Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.363
Filter
1.
Best Pract Res Clin Gastroenterol ; 70: 101927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39053980

ABSTRACT

Endoscopic vacuum therapy (EVT) is an established technique for the treatment of rectal wall defects and especially anastomotic leaks. A wide range of EVT devices, both handmade and commercially available, allow for their successful placement even in small defects and difficult localizations. Reported success rates range between 85 and 97 %, while periintervenional morbidity is low and major adverse events are very rare. EVT has proven its effectiveness in the lower gastrointestinal tract and is now considered first line treatment for pelvic anastomotic leaks. This narrative review summarizes the current literature on EVT in the lower gastrointestinal tract, focusing on its indications, technical aspects and results, and offers tips and tricks for its clinical applications.


Subject(s)
Anastomotic Leak , Humans , Anastomotic Leak/therapy , Anastomotic Leak/etiology , Vacuum , Treatment Outcome , Endoscopy, Gastrointestinal/methods , Endoscopy, Gastrointestinal/instrumentation , Rectum/surgery , Negative-Pressure Wound Therapy/methods , Negative-Pressure Wound Therapy/instrumentation
2.
Best Pract Res Clin Gastroenterol ; 70: 101901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39053979

ABSTRACT

BACKGROUND: Transmural defects in the upper gastrointestinal (GI) tract, such as anastomotic leakage and oesophageal perforations, are associated with significant morbidity and mortality risks. Endoscopic vacuum therapy (EVT) is an efficient and safe treatment option for these patients. With the growing use of EVT in the upper GI tract, it is important to share expertise on the topic. AIM: This review explores the emerging role of endoscopic vacuum therapy (EVT) as treatment for transmural defects in the upper GI tract. An overview of the mechanism and procedures, outcomes in current literature and challenges of implementation and application are discussed. CONCLUSION: EVT exhibits great efficacy and safety for the treatment of transmural defects in the upper GI tract. Current use of EVT is mostly experience-based, emphasizing the importance of sharing expertise and performing research to unlock its full potential.


Subject(s)
Endoscopy, Gastrointestinal , Humans , Endoscopy, Gastrointestinal/instrumentation , Endoscopy, Gastrointestinal/methods , Anastomotic Leak/therapy , Anastomotic Leak/etiology , Treatment Outcome , Esophageal Perforation/therapy , Esophageal Perforation/etiology , Esophageal Perforation/surgery , Vacuum , Upper Gastrointestinal Tract/surgery , Upper Gastrointestinal Tract/diagnostic imaging
3.
Ultrason Sonochem ; 108: 106980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981338

ABSTRACT

To obtain high-quality cherry products, ultrasound (US) combined with five chemical pretreatment techniques were used on cherry prior to radio frequency vacuum drying (RFV), including carboxymethyl cellulose coating (CMC), cellulase (CE), ethanol (EA), isomaltooligosaccharide (IMO), and potassium carbonate + ethyl oleate (PC + AEEO). The effect of different pretreatments (US-CMC, US-CE, US-EA, US-IMO, US-(PC + AEEO)) on the drying characteristics, quality properties, texture, and sensory evaluation of cherries was evaluated. Results showed that the dehydration time and energy consumption were decreased by 4.17 - 20.83 % and 3.22 - 19.34 %, respectively, and the contents of individual sugars, soluble solid, total phenolics (TPC), natural active substances, total flavonoids (TFC), and antioxidant properties (DPPH, ABTS and FRAP) were significantly increased after US combined with five chemical treatments (P < 0.05). Moreover, the pretreatment played important role in improving texture properties and surface color retention in the dried cherries. According to the sensory evaluation analysis, the dehydrated cherries pretreated with US-CMC exhibited the highest overall acceptance, texture, crispness, color, and sweet taste showed lower off-odor, bitter taste and sour taste compared to control and other pretreatments. The findings indicate that US-CMC pretreatment is a promising technique for increasing physicochemical qualities and dehydration rate of samples, which provides a novel strategy to processing of dried cherry.


Subject(s)
Desiccation , Prunus avium , Vacuum , Desiccation/methods , Prunus avium/chemistry , Ultrasonic Waves , Antioxidants/chemistry , Radio Waves , Food Handling/methods , Food Quality , Taste , Phenols/analysis , Phenols/chemistry
4.
Phys Chem Chem Phys ; 26(27): 18943-18952, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38952218

ABSTRACT

The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel ß-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.


Subject(s)
Amyloid , Circular Dichroism , Muramidase , Phospholipids , Muramidase/chemistry , Muramidase/metabolism , Amyloid/chemistry , Phospholipids/chemistry , Animals , Protein Structure, Secondary , Dimyristoylphosphatidylcholine/chemistry , Phosphatidylglycerols/chemistry , Liposomes/chemistry , Chickens , Vacuum
5.
Dental Press J Orthod ; 29(3): e2423117, 2024.
Article in English | MEDLINE | ID: mdl-38985074

ABSTRACT

OBJECTIVE: This study aimed to clinically compare the accuracy of bracket positioning between three-dimensionally (3D) printed indirect bonding trays and vacuum-formed trays made over 3D-printed models. MATERIAL AND METHODS: Fourteen patients, planned for fixed orthodontic therapy, were randomly divided into two equal groups. For both groups, both dental arches were scanned, to acquire virtual models, brackets were virtually positioned from central incisors to second premolars, and scans for the final bracket positions were performed. In the first group, transfer trays were 3D-printed. In the second group, virtual models were 3D-printed, and vacuum-formed soft sheets were thermoformed on the printed model. Teeth were indirectly bonded and then scanned. Superimposition of the virtual and the final bracket positioning scans was performed to measure linear and angular deviations in brackets positions. RESULTS: The first group showed significantly less occlusogingival and buccolingual linear errors than the second group. No significant differences in angular deviations were found between both groups. The frequencies of clinically acceptable linear errors within 0.5 mm and angular errors within 2° showed no statistically significant difference between both groups (p> 0.05 for all measurements). The transfer errors in both groups showed linear directional biases toward the mesial, gingival and labial directions. There was no statistically significant difference in the rate of immediate debonding between both groups (10.7% and 7.1% for the first and the second groups, respectively, p=0.295). CONCLUSIONS: 3D-printed indirect bonding trays were more accurate than vacuum-formed trays, in terms of linear deviations. Both types of trays showed similar angular control.


Subject(s)
Dental Bonding , Orthodontic Brackets , Printing, Three-Dimensional , Humans , Dental Bonding/methods , Models, Dental , Female , Vacuum , Male , Adolescent , Young Adult , Bicuspid/diagnostic imaging
6.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955370

ABSTRACT

AIMS: This study aims to evaluate the storage stability of the freeze-dried recombinant Lactococcus lactis NZ3900-fermented milk powder expressing K-ras (Kristen rat sarcoma viral oncogene homolog) mimotopes targeting colorectal cancer in vacuum packaging. METHODS AND RESULTS: The freeze-dried L. lactis-fermented milk powder stored in 4-ply retortable polypropylene (RCPP)-polyamide (PA)-aluminium (AL)-polyethylene terephthalate (PET) and aluminium polyethylene (ALPE) was evaluated throughout 49 days of accelerated storage (38°C and 90% relative humidity). The fermented milk powder stored in 4-ply packaging remained above 6 log10 CFU g-1 viability, displayed lower moisture content (6.1%), higher flowability (43° angle of repose), water solubility (62%), and survivability of L. lactis after simulated gastric and intestinal digestion (>82%) than ALPE packaging after 42 days of accelerated storage. K-ras mimotope expression was detected intracellularly and extracellularly in the freeze-dried L. lactis-fermented milk powder upon storage. CONCLUSIONS: This suggests that fermented milk powder is a suitable food carrier for this live oral vaccine.


Subject(s)
Food Packaging , Freeze Drying , Lactococcus lactis , Lactococcus lactis/metabolism , Lactococcus lactis/genetics , Food Packaging/methods , Animals , Vacuum , Powders , Cultured Milk Products/microbiology , Fermentation , Milk/chemistry , Genes, ras/genetics , Food Storage
7.
Environ Geochem Health ; 46(8): 286, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967819

ABSTRACT

The vacuum preloading coupling flocculation treatment is a widely employed method for reinforcing soils with high water content in practical construction. However, uneven distribution and accumulation of flocculants pose significant damage to the soil environment and result in uneven soil consolidation, leading to severe issues in subsequent soil development and exploitation. To address these concerns, an evolved leaching with vacuum method is developed for facilitating soil consolidation while preventing the accumulation of flocculant in the soil. In this study, five model tests are conducted in which FeCl3 is chosen as the typical flocculant to promote soil consolidation, and deionized water is used for leaching. The final discharged water, settlement, water content and penetration resistance of soil are obtained to evaluate the soil reinforcement effect, while the flocculant removal effect is evaluated by the Fe3+ content in the filtrate and soil. The comprehensive reinforcement and flocculant removal effect show that this method is extremely effective compared to traditional vacuum preloading. The two leaching is clarified as the best choice, resulting in a 22% decrease in the soil water content and a 25% in soil penetration resistance, meanwhile a 12.8% removal rate of the flocculant. The test results demonstrate that leaching with vacuum preloading can contribute to promoting soil consolidation and reducing the accumulation of flocculant in the soil, ensuring the safe and eco-friendly use of the soil for future applications. The conclusions obtained are of significant theoretical value and technical support for practical construction and sustainable development.


Subject(s)
Flocculation , Soil , Soil/chemistry , Vacuum , Soil Pollutants/chemistry , Ferric Compounds/chemistry , Chlorides/chemistry
8.
Sci Rep ; 14(1): 17616, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080472

ABSTRACT

Because of the lack of good seedling positioning during vegetable grafting, there are issues such as high labor costs and long grafting time. This article proposes a negative pressure suction seedling positioning method for seed leaves based on the characteristic parameters of cucumber spike wood, and designs a flexible adsorption positioning mechanism for spike wood. Firstly, the ventral surface curve trajectories of cucumber cotyledons were extracted using Matlab software, and then a shape-adaptive design was applied to the attachment surface of the flexible suction positioning mechanism, and a computational fluid dynamics model of the airflow field was established. By combining Fluent simulation analysis with orthogonal experiments, the effect of suction hole diameter, vacuum negative pressure value, suction hole quantity, and suction hole depth on the adsorption effect of the suction head was analyzed, the main and secondary factors and operational indicators that affect the adsorption effect are evaluated. The optimal parameter combination: suction hole diameter of 1.5 mm, vacuum negative pressure value of 2 kPa, suction hole quantity of 42, and suction hole depth of 2 mm, has been found. A verification experiment was conducted on a test bench, and the experimental results show that the success rate of leaf absorption using the optimal parameter combination is 97.69%, which indicates that the suction head is designed reasonably and meets the requirements of grafting.


Subject(s)
Cucumis sativus , Plant Leaves , Computer Simulation , Adsorption , Vegetables , Seedlings , Vacuum
9.
Meat Sci ; 216: 109590, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38991480

ABSTRACT

The packaging system is one of the factors influencing the preservation of the nutritional value, microbiological safety, and sensory attributes of meat. The study investigated changes in physicochemical and microbiological properties taking place during 15-day refrigerated storage of two calf muscles, the longissimus lumborum (LL) and semitendinosus (ST), packaged in three systems, respectively, vacuum packing (VP), modified atmosphere packaging (MAP, 80% O2 + 20% CO2), and a combined system (VP + MAP, 8 d in VP followed by 7 d in MAP). LL and ST stored in VP had significantly lower levels of lipid oxidation, higher α-tocopherol content, and higher instrumentally measured tenderness in comparison with the samples stored in MAP. On the other hand, the MAP samples had lower purge loss at 5 and 15 days, a higher proportion of oxymyoglobin up to 10 days of storage, and a better microbiological status. Calf muscle samples stored in the VP + MAP system had intermediate values for TBARS and α-tocopherol content and at the same time were the most tender and had the lowest counts of Pseudomonas and Enterobacteriaceae bacteria at 15 days. All packaging systems ensured relatively good quality of veal characteristics up to the last day of storage. However, for MAP at 15 days of storage, unfavourable changes in colour (a high level of metmyoglobin and a decrease in oxymyoglobin, redness and R630/580 ratio) and in the lipid fraction (a high TBARS value and a significant decrease in α-tocopherol content) were observed.


Subject(s)
Food Packaging , Food Storage , Muscle, Skeletal , Red Meat , Thiobarbituric Acid Reactive Substances , alpha-Tocopherol , Food Packaging/methods , Animals , Cattle , alpha-Tocopherol/analysis , Vacuum , Muscle, Skeletal/chemistry , Thiobarbituric Acid Reactive Substances/analysis , Red Meat/analysis , Red Meat/microbiology , Color , Food Microbiology , Myoglobin/analysis , Lipid Peroxidation , Enterobacteriaceae/isolation & purification , Pseudomonas
10.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836885

ABSTRACT

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Subject(s)
Newcastle Disease , Newcastle disease virus , Temperature , Viral Vaccines , Newcastle disease virus/immunology , Newcastle disease virus/chemistry , Pilot Projects , Newcastle Disease/prevention & control , Newcastle Disease/virology , Viral Vaccines/chemistry , Viral Vaccines/immunology , Vacuum , Animals , Chickens , Desiccation , China , Drug Stability , Viral Load
11.
J Chem Inf Model ; 64(14): 5547-5556, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38938209

ABSTRACT

Ultraviolet (UV) absorption spectroscopy is a widely used tool for quantitative and qualitative analyses of chemical compounds. In the gas phase, vacuum UV (VUV) and UV absorption spectra are specific and diagnostic for many small molecules. An accurate prediction of VUV/UV absorption spectra can aid the characterization of new or unknown molecules in areas such as fuels, forensics, and pharmaceutical research. An alternative to quantum chemical spectral prediction is the use of artificial intelligence. Here, different molecular feature representation techniques were used and developed to encode chemical structures for testing three machine learning models to predict gas-phase VUV/UV absorption spectra. Structure data files (.sdf) and VUV/UV absorption spectra for 1397 volatile and semivolatile chemical compounds were used to train and test the models. New molecular features (termed ABOCH) were introduced to better capture pi-bonding, aromaticity, and halogenation. The incorporation of these new features benefited spectral prediction and demonstrated superior performance compared to computationally intensive molecular-based deep learning methods. Of the machine learning methods, the use of a Random Forest regressor returned the best accuracy score with the shortest training time. The developed machine learning prediction model also outperformed spectral predictions based on the time-dependent density functional theory.


Subject(s)
Gases , Machine Learning , Spectrophotometry, Ultraviolet , Vacuum , Spectrophotometry, Ultraviolet/methods , Gases/chemistry , Ultraviolet Rays
12.
Cancer Radiother ; 28(3): 229-235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871604

ABSTRACT

PURPOSE: The main objective of this study was to assess inter- and intrafraction errors for two patient immobilisation devices in the context of lung stereotactic body radiation therapy: a vacuum cushion and a simple arm support. MATERIALS AND METHODS: Twenty patients who were treated with lung stereotactic body radiation therapy in supine position with arms above their head were included in the study. Ten patients were setup in a vacuum cushion (Bluebag™, Elekta) and ten other patients with a simple arm support (Posirest™, Civco). A pretreatment four-dimensional cone-beam computed tomography and a post-treatment three-dimensional cone-beam computed tomography were acquired to compare positioning and immobilisation accuracy. Based on a rigid registration with the planning computed tomography on the spine at the target level, translational and rotational errors were reported. RESULTS: The median number of fractions per treatment was 5 (range: 3-10). Mean interfraction errors based on 112 four-dimensional cone-beam computed tomographies were similar for both setups with deviations less than or equal to 1.3mm in lateral and vertical direction and 1.2° in roll and yaw. For longitudinal translational errors, mean interfraction errors were 0.7mm with vacuum cushion and -3.9mm with arm support. Based on 111 three-dimensional cone-beam computed tomographies, mean lateral, longitudinal and vertical intrafraction errors were -0.1mm, -0.2mm and 0.0mm respectively (SD: 1.0, 1.2 and 1.0mm respectively) for the patients setup with vacuum cushion, and mean vertical, longitudinal and lateral intrafraction errors were -0.3mm, -0.7mm and 0.1mm respectively (SD: 2.3, 1.8 and 1.4mm respectively) for the patients setup with arm support. Intrafraction errors means were not statistically different between both positions but standard deviations were statistically larger with arm support. CONCLUSION: The results of our study showed similar inter and intrafraction mean deviations between both positioning but a large variability in intrafraction observed with arm support suggested a more accurate immobilization with vacuum cushion.


Subject(s)
Cone-Beam Computed Tomography , Immobilization , Lung Neoplasms , Patient Positioning , Radiosurgery , Humans , Radiosurgery/methods , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Immobilization/methods , Immobilization/instrumentation , Prospective Studies , Aged , Female , Male , Middle Aged , Cone-Beam Computed Tomography/methods , Aged, 80 and over , Radiotherapy Setup Errors/prevention & control , Dose Fractionation, Radiation , Supine Position , Four-Dimensional Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Vacuum
13.
Anal Chem ; 96(26): 10524-10533, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38907695

ABSTRACT

The elucidation of protein-membrane interactions is pivotal for comprehending the mechanisms underlying diverse biological phenomena and membrane-related diseases. In this investigation, vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy, utilizing synchrotron radiation (SR), was employed to dynamically observe membrane interaction processes involving water-soluble proteins at the secondary-structure level. The study utilized a time-resolved (TR) T-shaped microfluidic cell, facilitating the rapid and efficient mixing of protein and membrane solutions. This system was instrumental in acquiring measurements of the time-resolved circular dichroism (TRCD) spectra of ß-lactoglobulin (bLG) during its interaction with lysoDMPG micelles. The results indicate that bLG undergoes a ß-α conformation change, leading to the formation of the membrane-interacting state (M-state), with structural alterations occurring in more than two steps. Global fitting analysis, employing biexponential functions with all of the TRCD spectral data sets, yielded two distinct rate constants (0.18 ± 0.01 and 0.06 ± 0.003/s) and revealed a unique spectrum corresponding to an intermediate state (I-state). Secondary-structure analysis of bLG in its native (N-, I-, and M-states) highlighted that structural changes from the N- to I-states predominantly occurred in the N- and C-terminal regions, which were prominently exposed to the membrane. Meanwhile, transitions from the I- to M-states extended into the inner barrel regions of bLG. Further examination of the physical properties of α-helical segments, such as effective charge and hydrophobicity, revealed that the N- to I- and I- to M-state transitions, which are ascribed to first- and second-rate constants, respectively, are primarily driven by electrostatic and hydrophobic interactions, respectively. These findings underscore the capability of the TR-VUVCD system as a robust tool for characterizing protein-membrane interactions at the molecular level.


Subject(s)
Circular Dichroism , Lactoglobulins , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Vacuum , Micelles , Protein Structure, Secondary , Animals , Time Factors , Cattle
14.
Int J Food Microbiol ; 421: 110803, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38908220

ABSTRACT

Lactococcus (Lc.) paracarnosus and the phylogenetically closely related Lc. carnosus species are common members of the microbiota in meat stored under modified atmosphere and at low temperature. The effect of these strains on meat spoilage is controversially discussed. While some strains are known to cause spoilage, others are being studied for their potential to suppress the growth of spoilage and pathogenic bacteria. In this study, Lc. paracarnosus DSM 111017T was selected based on a previous study for its ability to suppress the growth of meat spoilers, including Brochothrix thermosphacta. The mechanism by which this bioprotective strain inhibits competing bacteria and how it contributes to spoilage are not yet known. To answer these two questions, we investigated the effect of four different headspace gas mixtures (simulated air (21 % O2/79 % N2); HiOx-MAP (70 % O2/30 % CO2); nonOx-MAP (70 % N2/ 30 % CO2); simulated vacuum (100 % N2) and the presence of Brochothrix (B.) thermosphacta TMW 2.2101 on the growth and transcriptional response of Lc. paracarnosus DSM 111017T when cultured on a meat simulation agar surface at 4 °C. Analysis of genes specifically upregulated by the gas mixtures used revealed metabolic pathways that may lead to different levels of spoilage metabolites production. We propose that under elevated oxygen levels, Lc. paracarnosus preferentially converts pyruvate from glucose and glycerol to uncharged acetoin/diacetyl instead of lactate to counteract acid stress. Due to the potential production of a buttery off-flavour, the strain may not be suitable as a protective culture in meat packaged under high­oxygen conditions. 70 % N2/ 30 % CO2, simulated vacuum- and the presence of Lc. paracarnosus inhibited the growth of B. thermosphacta TMW 2.2101. However, B. thermosphacta did not affect gene regulation of metabolic pathways in Lc. paracarnosus, and genes previously predicted to be involved in B. thermosphacta growth suppression were not regulated at the transcriptional level. In conclusion, the study indicates that the gas mixture used in packaging significantly affects the metabolism and spoilage potential of Lc. paracarnosus and its ability to inhibit B. thermosphacta growth.


Subject(s)
Brochothrix , Coculture Techniques , Lactococcus , Transcriptome , Brochothrix/growth & development , Brochothrix/genetics , Brochothrix/metabolism , Brochothrix/drug effects , Lactococcus/metabolism , Lactococcus/genetics , Lactococcus/growth & development , Food Microbiology , Vacuum , Gases/pharmacology , Gases/metabolism , Oxygen/metabolism , Oxygen/pharmacology , Meat/microbiology , Gene Expression Regulation, Bacterial , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology
15.
Meat Sci ; 216: 109555, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38850886

ABSTRACT

In present study, the quality profiles, microstructures and in vitro digestibility of pork chip snacks (PCS) prepared by microwave vacuum drying (MVD) under different drying times (20, 21, 22, 23, and 24 min) were investigated. The results revealed significant decreases in the moisture content and L*-value of PCS, while the protein/ash contents, a*-value, and b*-value of PCS markedly increased with prolonged MVD time (P < 0.05). Additionally, as MVD time extended from 20 to 24 min, the textural characteristics of PCS, particularly brittleness and crunchiness, initially increased and then gradually decreased (P < 0.05). Scanning electron microscopy (SEM) images showed that a moderate MVD time (22 min) resulted in the formation of larger pores in PCS, enhancing brittleness and crunchiness. However, excessive MVD time (24 min) led to the melting of these pores, subsequently reducing the brittleness and crunchiness of PCS. Furthermore, in vitro protein digestibility of PCS gradually decreased with increasing MVD time, primarily attributed to increased protein aggregation, as indicated by changes in sulfhydryl contents. In summary, our findings highlight that PCS subjected to 22 min of MVD exhibited the highest overall acceptability. This study provides a novel strategy for the application of MVD in the processing of meat snacks.


Subject(s)
Food Handling , Microwaves , Snacks , Animals , Vacuum , Swine , Food Handling/methods , Desiccation/methods , Digestion , Color , Microscopy, Electron, Scanning , Meat Products/analysis
16.
Meat Sci ; 216: 109551, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38852287

ABSTRACT

Packaging material should guarantee the longest possible shelf life of food and help to maintain its quality. The aim of the study was to assess the physicochemical changes taking place during 28-day ageing of beef steaks packed in two types of multilayer films containing biodegradable polymers - polylactic acid (NAT/PLA) and Mater-Bi® (NAT/MBI). The control group consisted of steaks packed in synthetic polyamide/polyethylene (PA/PE) film. The samples stored in NAT/PLA had significantly lower purge loss than the control samples and the lowest expressible water amount after 14 and 21 days. Following blooming, the most favourable colour was shown in steaks stored in NAT/MBI, with the highest values for the L*, a* and C* parameters and the R630/580 ratio, a high proportion of oxymyoglobin, and the lowest share of metmyoglobin. All steaks, regardless of the type of packaging material, had acceptable tenderness and were stable in terms of lipid oxidation.


Subject(s)
Color , Food Packaging , Polyesters , Red Meat , Food Packaging/methods , Cattle , Animals , Vacuum , Red Meat/analysis , Polyesters/chemistry , Myoglobin/analysis , Metmyoglobin/analysis , Polyethylene/chemistry , Nylons/chemistry , Food Storage
17.
J Chromatogr A ; 1730: 465104, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38905947

ABSTRACT

For the first time, a method for the simultaneous analysis of fifteen polycyclic aromatic hydrocarbons (PAHs), including light and heavy PAHs, in açaí-based food products (AFPs) was developed using vacuum-assisted sorbent extraction (VASE) combined with gas chromatography-mass spectrometry (GC-MS). The method requires no organic solvents and is amenable to full automation. To achieve optimal analytical extraction conditions, VASE parameters including stirring rate, extraction time, desorption temperature, desorption time, preheat time, and preheat temperature were optimized using sequential multivariate optimization. The method was validated and yielded limits of quantification below 1 µg kg-1 for all analytes, with recoveries ranging from 65 % to 112 % and good precision (≤11 % relative standard deviation). Additionally, the greenness and practical aspects of the method were investigated using the Green Analytical Procedure Index (GAPI), eco-scale, and the Blue Applicability Grade Index (BAGI), respectively. The VASE-GC-MS approach is suitable for routine analysis and exhibits characteristics of a green analytical method. No PAHs were detected above the limits of detection in thirty samples of AFPs.


Subject(s)
Gas Chromatography-Mass Spectrometry , Limit of Detection , Polycyclic Aromatic Hydrocarbons , Gas Chromatography-Mass Spectrometry/methods , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Vacuum , Solid Phase Extraction/methods , Food Contamination/analysis , Green Chemistry Technology/methods , Food Analysis/methods , Reproducibility of Results
18.
STAR Protoc ; 5(2): 103115, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861381

ABSTRACT

Manufacturing techniques play an essential role in obtaining optimum mechanical properties of composites. Vacuum-assisted resin infusion (VARI) is a composite fabrication approach for optimal fiber volume fraction. Here, we present a protocol for manufacturing glass fiber-reinforced polymer (GFRP) samples by applying VARI to a modified complex Arcan fixture. We describe steps for material preparation, molding preparation, setting vacuum system, resin mixing, and degassing. We then detail procedures for vacuum infusion process and cutting composites for shear testing samples. For complete details on the use and execution of this protocol, please refer to Alandro et al.1.


Subject(s)
Glass , Vacuum , Glass/chemistry , Materials Testing , Polymers/chemistry
19.
Iowa Orthop J ; 44(1): 63-68, 2024.
Article in English | MEDLINE | ID: mdl-38919359

ABSTRACT

Background: The specific aim of this study was to evaluate the mechanical properties of cement prepared with the advanced one-step mixing system and whether the addition of vacuum conditions yielded an appreciable improvement in the biomechanical strength or overall quality of bone cement. Methods: The advanced one-step mixing system was used. Twelve specimens were prepared by mixing under vacuum conditions and 12 specimens were prepared by mixing without a vacuum. Radiographs of cement specimens were analyzed to determine the porosity of the test region. Tensile testing of the specimens was performed with a loading rate of 2.54mm/min at room temperature. The ultimate tensile strength (UTS) and the tensile elastic modulus (E) were determined for each sample. Results: The UTS of the bone cement samples mixed under vacuum conditions were not significantly different than those mixed without vacuum (vacuum: 39±6MPa; non-vacuum: 35±6MPa; p=0.637). The E of samples mixed under vacuum conditions was significantly higher than the bone cement mixed without vacuum (vacuum: 2.78±0.06GPa; non-vacuum: 2.63±0.15GPa; p=0.019). Radiographic images showed samples mixed under vacuum conditions contained fewer defects than the samples mixed without vacuum (vacuum: 3.5%±3.3% (range: 0.0%-9.0%); non-vacuum: 6.9%±1.0% (range: 4.6%-8.2%)). Conclusion: Mixing bone cement with the advanced one-step mixing system under vacuum conditions does not produce an appreciable difference in the UTS of the bone cement in a bench biomechanical testing model compared to the bone cement mixed without vacuum. It does, however, create a less porous cement mixture with a higher E compared to cement mixed without vacuum. Level of Evidence: V.


Subject(s)
Bone Cements , Materials Testing , Tensile Strength , Vacuum , Polymethyl Methacrylate/chemistry , Humans , Elastic Modulus , Biomechanical Phenomena , Porosity
20.
Food Res Int ; 190: 114660, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945591

ABSTRACT

The effects of the non-thermal (pulsed electric field, PEF) and thermal pretreatment (vacuum steam pulsed blanching, VSPB) on the drying kinetics, quality attributes, and multi-dimensional microstructure of lily scales were investigated. The results indicate that both PEF and VSPB pretreatments improved the drying rate compared to untreated lily scales. Specifically, PEF pretreatment reduced the drying time by 29.58 % - 43.60 %, while VSPB achieved a 46.91 % reduction in drying time. PEF treatment facilitated the enhanced leaching of phenols and flavonoids compared to VSPB treated samples, thereby increasing antioxidant activity. The rehydration ratio of the dried lilies was improved with PEF and VSPB treatment, which closely related to the microstructure. Weibull distribution and Page model demonstrated excellent fit for the drying and rehydration kinetics of lily scales, respectively (R2 > 0.993). The analysis of multi-dimensional microstructure and ultrastructure confirmed the variations in moisture migration and phytochemical contents among different treatments. Consequently, this study offers insights into the technological support for the potential of non-thermal pretreatment in fruits and vegetables.


Subject(s)
Desiccation , Food Handling , Lilium , Lilium/chemistry , Desiccation/methods , Food Handling/methods , Phenols/analysis , Antioxidants/analysis , Antioxidants/chemistry , Flavonoids/analysis , Kinetics , Electricity , Vacuum , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL