These studies demonstrate that BAP1 deficiency slows the proliferation of UM cells through regulation of S6 phosphorylation. These characteristics may be associated with metastasis by ensuring survival during amino acid starvation.


Subject(s)
Cell Proliferation , Melanoma , Signal Transduction , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Uveal Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mutation , Phosphorylation , Ribosomal Protein S6/metabolism , Ribosomal Protein S6/genetics , Stress, Physiological , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Female
16.
Cancer Genomics Proteomics ; 21(4): 350-360, 2024.
Article in English | MEDLINE | ID: mdl-38944422

ABSTRACT

BACKGROUND/AIM: Uveal melanoma is an ocular malignancy whose prognosis severely worsens following metastasis. In order to improve the understanding of molecular physiology of metastatic uveal melanoma, we identified genes and pathways implicated in metastatic vs non-metastatic uveal melanoma. PATIENTS AND METHODS: A previously published dataset from Gene Expression Omnibus (GEO) was used to identify differentially expressed genes between metastatic and non-metastatic samples as well as to conduct pathway and perturbagen analyses using Gene Set Enrichment Analysis (GSEA), EnrichR, and iLINCS. RESULTS: In male metastatic uveal melanoma samples, the gene LOC401052 is significantly down-regulated and FHDC1 is significantly up-regulated compared to non-metastatic male samples. In female samples, no significant differently expressed genes were found. Additionally, we identified many significant up-regulated immune response pathways in male metastatic uveal melanoma, including "T cell activation in immune response". In contrast, many top up-regulated female pathways involve iron metabolism, including "heme biosynthetic process". iLINCS perturbagen analysis identified that both male and female samples have similar discordant activity with growth factor receptors, but only female samples have discordant activity with progesterone receptor agonists. CONCLUSION: Our results from analyzing genes, pathways, and perturbagens demonstrate differences in metastatic processes between sexes.


Subject(s)
Gene Expression Profiling , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/metabolism , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Female , Male , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic , Transcriptome , Sex Factors
17.
Invest Ophthalmol Vis Sci ; 65(6): 7, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833258

ABSTRACT

Purpose: The purpose of this study was to analyze the extent of DNA breaks in primary uveal melanoma (UM) with regard to radiotherapy dose delivery (single-dose versus fractionated) and monosomy 3 status. Methods: A total of 54 patients with UM were included. Stereotactic radiotherapy (SRT) was performed in 23 patients, with 8 undergoing single-dose SRT (sdSRT) treatment and 15 receiving fractionated SRT (fSRT). DNA breaks in the enucleated or endoresected tumors were visualized by a TUNEL assay and quantified by measuring the TUNEL-positive area. Protein expression was analyzed by immunohistochemistry. Co-detection of chromosome 3 with proteins was performed by immuno-fluorescent in situ hybridization. Results: The amount of DNA breaks in the total irradiated group was increased by 2.7-fold (P < 0.001) compared to non-irradiated tissue. Tumors treated with fSRT were affected more severely, showing 2.1-fold more DNA damage (P = 0.007) compared to the cases after single (high) dose irradiation (sdSRT). Monosomy 3 tumors showed less DNA breaks compared to disomy 3 samples (P = 0.004). The presence of metastases after radiotherapy correlated with monosomy 3 and less DNA breaks compared to patients with non-metastatic cancer in the combined group with fSRT and sdSRT (P < 0.05). Conclusions: Fractionated irradiation led to more DNA damage than single-dose treatment in primary UM. As tumors with monosomy 3 showed less DNA breaks than those with disomy 3, this may indicate that they are less radiosensitive, which may influence the efficacy of irradiation.


Subject(s)
Chromosomes, Human, Pair 3 , DNA Damage , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/radiotherapy , Uveal Neoplasms/genetics , Melanoma/radiotherapy , Melanoma/genetics , Female , Chromosomes, Human, Pair 3/genetics , Male , Middle Aged , Aged , Adult , Aged, 80 and over , In Situ Hybridization, Fluorescence , In Situ Nick-End Labeling , Radiotherapy Dosage , Immunohistochemistry , Radiosurgery/adverse effects , Radiosurgery/methods , Dose-Response Relationship, Radiation
18.
Genes Genomics ; 46(7): 785-801, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38767825

ABSTRACT

BACKGROUND: Uveal melanoma (UVM) is the most common primary ocular malignancy, with a wide range of symptoms and outcomes. The programmed cell death (PCD) plays an important role in tumor development, diagnosis, and prognosis. There is still no research on the relationship between PCD-related genes and UVM. A novel PCD-associated prognostic model is urgently needed to improve treatment strategies. OBJECTIVE: We aim to screen PCD-related prognostic signature and investigate its proliferation ability and apoptosis in UVM cells. METHODS: The clinical information and RNA-seq data of the UVM patients were collected from the TCGA cohort. All the patients were classified using consensus clustering by the selected PCD-related genes. After univariate Cox regression and PPI network analysis, the prognostic PCD-related genes were then submitted to the LASSO regression analysis to build a prognostic model. The level of immune infiltration of 8-PCD signature in high- and low-risk patients was analyzed using xCell. The prediction on chemotherapy and immunotherapy response in UVM patients was assessed by GDSC and TIDE algorithm. CCK-8, western blot and Annexin V-FITC/PI staining were used to explore the roles of HMOX1 in UVM cells. RESULTS: A total of 8-PCD signature was constructed and the risk score of the PCD signature was negatively correlated with the overall survival, indicating strong predictive ability and independent prognostic value. The risk score was positively correlated with CD8 Tcm, CD8 Tem and Th2 cells. Immune cells in high-risk group had poorer overall survival. The drug sensitivity demonstrated that cisplatin might impact the progression of UVM and better immunotherapy responsiveness in the high-risk group. Finally, Overespression HMOX1 (OE-HMOX1) decreased the cell viability and induced apoptosis in UVM cells. Recuse experiment results showed that ferrostatin-1 (fer-1) protected MP65 cells from apoptosis and necrosis caused by OE-HMOX1. CONCLUSION: The PCD signature may have a significant role in the tumor microenvironment, clinicopathological characteristics, prognosis and drug sensitivity. More importantly, HMOX1 depletion greatly induced tumor cell growth and inhibited cell apoptosis and fer-1 protected UVM cells from apoptosis and necrosis induced by OE-HMOX1. This work provides a foundation for effective therapeutic strategy in tumour treatment.


Subject(s)
Apoptosis , Cell Proliferation , Heme Oxygenase-1 , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/immunology , Melanoma/genetics , Melanoma/pathology , Melanoma/immunology , Melanoma/drug therapy , Apoptosis/genetics , Prognosis , Cell Proliferation/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Middle Aged , Transcriptome , Biomarkers, Tumor/genetics
19.
Oncotarget ; 15: 328-344, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758815

ABSTRACT

GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.


Subject(s)
Melanoma , Uveal Neoplasms , Xenograft Model Antitumor Assays , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Uveal Neoplasms/drug therapy , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Humans , Animals , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Autophagy/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
20.
Adv Sci (Weinh) ; 11(26): e2403107, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704679

ABSTRACT

Uveal melanoma (UM) is a leading intraocular malignancy with a high 5-year mortality rate, and radiotherapy is the primary approach for UM treatment. However, the elevated lactic acid, deficiency in ROS, and hypoxic tumor microenvironment have severely reduced the radiotherapy outcomes. Hence, this study devised a novel CoMnFe-layered double oxides (LDO) nanosheet with multienzyme activities for UM radiotherapy enhancement. On one hand, LDO nanozyme can catalyze hydrogen peroxide (H2O2) in the tumor microenvironment into oxygen and reactive oxygen species (ROS), significantly boosting ROS production during radiotherapy. Simultaneously, LDO efficiently scavenged lactic acid, thereby impeding the DNA and protein repair in tumor cells to synergistically enhance the effect of radiotherapy. Moreover, density functional theory (DFT) calculations decoded the transformation pathway from lactic to pyruvic acid, elucidating a previously unexplored facet of nanozyme activity. The introduction of this innovative nanomaterial paves the way for a novel, targeted, and highly effective therapeutic approach, offering new avenues for the management of UM and other cancer types.


Subject(s)
Lactic Acid , Melanoma , Reactive Oxygen Species , Tumor Microenvironment , Reactive Oxygen Species/metabolism , Humans , Lactic Acid/metabolism , Melanoma/metabolism , Melanoma/radiotherapy , Tumor Microenvironment/drug effects , Uveal Neoplasms/metabolism , Uveal Neoplasms/radiotherapy , Uveal Neoplasms/genetics , Cell Line, Tumor , Nanostructures/therapeutic use , Mice , Animals , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL