ABSTRACT
BACKGROUND: Humoral immune response against the pre-fusion (pre-F) conformation of respiratory syncytial virus (RSV) F protein has been proposed to play a protective role against infection. An RSV pre-F maternal vaccine has been recently approved in several countries to protect young infants against RSV. We aimed to assess serum IgG titers against the pre-F and post-F conformations of RSV F protein and their association with life-threatening RSV disease (LTD) in previously healthy infants. METHODS: A prospective cohort study including hospitalized infants <12 months with a first RSV infection was conducted during 2017-2019. Patients with LTD required intensive care and mechanical respiratory assistance. RSV pre-F exclusive and post-F antibody responses were determined by post-F competition and non-competition immunoassays, respectively, and neutralizing activity was measured by plaque reduction neutralization test. RESULTS: Fifty-eight patients were included; the median age was 3.5 months and 41 % were females. Fifteen patients developed LTD. RSV F-specific antibody titers positively correlated with neutralizing antibody titers in acute and convalescent phases but, importantly, they did not associate with LTD. Acute RSV pre-F exclusive and post-F IgG titers negatively correlated with patient age (P = 0.0007 and P < 0.0001), while a positive correlation was observed between the fold changes in RSV F-specific antibody titers between convalescent and acute phase and patient age (P = 0.0014 and P < 0.0001). Infants ≤2 months exhibited significantly lower fold-changes in RSV F-specific and neutralizing antibody titers between convalescence and acute phase than older infants. Additionally, acute RSV antibody titers showed no correlation with nasal RSV load and, furthermore, nasal viral load was not associated with the development of LTD. CONCLUSIONS: This study highlights that protection against life-threatening RSV disease is not necessarily antibody-dependent. Further characterization of the immune response against RSV and its role in protection against severe disease is important for the development of the safest possible preventive strategies.
Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Immunoglobulin G , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viral Fusion Proteins , Humans , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Female , Infant , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Fusion Proteins/immunology , Prospective Studies , Respiratory Syncytial Virus, Human/immunology , Male , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Protein Conformation , Respiratory Syncytial Virus Vaccines/immunology , Infant, NewbornABSTRACT
Canine distemper virus (CDV) affects many domestic and wild animals. Variations among CDV genome linages could lead to vaccination failure. To date, there are several vaccine alternatives, such as a modified live virus and a recombinant vaccine; however, most of these alternatives are based on the ancestral strain Onderstepoort, which has not been circulating for years. Vaccine failures and the need to update vaccines have been widely discussed, and the development of new vaccine candidates is necessary to reduce circulation and mortality. Current vaccination alternatives cannot be used in wildlife animals due to the lack of safety data for most of the species, in addition to the insufficient immune response against circulating strains worldwide in domestic species. Computational tools, including peptide-based therapies, have become essential for developing new-generation vaccines for diverse models. In this work, a peptide-based vaccine candidate with a peptide library derived from CDV H and F protein consensus sequences was constructed employing computational tools. The molecular docking and dynamics of the selected peptides with canine MHC-I and MHC-II and with TLR-2 and TLR-4 were evaluated. In silico safety was assayed through determination of antigenicity, allergenicity, toxicity potential, and homologous canine peptides. Additionally, in vitro safety was also evaluated through cytotoxicity in cell lines and canine peripheral blood mononuclear cells (cPBMCs) and through a hemolysis potential assay using canine red blood cells. A multiepitope CDV polypeptide was constructed, synthetized, and evaluated in silico and in vitro by employing the most promising peptides for comparison with single CDV immunogenic peptides. Our findings suggest that predicting immunogenic CDV peptides derived from most antigenic CDV proteins could aid in the development of new vaccine candidates, such as multiple single CDV peptides and multiepitope CDV polypeptides, that are safe in vitro and optimized in silico. In vivo studies are being conducted to validate potential vaccines that may be effective in preventing CDV infection in domestic and wild animals.
Subject(s)
Distemper Virus, Canine , Distemper , Viral Vaccines , Distemper Virus, Canine/immunology , Animals , Dogs , Viral Vaccines/immunology , Distemper/prevention & control , Distemper/immunology , Molecular Docking Simulation , Peptides/immunology , Peptides/chemistry , Vaccines, Subunit/immunology , Viral Fusion Proteins/immunologyABSTRACT
Bovine respiratory syncytial virus (BRSV) affects both beef and dairy cattle, reaching morbidity and mortality rates of 60-80% and 20%, respectively. The aim of this study was to obtain a recombinant MVA expressing the BRSV F protein (MVA-F) as a vaccine against BRSV and to evaluate the immune response induced by MVA-F after systemic immunization in homologous and heterologous vaccination (MVA-F alone or combined with a subunit vaccine), and after intranasal immunization of mice. MVA-F administered by intraperitoneal route in a homologous scheme elicited levels of neutralizing antibodies similar to those obtained with inactivated BRSV as well as better levels of IFN-γ secretion. In addition, nasal administration of MVA-F elicited local and systemic immunity with a Th1 profile. This study suggests that MVA-F is a good candidate for further evaluations combining intranasal and intramuscular routes, in order to induce local and systemic immune responses, to improve the vaccine efficacy against BRSV infection.
Subject(s)
Administration, Intranasal , Mice, Inbred BALB C , Respiratory Syncytial Virus, Bovine , Animals , Respiratory Syncytial Virus, Bovine/immunology , Mice , Female , Cattle , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Genetic Vectors , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/veterinary , Vaccinia virus/immunology , Vaccinia virus/genetics , Antibodies, Viral/blood , Immunity, Mucosal , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Immunization/methods , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosageABSTRACT
Respiratory syncytial virus (RSV) is a virus that causes acute respiratory infections in neonates and older adults. To infect host cells, the attachment glycoprotein (G) interacts with a cell surface receptor. This interaction determines the specific cell types that are susceptible to infection. RSV possesses a type I fusion protein F. Type I fusion proteins are metastable when rearrangement of the prefusion F occurs; the fusion peptide is exposed transforming the protein into postfusion form. The transition between the prefusion form and its postfusion form facilitates the viral envelope and the host cell membrane to fuse, enabling the virus to enter the host cell. Understanding the entry mechanism employed by RSV is crucial for developing effective antiviral therapies. In this review, we will discuss the various types of viral fusion proteins and explore the potential entry mechanisms utilized by RSV. A deeper understanding of these mechanisms will provide valuable insights for the development of novel approaches to treat RSV infections.
Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant, Newborn , Humans , Aged , Antibodies, Neutralizing , Respiratory Syncytial Virus, Human/metabolism , Viral Fusion Proteins/metabolismABSTRACT
Human respiratory syncytial virus (HRSV) is the most frequent cause of severe respiratory disease in children. The main targets of HRSV infection are epithelial cells of the respiratory tract, and the great majority of the studies regarding HRSV infection are done in respiratory cells. Recently, the interest on respiratory virus infection of lymphoid cells has been growing, but details of the interaction of HRSV with lymphoid cells remain unknown. Therefore, this study was done to assess the relationship of HRSV with A3.01 cells, a human CD4+ T cell line. Using flow cytometry and fluorescent focus assay, we found that A3.01 cells are susceptible but virtually not permissive to HRSV infection. Dequenching experiments revealed that the fusion process of HRSV in A3.01 cells was nearly abolished in comparison to HEp-2 cells, an epithelial cell lineage. Quantification of viral RNA by RT-qPCR showed that the replication of HRSV in A3.01 cells was considerably reduced. Western blot and quantitative flow cytometry analyses demonstrated that the production of HRSV proteins in A3.01 was significantly lower than in HEp-2 cells. Additionally, using fluorescence in situ hybridization, we found that the inclusion body-associated granules (IBAGs) were almost absent in HRSV inclusion bodies in A3.01 cells. We also assessed the intracellular trafficking of HRSV proteins and found that HRSV proteins colocalized partially with the secretory pathway in A3.01 cells, but these HRSV proteins and viral filaments were present only scarcely at the plasma membrane. HRSV infection of A3.01 CD4+ T cells is virtually unproductive as compared to HEp-2 cells, as a result of defects at several steps of the viral cycle: Fusion, genome replication, formation of inclusion bodies, recruitment of cellular proteins, virus assembly, and budding.
Subject(s)
Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/physiology , T-Lymphocytes/virology , Cell Line , Humans , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Assembly , Virus ReplicationABSTRACT
The ISAV has a genome composed of eight segments of (-)ssRNA, segment 6 codes for the hemagglutinin-esterase protein, and has the most variable region of the genome, the highly polymorphic region (HPR), which is unique among orthomyxoviruses. The HPR has been associated with virulence, infectivity and pathogenicity. The full length of the HPR is called HPR0 and the strain with this HPR is avirulent, in contrast to strains with deleted HPR that are virulent to varying degrees. The molecular mechanism that gives rise to the different HPRs remains unclear. Here, we studied in vitro the evolution of reassortant recombinant ISAV (rISAV) in Atlantic salmon head kidney (ASK) cells. To this end, we rescued and cultivated a set of rISAV with different segment 6-HPR genotypes using a reverse genetics system and then sequencing HPR regions of the viruses. Our results show rapid multiple recombination events in ISAV, with sequence insertions and deletions in the HPR, indicating a dynamic process. Inserted sequences can be found in four segments of the ISAV genome (segments 1, 5, 6, and 8). The results suggest intra-segmental heterologous recombination, probably by class I and class II template switching, similar to the proposed segment 5 recombination mechanism.
Subject(s)
Isavirus/genetics , Isavirus/pathogenicity , Recombination, Genetic , Animals , Cell Line , Fish Diseases/virology , Genotype , Hemagglutinins, Viral/genetics , Orthomyxoviridae Infections/virology , Salmo salar , Sequence Analysis, DNA , Viral Fusion Proteins/genetics , Virulence/geneticsSubject(s)
CD8-Positive T-Lymphocytes/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/physiology , Adenoviridae/genetics , Animals , Clinical Trials as Topic , Humans , Immunity, Cellular , Immunity, Humoral , Vaccines, Attenuated , Vaccines, Subunit/genetics , Vaccines, Synthetic/genetics , Viral Fusion Proteins/geneticsABSTRACT
Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. Natural products show exceptional structural diversity and they have played a vital role in drug research. Several investigations focused on applied structural modification of natural products to improved metabolic stability, solubility and biological actions them. Quercetin is a flavonoid that presents several biological activities, including anti-hRSV role. Some works criticize the pharmacological use of Quercetin because it has low solubility and low specificity. In this sense, we acetylated Quercetin structure and we used in vitro and in silico assays to compare anti-hRSV function between Quercetin (Q0) and its derivative molecule (Q1). Q1 shows lower cytotoxic effect than Q0 on HEp-2 cells. In addition, Q1 was more efficient than Q0 to protect HEp-2 cells infected with different multiplicity of infection (0.1-1 MOI). The virucidal effects of Q0 and Q1 suggest interaction between these molecules and viral particle. Dynamic molecular results suggest that Q0 and Q1 may interact with F-protein on hRSV surface in an important region to adhesion and viral infection. Q1 interaction with F-protein showed ΔG= -14.22 kcal/mol and it was more stable than Q0. Additional, MTT and plate assays confirmed that virucidal Q1 effects occurs during adhesion step of cycle hRSV replication. In conclusion, acetylation improves anti-hRSV Quercetin effects because Quercetin pentaacetate could interact with F-protein with lower binding energy and better stability to block viral adhesion. These results show alternative anti-hRSV strategy and contribute to drug discovery and development.
Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Quercetin/analogs & derivatives , Respiratory Syncytial Virus, Human/drug effects , Virus Attachment/drug effects , Acetylation , Cell Line , Epithelial Cells/virology , Humans , Molecular Dynamics Simulation , Quercetin/pharmacology , Respiratory Syncytial Virus, Human/physiology , Viral Fusion Proteins/metabolism , Virus Replication/drug effectsABSTRACT
Canine distemper is a highly contagious systemic viral disease, with worldwide distribution that affects a wide variety of terrestrial carnivores. This study characterized full-length fusion (F) genes from 15 Brazilian wild-type canine distemper virus (CDV) strains collected between 2003-2004 (n = 6) and 2013-2016 (n = 9). Using deduced amino acid (aa) sequence analysis, 14 strains were classified into Europe 1/South America 1 (EU1/SA1) lineage, with a temporal clustering into past (2003-2004) and contemporary (2013-2016) strains. One strain clustered to Rockborn-like lineage, showing high similarity (98.5%) with the Rockborn vaccine strain. In analyzed strains, the fusion protein signal-peptide (Fsp) coding region was highly variable at the aa level (67.4%-96.2%). The Brazilian strains were more Fsp-divergent from the North America 1 (NA1) strains (24.5%-36.3%) than from the Rockborn (11.2%-14.9%) vaccine strain. Seventeen cysteine residues in the full-length F gene and four non-conserved glycosylation sites in the Fsp region were detected. The results reveal that past and contemporary CDV strains are currently co-circulating. This first analysis of full-length F genes from Brazilian wild-type CDV strains contributes to knowledge of molecular epidemiology of CDV viral infection and evolution.
Subject(s)
Distemper Virus, Canine/genetics , Distemper/epidemiology , Genetic Variation , Viral Fusion Proteins/genetics , Animals , Brazil/epidemiology , Dogs , Female , Male , Phylogeny , Polymerase Chain Reaction , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Viral VaccinesABSTRACT
Porcine rotavirus (PoRV) and porcine epidemic diarrhea virus (PEDV) usually co-infect pigs in modern large-scale piggery, which both can cause severe diarrhea in newborn piglets and lead to significant economic losses to the pig industry. The VP7 protein is the main coat protein of PoRV, and the S protein is the main structural protein of PEDV, which are capable of inducing neutralizing antibodies in vivo. In this study, a DNA vaccine pPI-2.EGFP.VP7.S co-expressing VP7 protein of PoRV and S protein of PEDV was constructed. Six 8-week-old mice were immunized with the recombinant plasmid pPI-2.EGFP.VP7.S. The high humoral immune responses (virus specific antibody) and cellular immune responses (IFN-γ, IL-4, and spleen lymphocyte proliferation) were evaluated. The immune effect through intramuscular injection increased with plasmid dose when compared with subcutaneous injection. The immune-enhancing effect of IFN-α adjuvant was excellent compared with pig spleen transfer factor and IL-12 adjuvant. These results demonstrated that pPI-2.EGFP.VP7.S possess the immunological functions of the VP7 proteins of PoRV and S proteins of PEDV, indicating that pPI-2.EGFP.VP7.S is a candidate vaccine for porcine rotaviral infection (PoR) and porcine epidemic diarrhea (PED).
Subject(s)
Antigens, Viral/immunology , Capsid Proteins/immunology , Coronavirus Infections/veterinary , Plasmids/immunology , Rotavirus Infections/veterinary , Rotavirus/immunology , Swine Diseases/prevention & control , Viral Fusion Proteins/immunology , Viral Vaccines/immunology , Animals , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , DNA, Recombinant/immunology , Drug Evaluation, Preclinical , Mice , Plasmids/administration & dosage , Plasmids/genetics , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Rotavirus/genetics , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/geneticsABSTRACT
Human astroviruses (HAstVs) cause severe diarrhea and represent an important health problem in children under two years of age. Despite their medical importance, the study of these pathogens has been neglected. To better understand the astrovirus antigenic structure and the basis of protective immunity, in this work we produced a panel of neutralizing monoclonal antibodies (Nt-MAbs) to HAstV serotypes 1, 2, and 8 and identified the mutations that allow the viruses to escape neutralization. We first tested the capacity of the recombinant HAstV capsid core and spike domains to elicit Nt-Abs. Hyperimmunization of animals with the two domains showed that although both induced a potent immune response, only the spike was able to elicit antibodies with neutralizing activity. Based on this finding, we used a mixture of the recombinant spike domains belonging to the three HAstV serotypes to immunize mice. Five Nt-MAbs were isolated and characterized; all of them were serotype specific, two were directed to HAstV-1, one was directed to HAstV-2, and two were directed to HAstV-8. These antibodies were used to select single and double neutralization escape variant viruses, and determination of the amino acid changes that allow the viruses to escape neutralization permitted us to define the existence of four potentially independent neutralization epitopes on the HAstV capsid. These studies provide the basis for development of subunit vaccines that induce neutralizing antibodies and tools to explore the possibility of developing a specific antibody therapy for astrovirus disease. Our results also establish a platform to advance our knowledge on HAstV cell binding and entry.IMPORTANCE Human astroviruses (HAstVs) are common etiological agents of acute gastroenteritis in children, the elderly, and immunocompromised patients; some virus strains have also been associated with neurological disease. Despite their medical importance, the study of these pathogens has advanced at a slow pace. In this work, we produced neutralizing antibodies to the virus and mapped the epitopes they recognize on the virus capsid. These studies provide the basis for development of subunit vaccines that induce neutralizing antibodies, as well as tools to explore the development of a specific antibody therapy for astrovirus disease. Our results also establish a platform to advance our knowledge on HAstV cell binding and entry.
Subject(s)
Antibodies, Neutralizing/isolation & purification , Antigens, Viral/immunology , Astroviridae Infections/immunology , Mamastrovirus/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Antigens, Viral/genetics , Astroviridae Infections/virology , Caco-2 Cells , Capsid Proteins/genetics , Capsid Proteins/immunology , Genetic Variation , Humans , Immunization , Mamastrovirus/genetics , Mice , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunologyABSTRACT
The retroviral Gag protein is frequently used to generate 'virus-like particles' (VLPs) for a variety of applications. Retroviral Gag proteins self-assemble and bud at the plasma membrane to form enveloped VLPs that resemble natural retrovirus virions, but contain no viral genome. The baculovirus expression vector system has been used to express high levels of the retroviral Gag protein to produce VLPs. However, VLP preparations produced from baculovirus-infected insect cells typically contain relatively large concentrations of baculovirus budded virus (BV) particles, which are similar in size and density to VLPs, and thus may be difficult to separate when purifying VLPs. Additionally, these enveloped VLPs may have substantial quantities of the baculovirus-encoded GP64 envelope protein in the VLP envelope. Since VLPs are frequently produced for vaccine development, the presence of the GP64 envelope protein in VLPs, and the presence of Autographa californica multicapsid nucleopolyhedrovirus BVs in VLP preparations, is undesirable. In the current studies, we developed a strategy for reducing BVs and eliminating GP64 in the production of VLPs, by expressing the human immunodeficiency virus type 1 gag gene in the absence of the baculovirus gp64 gene. Using a GP64null recombinant baculovirus, we demonstrate Gag-mediated VLP production and an absence of GP64 in VLPs, in the context of reduced BV production. Thus, this approach represents a substantially improved method for producing VLPs in insect cells.
Subject(s)
HIV-1/genetics , Nucleopolyhedroviruses/physiology , Virion/physiology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cells, Cultured , Microscopy, Electron, Transmission , Nucleopolyhedroviruses/genetics , Recombination, Genetic , Spodoptera/virology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virion/genetics , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/geneticsABSTRACT
The Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ARTIs) and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F), the Glycoprotein (G), and the Small Hydrophobic (SH) protein, which are located on the virus surface. In addition, the Nucleoprotein (N), Phosphoprotein (P) large polymerase protein (L) part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M) protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2). HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.
Subject(s)
Adaptive Immunity , Host-Pathogen Interactions/immunology , Immunity, Innate , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Proteins/immunology , Virulence Factors/immunology , Aged , Child , Dendritic Cells/immunology , Genome, Viral , Glycoproteins/genetics , Humans , Immune Evasion , Immunological Synapses/immunology , Interferon Type I/metabolism , Interferons/immunology , Lung/pathology , Lymphocyte Activation , Nucleoproteins/genetics , Phosphoproteins/genetics , RNA-Dependent RNA Polymerase/genetics , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/pathogenicity , Respiratory Syncytial Virus, Human/physiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Retroviridae Proteins, Oncogenic/genetics , T-Lymphocytes/immunology , Viral Fusion Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/physiology , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/physiologyABSTRACT
Alphaviruses are enveloped arboviruses mainly proposed to infect host cells by receptor-mediated endocytosis followed by fusion between the viral envelope and the endosomal membrane. The fusion reaction is triggered by low pH and requires the presence of both cholesterol and sphingolipids in the target membrane, suggesting the involvement of lipid rafts in the cell entry mechanism. In this study, we show for the first time the interaction of an enveloped virus with membrane microdomains isolated from living cells. Using Mayaro virus (MAYV), a New World alphavirus, we verified that virus fusion to these domains occurred to a significant extent upon acidification, although its kinetics was quite slow when compared to that of fusion with artificial liposomes demonstrated in a previous work. Surprisingly, when virus was previously exposed to acidic pH, a condition previously shown to inhibit alphavirus binding and fusion to target membranes as well as infectivity, and then reneutralized, its ability to fuse with membrane microdomains at low pH was retained. Interestingly, this observation correlated with a partial reversion of low pH-induced conformational changes in viral proteins and retention of virus infectivity upon reneutralization. Our results suggest that MAYV entry into host cells could alternatively involve internalization via lipid rafts and that the conformational changes triggered by low pH in the viral spike proteins during the entry process are partially reversible.
Subject(s)
Alphavirus/chemistry , Liposomes/chemistry , Membrane Fusion , Membrane Microdomains/chemistry , Viral Fusion Proteins/chemistry , Virus Internalization , Alphavirus/metabolism , Hydrogen-Ion Concentration , Membrane Microdomains/metabolism , Viral Fusion Proteins/metabolismABSTRACT
OBJECTIVE: Syncytia formation is the hallmark of the cytopathic effect caused by human respiratory syncytial virus (HRSV), which is the most important viral respiratory pathogen in children. This article reports methodological improvements in primary HRSV isolation and the importance of syncytia formation and mRNA levels of F protein for the progeny yield, using clinical isolates of HRSV. METHODS: The A and B strains of HRSV were isolated in HEp-2 cell cultures from fresh and frozen nasopharyngeal aspirates. The formation of syncytia was evaluated using 2 different assays. Levels of F protein mRNA were quantified by real-time PCR while HRSV progeny titration was done by plaque assay. RESULTS: HRSV was primarily isolated from 238 of 312 (90.7%) samples, and 13 of these (12 HRSV-A and 1 HRSV-B) were continuously passaged in vitro. The quantity and size of syncytia formed by 6 pure HRSV-A clinical isolates were different, as were the levels of F protein mRNA. CONCLUSION: There is a direct correlation of quantities of syncytia and inoculum size, but not with mRNA levels of HRSV-A F protein. Importantly, levels of F protein mRNA were directly related to progeny production.
Subject(s)
Cytopathogenic Effect, Viral , Giant Cells/ultrastructure , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/physiology , Cell Line , Child , Giant Cells/virology , Humans , Nasopharynx/virology , Phylogeny , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/analysis , Virology/methodsABSTRACT
In the search of strategies of presentation of heterologous antigens to elicit humoral or cellular immune responses that modulate and properly potentiate each type of response, researchers have been studying baculovirus (BV) as vaccine vectors with promising results. For some years, several research groups explored different antigen presentation approaches using the BV AcNPV by expressing polypeptides on the surface of budded virions or by de novo synthesis of heterologous antigens by transduction of mammalian cells. In the case of expression on the surface of budded virions, for example, researchers have expressed polypeptides in peplomers as GP64 glycoprotein fusions or distributed throughout the entire surface by fusions to portions of the G protein of vesicular stomatitis virus, VSV. Recently, our group developed the strategy of cross-presentation of antigens by fusions of GP64 to the capsid protein VP39 (capsid display) for the generation of cytotoxic responses. While the different strategies showed to be effective in raising immune responses, the individuality of each analysis makes difficult the comparison of the results. Here, by comparing the different strategies, we show that localization of the model antigen ovalbumin (OVA) strongly determined the quality and intensity of the adaptive response to the heterologous antigen. Furthermore, surface display favored humoral responses, whereas capsid display favored cytotoxic responses. Finally, capsid display showed a much more efficient strategy to activate CD8-mediated responses than transduction. The incorporation of adjuvants in baculovirus formulations dramatically diminished the immunostimulatory properties of baculovirus.
Subject(s)
Adaptive Immunity , Antigens, Viral/immunology , Baculoviridae/genetics , Capsid Proteins/immunology , Virion/immunology , Animals , Antigen Presentation , Antigens, Viral/genetics , Baculoviridae/immunology , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Line , Cell Surface Display Techniques , Immunity, Humoral , Ovalbumin/immunology , Vesiculovirus/genetics , Vesiculovirus/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunologyABSTRACT
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
Subject(s)
Cell Membrane/chemistry , Membrane Fusion , Severe acute respiratory syndrome-related coronavirus/chemistry , Viral Fusion Proteins/chemistry , Virus Internalization , Calorimetry, Differential Scanning , Electron Spin Resonance Spectroscopy , Peptides/chemistry , ThermodynamicsABSTRACT
Senecavirus A (SV-A) may cause vesicular disease and neonatal mortality in pigs, and was first detected in Brazil in 2015. Samples including tissues and serum from pigs with suspected vesicular diseases were collected from January to August in 2015 from farms in the states of Minas Gerais, Santa Catarina, Goiás and Rio Grande do Sul, Brazil, and tested for the presence of SV-A by reverse transcriptase PCR. All samples were negative for foot and mouth disease virus, as well as 13 other infectious agents associated with vesicular diseases in pigs. SV-A was detected by PCR in 65/265 (24.5%) specimens. A 530 base pair fragment sequenced from the VP1 protein coding region indicated a high genetic distance from SV-A in other countries, but a common origin among the Brazilian isolates.
Subject(s)
Picornaviridae Infections/veterinary , Picornaviridae/physiology , Swine Diseases/epidemiology , Viral Fusion Proteins/genetics , Amino Acid Sequence , Animals , Brazil/epidemiology , Phylogeny , Picornaviridae/genetics , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Analysis, RNA/veterinary , Swine , Swine Diseases/virology , Swine Vesicular Disease/virologyABSTRACT
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.
Subject(s)
Glycoproteins/metabolism , Hantavirus Infections/virology , Orthohantavirus/physiology , Peptides/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization , Glycoproteins/chemistry , Glycoproteins/genetics , Orthohantavirus/chemistry , Orthohantavirus/genetics , Humans , Peptides/chemistry , Peptides/genetics , Protein Domains , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolismABSTRACT
Human respiratory syncytial virus (HRSV) is the main viral cause of acute lower respiratory tract infections (LRTI) in children worldwide. In recent years, several preclinical trials with vaccine candidates have been reported. It is in this sense that molecular epidemiological studies become important. Understanding viral dispersion patterns before and after the implementation of a vaccine can provide insight into the effectiveness of the control strategies. In this work we analyzed the molecular epidemiology of HRSV-A over a period of sixteen years (1999-2014) in Buenos Aires. By bioinformatic tools we analyzed 169 sequences of the G glycoprotein gene from hospitalized pediatric patients with LRTI. We found that GA2 was the most prevalent genotype (73.35%). GA5 genotype co-circulated in our region until 2009 when it was no longer detected, except in 2011. The recently globally emerging ON1 lineage with a 72-nt duplication increased its frequency to become the only lineage detected in Buenos Aires in 2014. By discrete phylogeographic analysis of global ON1 strains we could determine that Panama could be the location of the MRCA dated June 20, 2010; and this lineage could be introduced in Argentina from Spain in April 2011. This analysis also showed temporary and geographical clustering of ON1 strains observed as phylogenetic clades with strains exclusively associated from a single country, nevertheless among our 44 ON1 strains from three outbreaks (2012-2014) we could also detect posterior reintroductions and circulation from United States, Cuba, South Korea, and Spain. The continuous phylogeographic analysis of one sublineage of Argentine ON1 strains allowed us to establish that there could be a local clustering of some strains even in neighborhoods. This work shows the potential of this type of bioinformatic tools in the context of a future vaccine surveillance network to trace the spread of new genetic lineages in human populations.