Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 612
Filter
1.
J Mol Neurosci ; 74(3): 60, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904846

ABSTRACT

Our former studies have identified the alleviating effect of Calycosin (CA) on spinal cord injury (SCI). In this study, our purpose is to explore the influence of CA on SCI from the perspective of promoting axon growth. The SCI animal model was constructed by spinal cord compression, wherein rat primary cortex neuronal isolation was performed, and the axonal growth restriction cell model was established via chondroitin sulfate proteoglycan (CSPG) treatment. The expressions of axon regeneration markers were measured via immunofluorescent staining and western blot, and the direct target of CA was examined using silver staining. Finally, the expression of the protein tyrosine phosphatase receptor type S (PTPRS) was assessed using western blot. CA treatment increased neuronal process outgrowth and the expressions of axon regeneration markers, such as neurofilament H (NF-H), vesicular glutamate transporter 1 (vGlut1), and synaptophysin (Syn) in both SCI model rats and CSPG-treated primary cortical neurons, and PTPRS levels were elevated after SCI induction. In addition, PTPRS was the direct target of CA, and according to in vivo findings, exposure to CA reduced the PTPRS content. Furthermore, PTPRS overexpression inhibited CA's enhancement of axon regeneration marker content and neuronal axon lengths. CA improves SCI by increasing axon development through regulating PTPRS expression.


Subject(s)
Axons , Isoflavones , Rats, Sprague-Dawley , Spinal Cord Injuries , Synaptophysin , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Rats , Isoflavones/pharmacology , Isoflavones/therapeutic use , Axons/drug effects , Axons/metabolism , Cells, Cultured , Synaptophysin/metabolism , Synaptophysin/genetics , Neurofilament Proteins/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Neurons/metabolism , Neurons/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/cytology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Male , Chondroitin Sulfate Proteoglycans/metabolism , Neuronal Outgrowth/drug effects , Female , Vesicular Glutamate Transport Protein 2
2.
J Vis Exp ; (207)2024 May 31.
Article in English | MEDLINE | ID: mdl-38884489

ABSTRACT

Microglia play a pivotal role in synaptic refinement in the brain. Analysis of microglial engulfment of synapses is essential for comprehending this process; however, currently available methods for identifying microglial engulfment of synapses, such as immunohistochemistry (IHC) and imaging, are laborious and time-intensive. To address this challenge, herein we present in vitro and in vivo* assays that allow fast and high-throughput quantification of microglial engulfment of synapses using flow cytometry. In the in vivo* approach, we performed intracellular vGLUT1 staining following fresh cell isolation from adult mouse brains to quantify engulfment of vGLUT1+ synapses by microglia. In the in vitro synaptosome engulfment assay, we used freshly isolated cells from the adult mouse brain to quantify the engulfment of pHrodo Red-labeled synaptosomes by microglia. These protocols together provide a time-efficient approach to quantifying microglial engulfment of synapses and represent promising alternatives to labor-intensive image analysis-based methods. By streamlining the analysis, these assays can contribute to a better understanding of the role of microglia in synaptic refinement in different disease models.


Subject(s)
Flow Cytometry , Microglia , Synapses , Animals , Microglia/cytology , Microglia/metabolism , Mice , Synapses/physiology , Synapses/chemistry , Flow Cytometry/methods , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 1/analysis , Synaptosomes/metabolism , Brain/cytology
3.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696601

ABSTRACT

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Subject(s)
Membrane Proteins , Prefrontal Cortex , Synapses , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Humans , Male , Female , Synapses/pathology , Synapses/metabolism , Adult , Middle Aged , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Young Adult , Adolescent , Child , Autistic Disorder/metabolism , Autistic Disorder/pathology , Neural Inhibition/physiology , Vesicular Glutamate Transport Protein 1/metabolism
4.
Neuron ; 112(12): 1978-1996.e6, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38599212

ABSTRACT

Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/ß-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/ß-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/ß-catenin signaling.


Subject(s)
Blood-Retinal Barrier , Eye Proteins , Glutamic Acid , Nerve Tissue Proteins , Signal Transduction , beta Catenin , Animals , Blood-Retinal Barrier/metabolism , beta Catenin/metabolism , Mice , Glutamic Acid/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Signal Transduction/physiology , Vesicular Glutamate Transport Protein 1/metabolism , Neurons/metabolism , Mice, Knockout , Retinal Neovascularization/metabolism , Retina/metabolism , Mice, Inbred C57BL , Angiogenesis
5.
Neuroscience ; 546: 75-87, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38552733

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there are very limited treatment options. Dysfunction of the excitatory neurotransmitter system is thought to play a major role in the pathogenesis of this condition. Vesicular glutamate transporters (VGLUTs) are key to controlling the quantal release of glutamate. Thus, expressional changes in disease can have implications for aberrant neuronal activity, raising the possibility of a therapeutic target. There is no information regarding the expression of VGLUTs in the human medial temporal lobe in AD, one of the earliest and most severely affected brain regions. This study aimed to quantify and compare the layer-specific expression of VGLUT1 and VGLUT2 between control and AD cases in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Free-floating fluorescent immunohistochemistry was used to label VGLUT1 and VGLUT2 in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Sections were imaged using laser-scanning confocal microscopy and transporter densitometric analysis was performed. VGLUT1 density was not significantly different in AD tissue, except lower staining density observed in the dentate gyrus stratum moleculare (p = 0.0051). VGLUT2 expression was not altered in the hippocampus and entorhinal cortex of AD cases but was significantly lower in the subiculum (p = 0.015) and superior temporal gyrus (p = 0.0023). This study indicates a regionally specific vulnerability of VGLUT1 and VGLUT2 expression in the medial temporal lobe and superior temporal gyrus in AD. However, the causes and functional consequences of these disturbances need to be further explored to assess VGLUT1 and VGLUT2 as viable therapeutic targets.


Subject(s)
Alzheimer Disease , Temporal Lobe , Vesicular Glutamate Transport Protein 1 , Vesicular Glutamate Transport Protein 2 , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Temporal Lobe/metabolism , Temporal Lobe/pathology , Male , Vesicular Glutamate Transport Protein 1/metabolism , Aged , Female , Vesicular Glutamate Transport Protein 2/metabolism , Aged, 80 and over , Middle Aged , Immunohistochemistry
6.
J Alzheimers Dis ; 94(1): 227-246, 2023.
Article in English | MEDLINE | ID: mdl-37212097

ABSTRACT

BACKGROUND: Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known. OBJECTIVE: To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD. METHODS: Unbiased sampling and quantitative confocal immunofluorescence of cortical VGluT1- and VGluT2-immunoreactive profiles and spinophilin-labeled dendritic spines were performed in cases with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild-moderate AD (mAD), or moderate-severe AD (sAD). RESULTS: In both regions, loss of VGluT1-positive profile density was seen in sAD compared to NCI, MCI, and mAD. VGluT1-positive profile intensity in PreC did not differ across groups, while in FC it was greater in MCI, mAD, and sAD compared to NCI. VGluT2 measures were stable in PreC while FC had greater VGluT2-positive profile density in MCI compared to sAD, but not NCI or mAD. Spinophilin measures in PreC were lower in mAD and sAD compared to NCI, while in FC they were stable across groups. Lower VGluT1 and spinophilin measures in PreC, but not FC, correlated with greater neuropathology. CONCLUSION: Frank loss of VGluT1 in advanced AD relative to NCI occurs in both DMN regions. In FC, an upregulation of VGluT1 protein content in remaining glutamatergic terminals may contribute to this region's plasticity response in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Vesicular Glutamate Transport Proteins/metabolism , Default Mode Network , Vesicular Glutamate Transport Protein 2/metabolism , Presynaptic Terminals/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
7.
Nat Commun ; 14(1): 2723, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169755

ABSTRACT

Vesicular glutamate transporters accumulate glutamate in synaptic vesicles, where they also function as a major Cl- efflux pathway. Here we combine heterologous expression and cellular electrophysiology with mathematical modeling to understand the mechanisms underlying this dual function of rat VGLUT1. When glutamate is the main cytoplasmic anion, VGLUT1 functions as H+-glutamate exchanger, with a transport rate of around 600 s-1 at -160 mV. Transport of other large anions, including aspartate, is not stoichiometrically coupled to H+ transport, and Cl- permeates VGLUT1 through an aqueous anion channel with unitary transport rates of 1.5 × 105 s-1 at -160 mV. Mathematical modeling reveals that H+ coupling is sufficient for selective glutamate accumulation in model vesicles and that VGLUT Cl- channel function increases the transport efficiency by accelerating glutamate accumulation and reducing ATP-driven H+ transport. In summary, we provide evidence that VGLUT1 functions as H+-glutamate exchanger that is partially or fully uncoupled by other anions.


Subject(s)
Synaptic Vesicles , Vesicular Glutamate Transport Proteins , Rats , Animals , Vesicular Glutamate Transport Proteins/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Synaptic Vesicles/metabolism , Anions/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Glutamic Acid/metabolism
8.
Article in English | MEDLINE | ID: mdl-36209771

ABSTRACT

The NMDA antagonist ketamine demonstrated a fast antidepressant activity in treatment-resistant depression. Pre-clinical studies suggest that de novo synthesis of the brain-derived neurotrophic factor (BDNF) in the PFC might be involved in the rapid antidepressant action of ketamine. Applying a genetic model of impaired glutamate release, this study aims to further identify the molecular mechanisms that could modulate antidepressant action and resistance to treatment. To that end, mice knocked-down for the vesicular glutamate transporter 1 (VGLUT1+/-) were used. We analyzed anhedonia and helpless behavior as well as the expression of the proteins linked to glutamate transmission in the PFC of mice treated with ketamine or the reference antidepressant reboxetine. Moreover, we analyzed the acute effects of ketamine in VGLUT1+/- mice pretreated with chronic reboxetine or those that received a PFC rescue expression of VGLUT1. Chronic reboxetine rescued the depressive-like phenotype of the VGLUT1+/- mice. In addition, it enhanced the expression of the proteins linked to the AMPA signaling pathway as well as the immature form of BDNF (pro-BDNF). Unlike WT mice, ketamine had no effect on anhedonia or pro-BDNF expression in VGLUT1+/- mice; it also failed to decrease phosphorylated eukaryote elongation factor 2 (p-eEF2). Nevertheless, we found that reboxetine administered as pretreatment or PFC overexpression of VGLUT1 did rescue the antidepressant-like activity of acute ketamine in the mice. Our results strongly suggest that not only do PFC VGLUT1 levels modulate the rapid-antidepressant action of ketamine, but also highlight a possible mechanism for antidepressant resistance in some patients.


Subject(s)
Ketamine , Vesicular Glutamate Transport Protein 1 , Animals , Mice , Anhedonia , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Ketamine/pharmacology , Neurons/metabolism , Prefrontal Cortex/metabolism , Reboxetine/pharmacology , Vesicular Glutamate Transport Protein 1/metabolism
9.
Behav Brain Res ; 436: 114072, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36030906

ABSTRACT

D-galactose (d-gal) is broadly used in animal aging studies as its chronic administration mimics learning and memory impairments related to aging in humans. However, within the few studies that utilize chronic oral d-gal intake, none of them is focused on alteration in synaptic structure and function. We examined the effects of 6-weeks oral d-gal intake (200 mg/kg and 500 mg/kg, dissolved in tap water) on age-related changes, with emphasis on the prefrontal cortex (PFC) and hippocampus (HIP) of adult male Wistar rats. Memory assessment was followed by histological examination of the PFC and HIP (Nissl staining and Iba-1 immunostaining), while in crude synaptosomal fractions the state of oxidative stress and the expression of proteins involved in glutamatergic signaling was determined. Although applied dosages compromised memory, alterations such as impaired sensory-motor function and aberrant morphology were not detected. In the PFC, analysis of microglia revealed reduction of branching pattern following d-gal intake, in parallel with increased oxidative damage of proteins, lipids and disturbed pro-oxidant antioxidant balance. These changes in the PFC were further accompanied with decreased levels of vesicular glutamate transporter 1, syntaxin-1 and NMDA receptor 2B subunit in both treated groups. Simultaneously, the increased hippocampal oxidative damage of lipids was detected. Results indicate successful provocation of age-related changes following oral d-gal intake, and suggest greater sensitivity of the PFC to d-gal treatment than HIP.


Subject(s)
Antioxidants , Galactose , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Galactose/pharmacology , Hippocampus/metabolism , Humans , Lipids , Male , Oxidative Stress , Prefrontal Cortex/metabolism , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Water/metabolism , Water/pharmacology
10.
J Neurosci ; 42(43): 8078-8094, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36104279

ABSTRACT

The most caudal part of the striatum in rodents, the tail of the striatum (TS), has many features that distinguish it from the rostral striatum, such as its biased distributions of dopamine receptor subtypes, lack of striosomes and matrix compartmentalization, and involvement in sound-driven behaviors. However, information regarding the TS is still limited. We demonstrate in this article that the TS of the male mouse contains GABAergic neurons of a novel type that were detected immunohistochemically with the neurofilament marker SMI-32. Their somata were larger than cholinergic giant aspiny neurons, were located in a narrow space adjacent to the globus pallidus (GP), and extended long dendrites laterally toward the intermediate division (ID) of the trilaminar part of the TS, the region targeted by axons from the primary auditory cortex (A1). Although vesicular glutamate transporter 1-positive cortical axon terminals rarely contacted these TS large (TSL) neurons, glutamic acid decarboxylase-immunoreactive and enkephalin-immunoreactive boutons densely covered somata and dendrites of TSL neurons, forming symmetrical synapses. Analyses of GAD67-CrePR knock-in mice revealed that these axonal boutons originated from nearby medium spiny neurons (MSNs) in the ID. All MSNs examined in the ID in turn received inputs from the A1. Retrograde tracers injected into the rostral zona incerta and ventral medial nucleus of the thalamus labeled somata of TSL neurons. TSL neurons share many morphological features with GP neurons, but their strategically located dendrites receive inputs from closely located MSNs in the ID, suggesting faster responses than distant GP neurons to facilitate auditory-evoked, prompt disinhibition in their targets.SIGNIFICANCE STATEMENT This study describes a newly found population of neurons in the mouse striatum, the brain region responsible for appropriate behaviors. They are large GABAergic neurons located in the most caudal part of the striatum [tail of the striatum (TS)]. These TS large (TSL) neurons extended dendrites toward a particular region of the TS where axons from the primary auditory cortex (A1) terminated. These dendrites received direct synaptic inputs heavily from nearby GABAergic neurons of the striatum that in turn received inputs from the A1. TSL neurons sent axons to two subcortical regions outside basal ganglia, one of which is related to arousal. Specialized connectivity of TSL neurons suggests prompt disinhibitory actions on their targets to facilitate sound-evoked characteristic behaviors.


Subject(s)
Dendrites , Glutamate Decarboxylase , Male , Animals , Mice , Dendrites/metabolism , Glutamate Decarboxylase/metabolism , GABAergic Neurons/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Synapses/metabolism , Corpus Striatum/metabolism , Axons/metabolism , Enkephalins/metabolism , Receptors, Dopamine/metabolism , Cholinergic Agents
11.
Biol Pharm Bull ; 45(9): 1385-1388, 2022.
Article in English | MEDLINE | ID: mdl-36047209

ABSTRACT

Docosahexaenoic acid (DHA; 22:6n-3), which is enriched in the neuronal membrane, plays a variety of roles in the brain. Vesicular glutamate transporters (VGLUTs) are responsible for incorporating glutamine into synaptic vesicles. We investigated the influence of DHA on the fatty acid profile and the levels of VGLUT1 and VGLUT2 proteins in differentiated NG108-15 cells, a neuroblastoma-glioma hybrid cell line. NG108-15 cells were plated and 24 h later the medium was replaced with Dulbecco's modified Eagle's medium supplemented with 1% fetal bovine serum, 0.2 mM dibutyryl cAMP, and 100 nM dexamethasone, which was added to induce differentiation. After 6 d, the amount of DHA in the cells was increased by addition of DHA to the medium. VGLUT2 levels were increased by the addition of DHA. These data indicate that DHA affected the levels of VGLUT2 in NG108-15 cells under differentiation-promoting conditions, suggesting that DHA affects brain functions involving VGLUT2.


Subject(s)
Docosahexaenoic Acids , Synaptic Vesicles , Docosahexaenoic Acids/pharmacology , Glutamic Acid/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
12.
Mol Psychiatry ; 27(12): 5213-5226, 2022 12.
Article in English | MEDLINE | ID: mdl-36028572

ABSTRACT

The excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice. Mechanistically, KDM6B upregulated vesicular glutamate transporter 1 and 2 (VGLUT1/2) in neurons through demethylating H3K27me3 at their promoters. Tau interacted and recruited KDM6B to the promoters of Slc17a7 and Slc17a6, leading to a decrease in local H3K27me3 levels and induction of VGLUT1/2 expression in neurons, which could be prevented by loss of Tau. Ectopic expression of KDM6B, VGLUT1, or VGLUT2 restored spine density and synaptic activity in KDM6B-deficient cortical neurons. Collectively, these findings unravel a fundamental mechanism underlying epigenetic regulation of synaptic plasticity and cognition.


Subject(s)
Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases , Neuronal Plasticity , tau Proteins , Animals , Mice , Cognition/physiology , Glutamic Acid/metabolism , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Synapses/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , tau Proteins/metabolism
13.
Neuro Endocrinol Lett ; 43(2): 88-98, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35933616

ABSTRACT

OBJECTIVE: To investigate the effects of estrogen on the threshold and temperature of orofacial pain and explore the influence on the function of glutamate and GABA neurons in the orofacial pain temperature perception pathway by observing the expression of vesicular glutamate transporter 2 (Vglut2) and vesicular GABA transporter 1 (Vgat1). METHODS: A total of 24 adult female Sprague-Dawley rats were divided into three groups: sham operation (SHAM), ovariectomized (OVX) and ovariectomized plus estrogen intervention (OVX+E) (n = 8 per group). The threshold of mechanical pain of the orofacial region was assessed with von Frey filaments, and the temperature of the rat orofacial region was monitored by infrared thermography. Changes in the expression of Vglut2 and Vgat1 in glutamatergic and GABAergic neurons in the trigeminal ganglion (TG), spinal trigeminal nucleus (Sp5C), lateral parabrachial nucleus (LPB) and ventral posteromedial nucleus of the thalamus (VPM) were assessed by immunostaining and Western blotting. RESULTS: Under low-estrogen conditions, the mechanical pain threshold of the orofacial region of rats decreased significantly, and the temperature of the orofacial region increased significantly. The expression of Vglut2 and Vgat1 in the TG and Sp5C showed a downward trend, and the decline in Vgat1 was greater than that in Vglut2. Conversely, both proteins were upregulated in the LPB and VPM, and the magnitude of the changes in Vglut2 was greater than that in Vgat1. Estrogen therapy reversed these changes. CONCLUSION: Under low-estrogen conditions, the proportion of glutamate and GABA neurons in the orofacial pain and temperature sensation pathway changes, which leads to the imbalance of neurotransmission function and the enhancement of excitatory transmission of these two kinds of neurons and finally leads to a decrease in the orofacial pain threshold and an increase in temperature.


Subject(s)
Facial Pain , Sensation , Animals , Female , Rats , Estrogens/pharmacology , Glutamates , Rats, Sprague-Dawley , Temperature , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins
14.
J Comp Neurol ; 530(7): 1112-1125, 2022 05.
Article in English | MEDLINE | ID: mdl-34468980

ABSTRACT

Glutamate is packaged in vesicles via two main vesicular transporter (VGLUT) proteins, VGLUT1 and VGLUT2, which regulate its storage and release from synapses of excitatory neurons. Studies in rodents, primates, ferrets, and tree shrews suggest that these transporters may identify distinct subsets of excitatory projections in visual structures, particularly in thalamocortical pathways where they tend to correlate with modulatory and driver projections, respectively. Despite being a well-studied model of thalamocortical connectivity, little is known about their expression pattern in the cat visual system. To expand current knowledge on their distribution and how they correlated with known driver and modulator projecting sites, we examined the protein expression patterns of VGLUT1 and VGLUT2 in the visual thalamus of the cat (lateral geniculate nucleus and the pulvinar complex). We also studied their expression pattern in relevant visual structures projecting to or receiving significant thalamic projections, such as the primary visual cortex and the superior colliculus. Our results indicate that both VGLUTs are consistently present throughout the cat visual system and show laminar or nuclei specificity in their distribution, which suggests, as in other species, that VGLUT1 and VGLUT2 represent distinct populations of glutamatergic projections.


Subject(s)
Ferrets , Thalamus , Animals , Ferrets/metabolism , In Situ Hybridization , Thalamus/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
15.
Biochem Biophys Res Commun ; 589: 100-106, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34902745

ABSTRACT

Many temperate ectotherms survive winter by entering diapause - a state of developmental (or reproductive) suppression or arrest - in response to short autumnal day lengths. Day lengths are assessed by the circadian clock, the biological time-keeping system that governs biological rhythms with a period of approximately 24 h. However, clock output molecules controlling this photoperiodic response are largely unknown for many insects. To identify these molecules in Hemiptera, we performed RNAi knockdowns of several candidate genes in the bean bug Riptortus pedestris to determine whether their silencing affects photoperiodic regulation of ovarian development (reproductive diapause). Knockdown of diuretic hormone 31, short neuropeptide F, neuropeptide F, ion transport peptide, neuropeptide-like precursor 1, and choline acetyltransferase had no effect on ovarian development and were therefore ruled out as regulators of the photoperiodic response. However, knockdown of vesicular glutamate transporter promoted ovarian development under diapause-inducing short days, and this is the first report of the functional involvement of glutamate signalling in insect photoperiodism. Improved knockdown of this transporter (or receptor) and RNAi of other genes involved in glutamate signal transduction is required to verify its role as an output of the circadian clock.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Circadian Clocks/physiology , Heteroptera/physiology , Insect Proteins/metabolism , Photoperiod , Amino Acid Transport System X-AG/genetics , Animals , Circadian Clocks/genetics , Female , Gene Expression Regulation , Heteroptera/genetics , Insect Proteins/genetics , Ovary/growth & development , Ovary/metabolism , RNA Interference , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism
16.
Biochem Biophys Res Commun ; 589: 48-54, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34891041

ABSTRACT

Hyperglycemia, which occurs under the diabetic conditions, induces serious diabetic complications. Diabetic encephalopathy has been defined as one of the major complications of diabetes, and is characterized by neurochemical and neurodegenerative changes. However, little is known about the effect of long-term exposure to high glucose on neuronal cells. In the present study, we showed that exposure to glutamate (100 mM) for 7 days induced toxicity in primary cortical neurons using the MTT assay. Additionally, high glucose increased the sensitivity of AMPA- or NMDA-induced neurotoxicity, and decreased extracellular glutamate levels in primary cortical neurons. In Western blot analyses, the protein levels of the GluA1 and GluA2 subunits of the AMPA receptor as well as synaptophysin in neurons treated with high glucose were significantly increased compared with the control (25 mM glucose). Therefore, long-term exposure to high glucose induced neuronal death through the disruption of glutamate homeostasis.


Subject(s)
Cerebral Cortex/pathology , Glucose/toxicity , Glutamic Acid/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Animals , Biological Transport/drug effects , Cell Death/drug effects , Cells, Cultured , Female , N-Methylaspartate/pharmacology , Neurons/drug effects , Protein Subunits/metabolism , Rats, Wistar , Synaptophysin/metabolism , Synaptotagmins/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
17.
Histochem Cell Biol ; 157(1): 51-63, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34613496

ABSTRACT

To elucidate the efferent functions of sensory nerve endings, the distribution of calretinin and vesicular glutamate transporter 1 (VGLUT1) in laryngeal laminar nerve endings and the immunohistochemical distribution of proteins associated with synaptic vesicle release, i.e., t-SNARE (SNAP25 and syntaxin 1), v-SNARE (VAMP1 and VAMP2), synaptotagmin 1 (Syt1), bassoon, and piccolo, were examined. Subepithelial laminar nerve endings immunoreactive for Na+-K+-ATPase α3-subunit (NKAα3) were largely distributed in the whole-mount preparation of the epiglottic mucosa, and several endings were also immunoreactive for calretinin. VGLUT1 immunoreactivity was observed within terminal part near the outline of the small processes of NKAα3-immunoreactive nerve ending. SNAP25, syntaxin 1, and VAMP1 immunoreactivities were detected in terminal parts of calretinin-immunoreactive endings, whereas VAMP2 immunoreactivity was only observed in a few terminals. Terminal parts immunoreactive for calretinin and/or VGLUT1 also exhibited immunoreactivities for Syt1, Ca2+ sensor for membrane trafficking, and for bassoon and piccolo, presynaptic scaffold proteins. The presence of vesicular release-related proteins, including SNARE proteins, in the terminals of laryngeal laminar endings indicate that intrinsic glutamate modulates their afferent activity in an autocrine-like manner.


Subject(s)
Epiglottis , Glutamic Acid , Animals , Epiglottis/metabolism , Glutamic Acid/metabolism , Nerve Endings/metabolism , Rats , Sensory Receptor Cells/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
18.
Front Biosci (Landmark Ed) ; 27(12): 337, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36624955

ABSTRACT

BACKGROUND: Ischemia and reperfusion injury in the brain triggers cognitive impairment which are accompanied by neuronal death, loss of myelin sheath and decline in neurotransmission. In this study, we investigated whether therapeutic administration of Brain Factor-7® (BF-7®; a silk peptide) in ischemic gerbils which were developed by transient (five minutes) ischemia and reperfusion in the forebrain (tFI/R) improved cognitive impairment. METHODS: Short-term memory and spatial memory functions were assessed by passive avoidance test and Barnes maze test, respectively. To examine neuronal change in the hippocampus, cresyl violet staining, immunohistochemistry for neuronal nuclei and fluoro Jade B histofluorescence were performed. We carried out immunohistochemistry for myelin basic protein (a marker for myelin) and receptor interacting protein (a marker for oligodendrocytes). Furthermore, immunohistochemistry for vesicular acetylcholine transporter (as a cholinergic transporter) and vesicular glutamate transporter 1 (as a glutamatergic synapse) was done. RESULTS: Administration of BF-7® significantly improved tFI/R-induced cognitive impairment. tFI/R-induced neuronal death was found in the Cornu Ammonis 1 (CA1) subfield of the hippocampus from five days after tFI/R. Treatment with BF-7® following tFI/R did not restore the death (loss) of CA1 neurons following tFI/R. However, BF-7® treatment to the ischemic gerbils significantly improved remyelination and proliferation of oligodendrocytes in the hippocampus with ischemic injury. Treatment with BF-7® to the ischemic gerbils significantly restored vesicular acetylcholine transporter-immunoreactive and vesicular glutamate transporter 1-immunoreactive structures in the hippocampus with ischemic injury. CONCLUSIONS: Based on these results, we suggest that BF-7® can be utilized for improving cognitive impairments induced by ischemic injury as an additive for health/functional foods and/or medicines.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Ischemic Attack, Transient , Remyelination , Reperfusion Injury , Animals , Gerbillinae/metabolism , Ischemic Attack, Transient/metabolism , Vesicular Acetylcholine Transport Proteins/analysis , Vesicular Acetylcholine Transport Proteins/metabolism , Vesicular Glutamate Transport Protein 1/analysis , Vesicular Glutamate Transport Protein 1/metabolism , Hippocampus , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Synaptic Transmission , Ischemia/metabolism , Prosencephalon/metabolism , Cognitive Dysfunction/drug therapy , Cholinergic Agents/analysis , Cholinergic Agents/metabolism , Brain Ischemia/metabolism
19.
Acta Neuropathol Commun ; 9(1): 180, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34749824

ABSTRACT

Pathologic inclusions composed of α-synuclein called Lewy pathology are hallmarks of Parkinson's Disease (PD). Dominant inherited mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. Lewy pathology is found in the majority of individuals with LRRK2-PD, particularly those with the G2019S-LRRK2 mutation. Lewy pathology in LRRK2-PD associates with increased non-motor symptoms such as cognitive deficits, anxiety, and orthostatic hypotension. Thus, understanding the relationship between LRRK2 and α-synuclein could be important for determining the mechanisms of non-motor symptoms. In PD models, expression of mutant LRRK2 reduces membrane localization of α-synuclein, and enhances formation of pathologic α-synuclein, particularly when synaptic activity is increased. α-Synuclein and LRRK2 both localize to the presynaptic terminal. LRRK2 plays a role in membrane traffic, including axonal transport, and therefore may influence α-synuclein synaptic localization. This study shows that LRRK2 kinase activity influences α-synuclein targeting to the presynaptic terminal. We used the selective LRRK2 kinase inhibitors, MLi-2 and PF-06685360 (PF-360) to determine the impact of reduced LRRK2 kinase activity on presynaptic localization of α-synuclein. Expansion microscopy (ExM) in primary hippocampal cultures and the mouse striatum, in vivo, was used to more precisely resolve the presynaptic localization of α-synuclein. Live imaging of axonal transport of α-synuclein-GFP was used to investigate the impact of LRRK2 kinase inhibition on α-synuclein axonal transport towards the presynaptic terminal. Reduced LRRK2 kinase activity increases α-synuclein overlap with presynaptic markers in primary neurons, and increases anterograde axonal transport of α-synuclein-GFP. In vivo, LRRK2 inhibition increases α-synuclein overlap with glutamatergic, cortico-striatal terminals, and dopaminergic nigral-striatal presynaptic terminals. The findings suggest that LRRK2 kinase activity plays a role in axonal transport, and presynaptic targeting of α-synuclein. These data provide potential mechanisms by which LRRK2-mediated perturbations of α-synuclein localization could cause pathology in both LRRK2-PD, and idiopathic PD.


Subject(s)
Axonal Transport/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Receptors, Presynaptic/metabolism , alpha-Synuclein/metabolism , Animals , Enzyme Inhibitors , Female , Hippocampus/cytology , Hippocampus/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Neurons/metabolism , Parkinson Disease/metabolism , Pregnancy , Primary Cell Culture , Vesicular Glutamate Transport Protein 1/metabolism
20.
Elife ; 102021 09 20.
Article in English | MEDLINE | ID: mdl-34542409

ABSTRACT

Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.


Preterm infants have a higher risk of developing movement difficulties and neurodevelopmental conditions like autism spectrum disorder. This is likely caused by injuries to a part of the brain called the cerebellum. The cerebellum is important for movement, language and social interactions. During the final weeks of pregnancy, the cerebellum grows larger and develops a complex pattern of folds. Tiny granule cells, which are particularly vulnerable to harm, drive this development. Exactly how damage to granule cells causes movement difficulties and other conditions is unclear. One potential explanation may be that granule cells are important for the development of Purkinje cells in the brain. The Purkinje cells send and receive messages and are very important for coordinating movement. To learn more, van der Heijden et al. studied Purkinje cells in mice during a period that corresponds with the third trimester of pregnancy in humans. During this time, the pattern of electrical signals sent by the Purkinje cells changed from slow and irregular to fast and rhythmic with long pauses between bursts. However, mice that had been genetically engineered to lack most of their granule cells showed a completely different pattern of Purkinje cell development. The pattern of electrical signals emitted by these Purkinje cells stayed slow and irregular. Mice that lacked granule cells also had movement difficulties, tremors, and abnormal vocalizations. The experiments confirm that granule cells are essential for normal brain development. Without enough granule cells, the Purkinje cells become stuck in an immature state. This discovery may help physicians identify preterm infants with motor disorders and other conditions earlier. It may also lead to changes in the care of preterm infants designed to protect their granule cells.


Subject(s)
Action Potentials , Excitatory Postsynaptic Potentials , Neurogenesis , Purkinje Cells/physiology , Synapses/physiology , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Gene Deletion , Mice, Knockout , Motor Activity , Purkinje Cells/metabolism , Synapses/metabolism , Time Factors , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...