Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.577
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000048

ABSTRACT

Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS.


Subject(s)
Benzhydryl Compounds , Enteric Nervous System , Jejunum , Phenols , Sulfones , Animals , Phenols/toxicity , Benzhydryl Compounds/toxicity , Mice , Jejunum/drug effects , Jejunum/metabolism , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Sulfones/pharmacology , Sulfones/toxicity , Substance P/metabolism , Vasoactive Intestinal Peptide/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism , Male , Galanin/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/pharmacology , Nitric Oxide Synthase Type I/metabolism
2.
Front Endocrinol (Lausanne) ; 15: 1331282, 2024.
Article in English | MEDLINE | ID: mdl-38774232

ABSTRACT

Introduction: Polycystic ovary syndrome (PCOS) is a common multifactorial and polygenic disorder of the endocrine system, affecting up to 20% of women in reproductive age with a still unknown etiology. Follicular fluid (FF) represents an environment for the normal development of follicles rich in metabolites, hormones and neurotransmitters, but in some instances of PCOS the composition can be different. Vasoactive intestinal peptide (VIP) is an endogenous autonomic neuropeptide involved in follicular atresia, granulosa cell physiology and steroidogenesis. Methods: ELISA assays were performed to measure VIP and estradiol levels in human follicular fluids, while AMH, FSH, LH, estradiol and progesterone in the plasma were quantified by chemiluminescence. UHPLC/QTOF was used to perform the untargeted metabolomic analysis. Results: Our ELISA and metabolomic results show: i) an increased concentration of VIP in follicular fluid of PCOS patients (n=9) of about 30% with respect to control group (n=10) (132 ± 28 pg/ml versus 103 ± 26 pg/ml, p=0,03) in women undergoing in vitro fertilization (IVF), ii) a linear positive correlation (p=0.05, r=0.45) between VIP concentration and serum Anti-Müllerian Hormone (AMH) concentration and iii) a linear negative correlation between VIP and noradrenaline metabolism. No correlation between VIP and estradiol (E2) concentration in follicular fluid was found. A negative correlation was found between VIP and noradrenaline metabolite 3,4-dihydroxyphenylglycolaldehyde (DOPGAL) in follicular fluids. Conclusion: VIP concentration in follicular fluids was increased in PCOS patients and a correlation was found with noradrenaline metabolism indicating a possible dysregulation of the sympathetic reflex in the ovarian follicles. The functional role of VIP as noradrenergic modulator in ovarian physiology and PCOS pathophysiology was discussed.


Subject(s)
Fertilization in Vitro , Follicular Fluid , Polycystic Ovary Syndrome , Vasoactive Intestinal Peptide , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/blood , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/blood , Follicular Fluid/metabolism , Adult , Estradiol/blood , Estradiol/metabolism , Anti-Mullerian Hormone/blood , Anti-Mullerian Hormone/metabolism , Case-Control Studies
3.
Cell Rep ; 43(5): 114197, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733587

ABSTRACT

Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.


Subject(s)
Interneurons , Somatostatin , Vasoactive Intestinal Peptide , Animals , Interneurons/metabolism , Interneurons/physiology , Somatostatin/metabolism , Mice , Vasoactive Intestinal Peptide/metabolism , Somatosensory Cortex/physiology , Somatosensory Cortex/metabolism , Male , Mice, Inbred C57BL , Locomotion/physiology , Behavior, Animal/physiology , Visual Cortex/physiology , Visual Cortex/metabolism , Thalamus/physiology , Thalamus/metabolism
4.
Cell Rep ; 43(5): 114220, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38735047

ABSTRACT

The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.


Subject(s)
Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/metabolism , Mice , Neurons/metabolism , Locomotion , Mice, Inbred C57BL , Vasoactive Intestinal Peptide/metabolism , Male , Circadian Rhythm/physiology , Photoperiod , Mice, Knockout , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics
5.
Cell Rep ; 43(5): 114212, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743567

ABSTRACT

Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.


Subject(s)
Interneurons , Interneurons/metabolism , Animals , Mice , Neuropeptide Y/metabolism , Neocortex/metabolism , Neocortex/cytology , Neocortex/physiology , Vasoactive Intestinal Peptide/metabolism , Male , Parvalbumins/metabolism
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 455-459, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790102

ABSTRACT

Ulcerative colitis (UC) is an autoimmune disease based on the persistent damage of colonic mucosal barrier. It has been found that the abnormal expression of follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells is closely related to the occurrence and development of UC. Tfh cells can secrete pro-inflammatory factors and assist B cells to produce antibodies, which can promote the development of UC, while Tfr cells can inhibit the activity of Tfh cells and secrete anti-inflammatory factors. How to regulate the balance between them has become one of the potential therapeutic targets of UC. Vasoactive intestinal peptide (VIP) has preventive and therapeutic effect on UC, and its mechanism is closely related to the regulation of Tfh/Tfr cell balance, which can provide help for the treatment of UC.


Subject(s)
Colitis, Ulcerative , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Vasoactive Intestinal Peptide , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/therapy , Humans , Vasoactive Intestinal Peptide/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Animals , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2699-2709, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812170

ABSTRACT

A systematic evaluation of the differences in the chemical composition and efficacy of the different forms of Galli Gigerii Endothelium Corneum(GGEC) was conducted based on modern analytical techniques and a functional dyspepsia(FD) rat model, which clarifies the material basis of the digestive efficacy of GGEC. Proteins, enzymes, polysaccharides, amino acids, and flavonoids in GGEC powder and decoction were determined respectively. The total protein of the powder and decoction was 0.06% and 0.65%, respectively, and the pepsin and amylase potency of the powder was 27.03 and 44.05 U·mg~(-1) respectively. The polysaccharide of the decoction was 0.03%, and there was no polysaccharide detected in the powder. The total L-type amino acids in the powder and decoction were 279.81 and 8.27 mg·g~(-1) respectively, and the total flavonoid content was 59.51 µg·g~(-1). Enzymes and flavonoids were not detected in the decoction. The powder significantly reduced nutrient paste viscosity, while the decoction and control group showed no significant reduction in nutrient paste viscosity. FD rat models were prepared by iodoacetamide gavage and irregular diet. The results showed that both powder and decoction significantly increased the gastric emptying effect, small intestinal propulsion rate, digestive enzymes activity, gastrin(GAS), motilin(MTL), ghrelin(GHRL) and reduced vasoactive intestinal peptide(VIP), 3-(2-ammo-nioethyl)-5-hydroxy-1H-indolium maleate(5-HT), and somatostatin(SST) content in rats(P<0.05, P<0.01). Comparison of GGEC decoction and powder administration between groups of the same dosage level showed that gastrointestinal propulsion and serum levels of GAS, GHRL, VIP, and SST in the powder group were significantly superior to those in the decoction and that the gastrointestinal propulsion, as well as serum levels of MTL, GAS, and GHRL were slightly higher than those of the decoction with two times its raw dose, and the serum levels of SST, 5-HT, and VIP in the powder group were slightly lower than those of the decoction with two times its raw dose. In conclusion, both decoction and powder have therapeutic effects on FD, but there is a significant difference between the two effects. Under the same dosage, the digestive efficacy of the powder is significantly better than that of the decoction, and the decoction needs to increase the dosage to compensate for the efficacy. It is hypothesized that the digestive efficacy of the GGEC has a duality, and the digestive active ingredients of the powder may include enzymes and L-type amino acids, while the decoction mainly relies on L-type amino acids to exert its efficacy. This study provides new evidence to investigate the digestive active substances of the GGEC and to improve the effectiveness of the drug in the clinic.


Subject(s)
Dyspepsia , Rats, Sprague-Dawley , Animals , Rats , Male , Dyspepsia/drug therapy , Dyspepsia/physiopathology , Dyspepsia/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Flavonoids/chemistry , Flavonoids/pharmacology , Motilin , Vasoactive Intestinal Peptide/metabolism , Ghrelin , Somatostatin
8.
J Neurophysiol ; 132(1): 34-44, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38774975

ABSTRACT

When adult mice are repeatedly exposed to a particular visual stimulus for as little as 1 h per day for several days while their visual cortex (V1) is in the high-gain state produced by locomotion, that specific stimulus elicits much stronger responses in V1 neurons for the following several weeks, even when measured in anesthetized animals. Such stimulus-specific enhancement (SSE) is not seen if locomotion is prevented. The effect of locomotion on cortical responses is mediated by vasoactive intestinal peptide (VIP) positive interneurons, which can release both the peptide and the inhibitory neurotransmitter GABA. Previous studies have examined the role of VIP-ergic interneurons, but none have distinguished the individual roles of peptide from GABA release. Here, we used genetic ablation to determine which of those molecules secreted by VIP-ergic neurons is responsible for SSE. SSE was not impaired by VIP deletion but was prevented by compromising release of GABA from VIP cells. This finding suggests that SSE may result from Hebbian mechanisms that remain present in adult V1.NEW & NOTEWORTHY Many neurons package and release a peptide along with a conventional neurotransmitter. The conventional view is that such peptides exert late, slow effects on plasticity. We studied a form of cortical plasticity that depends on the activity of neurons that express both vasoactive intestinal peptide (VIP) and the inhibitory neurotransmitter GABA. GABA release accounted for their action on plasticity, with no effect of deleting the peptide on this phenomenon.


Subject(s)
Interneurons , Vasoactive Intestinal Peptide , Visual Cortex , gamma-Aminobutyric Acid , Animals , Vasoactive Intestinal Peptide/metabolism , Interneurons/metabolism , Interneurons/physiology , gamma-Aminobutyric Acid/metabolism , Mice , Visual Cortex/metabolism , Visual Cortex/physiology , Mice, Inbred C57BL , Male , Photic Stimulation , Female
9.
Exp Eye Res ; 244: 109943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797259

ABSTRACT

Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.


Subject(s)
Hypothalamus , Orexin Receptors , Pituitary Adenylate Cyclase-Activating Polypeptide , Proto-Oncogene Proteins c-fos , Retina , Vasoactive Intestinal Peptide , Animals , Male , Rats , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Benzoxazoles/pharmacology , Circadian Rhythm/physiology , Dioxanes , Gene Expression Regulation , Hypothalamus/metabolism , Isoquinolines , Naphthyridines , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Orexin Receptors/genetics , Phenylurea Compounds , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Pyridines , Rats, Wistar , Retina/metabolism , Suprachiasmatic Nucleus/metabolism , Urea/analogs & derivatives , Urea/pharmacology , Vasoactive Intestinal Peptide/metabolism
10.
Front Neural Circuits ; 18: 1385908, 2024.
Article in English | MEDLINE | ID: mdl-38590628

ABSTRACT

Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.


Subject(s)
Hypothalamus , Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/metabolism , Hypothalamus/metabolism , Circadian Rhythm/physiology , Vasoactive Intestinal Peptide/metabolism , Sleep , Arginine Vasopressin/metabolism
11.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656542

ABSTRACT

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Subject(s)
Exploratory Behavior , Hippocampus , Neuronal Plasticity , Receptors, Vasoactive Intestinal Polypeptide, Type I , Vasoactive Intestinal Peptide , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Exploratory Behavior/physiology , Hippocampus/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Rats, Wistar , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Vasoactive Intestinal Peptide/metabolism
12.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607918

ABSTRACT

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Subject(s)
CA1 Region, Hippocampal , Interneurons , Recognition, Psychology , Vasoactive Intestinal Peptide , Animals , Interneurons/metabolism , Interneurons/physiology , Vasoactive Intestinal Peptide/metabolism , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/cytology , Mice , Male , Recognition, Psychology/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Mice, Inbred C57BL , Memory/physiology , Parvalbumins/metabolism , Exploratory Behavior/physiology , Somatostatin/metabolism
13.
Benef Microbes ; 15(3): 311-329, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38688519

ABSTRACT

Probiotics exert beneficial effects by regulating the intestinal microbiota, metabolism, immune function and other ways of their host. Patients with constipation, a common gastrointestinal disorder, experience disturbances in their intestinal microbiota. In the present study, we investigated the effectiveness of two microbial ecological agents (postbiotic extract PE0401 and a combination of postbiotic extract PE0401 and Lacticaseibacillus paracasei CCFM 2711) in regulating the makeup of the intestinal microbiota and alleviating loperamide hydrochloride-induced constipation in mice. We also preliminarily explored the mechanism underlying their effects. Both microbial ecological agents increased the abundance of the beneficial bacteria Lactobacilli and Bifidobacterium after administration and were able to relieve constipation. However, the degree of improvement in constipation symptoms varied depending on the makeup of the supplement. The postbiotic extract PE0401 increased peristalsis time and improved faecal properties throughout the intestinal tract of the host. PE0401 relieved constipation, possibly by modulating the levels of the constipation-related gastrointestinal regulatory transmitters mouse motilin, mouse vasoactive intestinal peptide, and 5-hydoxytryptamine in the intestinal tract of the host and by increasing the levels of the short-chain fatty acids (SCFAs) acetic acid, propionic acid, and isovaleric acid. It also increased the relative abundance of Lactobacillus and Bifidobacterium and reduced that of Faecalibaculum, Mucispirillum, Staphylococcus, and Lachnoclostridium, which are among the beneficial microbiota in the host intestine. Furthermore, PE0401 decreased the levels of constipation-induced host inflammatory factors. Therefore, the two microbial ecological agents can regulate the intestinal microbiota of constipation mice, and PE0401 has a stronger ability to relieve constipation.


Subject(s)
Constipation , Fatty Acids, Volatile , Gastrointestinal Microbiome , Loperamide , Probiotics , Animals , Loperamide/adverse effects , Constipation/drug therapy , Constipation/chemically induced , Constipation/microbiology , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Mice , Probiotics/administration & dosage , Probiotics/pharmacology , Probiotics/therapeutic use , Male , Bifidobacterium , Lacticaseibacillus paracasei , Disease Models, Animal , Lactobacillus , Motilin/metabolism , Feces/microbiology , Feces/chemistry , Vasoactive Intestinal Peptide/metabolism
14.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38656435

ABSTRACT

This study evaluated if vasoactive intestinal polypeptide (VIP) influences growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Sixteen wether lambs (69.6 ±â€…1.9 kg) were housed in individual pens, adapted to a corn grain-based diet, and randomly assigned to 2 treatment groups. Lambs were injected intraperitoneally every other day for 28 d with saline (0.9% NaCl) containing no VIP (n = 8; control) or containing VIP (n = 8; 1.3 nmol/kg body weight [BW]). All lambs were transferred to individual metabolic crates for the final 7 d of the experiment to measure nitrogen balance and nutrient digestibility. At the end of the treatment period, lambs were slaughtered, and pancreatic tissue, small intestinal tissue, and rumen fluid were collected for protein, digestive enzymes, ruminal pH, and volatile fatty acid (VFA) analyses. Lambs treated with VIP had greater final BW, average daily gain, and gain:feed (P = 0.01, 0.05, 0.03, respectively). No differences between treatment groups were observed (P ≥ 0.25) for nutrient intake, digestibility, nitrogen retention, ruminal pH, and VFA concentrations. Moreover, VIP treatment did not influence (P ≥ 0.19) plasma glucose, urea N, and insulin concentrations. Treatment with VIP increased (P = 0.03) relative cecum weight (g/kg BW) and decreased (P = 0.05) relative brain weight. Pancreatic and intestinal digestive enzyme activities, except for duodenal maltase (P = 0.02), were not influenced (P ≥ 0.09) by VIP treatment. These data suggest that the administration of VIP may have potential to improve average daily gain and gain:feed in lambs fed grain-based diets.


This research explored the influence of vasoactive intestinal polypeptide (VIP), an anti-inflammatory mediator, in lambs fed a high-concentrate finishing diet on growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Wether lambs were fed a whole corn grain-based diet containing no added forage and randomly assigned to either the VIP or control group. Lambs received intraperitoneal saline injections with or without VIP every second day over a 28-d treatment period. Average daily gain and gain:feed ratio was positively influenced by VIP. However, treatment did not affect dry matter intake, nitrogen balance, nutrient digestibility, and digestive enzyme activity. These data indicate exogenous VIP treatment may influence growth in lambs fed a high-concentrate diet.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Nitrogen , Vasoactive Intestinal Peptide , Animals , Animal Feed/analysis , Diet/veterinary , Digestion/drug effects , Nitrogen/metabolism , Nutrients/metabolism , Random Allocation , Rumen , Sheep/growth & development , Sheep/physiology , Vasoactive Intestinal Peptide/metabolism
15.
Br J Pharmacol ; 181(15): 2655-2675, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38616050

ABSTRACT

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Spinal Cord , Vasoactive Intestinal Peptide , Animals , Spinal Cord/metabolism , Spinal Cord/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/agonists , Humans , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology , Mice , Rats , Signal Transduction/drug effects , Receptors, Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors , Cells, Cultured , Rats, Sprague-Dawley , Male , Mice, Inbred C57BL , Cyclic AMP/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/agonists
16.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38433340

ABSTRACT

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Subject(s)
Sharks , Animals , Sharks/metabolism , Salt Gland/metabolism , Chlorides/metabolism , Chlorides/pharmacology , Dogfish/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/pharmacology , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/pharmacology , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology , Sodium/metabolism , Sodium/pharmacology , Potassium/metabolism , Potassium/pharmacology
17.
Neuron ; 112(11): 1876-1890.e4, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38447579

ABSTRACT

In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.


Subject(s)
Interneurons , Somatostatin , Vasoactive Intestinal Peptide , Visual Cortex , Animals , Vasoactive Intestinal Peptide/metabolism , Visual Cortex/physiology , Mice , Somatostatin/metabolism , Interneurons/physiology , Neural Inhibition/physiology , Male , Mice, Inbred C57BL , Photic Stimulation/methods , Visual Perception/physiology
18.
Cell Mol Neurobiol ; 44(1): 19, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315298

ABSTRACT

Retinal vasoactive intestinal peptide amacrine cells (VIP-ACs) play an important role in various retinal light-mediated pathological processes related to different developmental ocular diseases and even mental disorders. It is important to characterize the developmental changes in VIP-ACs to further elucidate their mechanisms of circuit function. We bred VIP-Cre mice with Ai14 and Ai32 to specifically label retinal VIP-ACs. The VIP-AC soma and spine density generally increased, from postnatal day (P)0 to P35, reaching adult levels at P14 and P28, respectively. The VIP-AC soma density curve was different with the VIP-AC spine density curve. The total retinal VIP content reached a high level plateau at P14 but was decreased in adults. From P14 to P16, the resting membrane potential (RMP) became more negative, and the input resistance decreased. Cell membrane capacitance (MC) showed three peaks at P7, P12 and P16. The RMP and MC reached a stable level similar to the adult level at P18, whereas input resistance reached a stable level at P21. The percentage of sustained voltage-dependent potassium currents peaked at P16 and remained stable thereafter. The spontaneous excitatory postsynaptic current and spontaneous inhibitory postsynaptic current frequencies and amplitudes, as well as charge transfer, peaked at P12 to P16; however, there were also secondary peaks at different time points. In conclusion, we found that the second, third and fourth weeks after birth were important periods of VIP-AC development. Many developmental changes occurred around eye opening. The development of soma, dendrite and electrophysiological properties showed uneven dynamics of progression. Cell differentiation may contribute to soma development whereas the changes of different ion channels may play important role for spine development.


Subject(s)
Amacrine Cells , Vasoactive Intestinal Peptide , Animals , Mice , Cell Differentiation , Membrane Potentials/physiology , Retina/metabolism , Vasoactive Intestinal Peptide/metabolism
19.
J Biol Rhythms ; 39(2): 135-165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366616

ABSTRACT

It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.


Subject(s)
Circadian Rhythm , Neuropeptides , Circadian Rhythm/physiology , Neuropeptides/metabolism , Suprachiasmatic Nucleus/physiology , Vasoactive Intestinal Peptide/metabolism , Gastrin-Releasing Peptide/metabolism
20.
Nature ; 627(8002): 149-156, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418876

ABSTRACT

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Subject(s)
Alzheimer Disease , Amyloid , Brain , Cerebrospinal Fluid , Extracellular Fluid , Gamma Rhythm , Glymphatic System , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Amyloid/metabolism , Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/cytology , Brain/metabolism , Brain/pathology , Cerebrospinal Fluid/metabolism , Disease Models, Animal , Extracellular Fluid/metabolism , Glymphatic System/physiology , Interneurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Electric Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...