Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.929
1.
Signal Transduct Target Ther ; 9(1): 144, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38853183

Respiratory syncytial virus (RSV) is the major cause of bronchiolitis and pneumonia in young children and the elderly. There are currently no approved RSV-specific therapeutic small molecules available. Using high-throughput antiviral screening, we identified an oral drug, the prenylation inhibitor lonafarnib, which showed potent inhibition of the RSV fusion process. Lonafarnib exhibited antiviral activity against both the RSV A and B genotypes and showed low cytotoxicity in HEp-2 and human primary bronchial epithelial cells (HBEC). Time-of-addition and pseudovirus assays demonstrated that lonafarnib inhibits RSV entry, but has farnesyltransferase-independent antiviral efficacy. Cryo-electron microscopy revealed that lonafarnib binds to a triple-symmetric pocket within the central cavity of the RSV F metastable pre-fusion conformation. Mutants at the RSV F sites interacting with lonafarnib showed resistance to lonafarnib but remained fully sensitive to the neutralizing monoclonal antibody palivizumab. Furthermore, lonafarnib dose-dependently reduced the replication of RSV in BALB/c mice. Collectively, lonafarnib could be a potential fusion inhibitor for RSV infection.


Pyridines , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viral Fusion Proteins , Humans , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/genetics , Pyridines/pharmacology , Mice , Animals , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics , Viral Fusion Proteins/antagonists & inhibitors , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/genetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Piperidines/pharmacology , Piperidines/chemistry , Mice, Inbred BALB C , Protein Conformation , Dibenzocycloheptenes
2.
Microb Pathog ; 192: 106713, 2024 Jul.
Article En | MEDLINE | ID: mdl-38810765

Newcastle disease virus (NDV) is the pathogen of a zoonosis that is primarily transmitted by poultry and has severe infectivity and a high fatality rate. Many studies have focused on the role of the NDV fusion (F) protein in the cell-cell membrane fusion process. However, little attention has been given to the heptad repeat region, HR4, which is located in the NDV F2 subunit. Here, site-directed mutants were constructed to study the function of the NDV F protein HR4 region and identify the key amino acids in this region. Nine conserved amino acids were substituted with alanine or the corresponding amino acid of other aligned paramyxoviruses. The desired mutants were examined for changes in fusogenic activity through three kinds of membrane fusion assays and expression and proteolysis through IFA, FACS and WB. The results showed that when conserved amino acids (L81, Y84, L88, L91, L92, P94, L95 and I99) were replaced with alanine, the fusogenic activity of the F protein was abolished, possibly because of failed protein expression not only on the cell surface but also inside cells. These data indicated that the conserved amino acids above in NDV F HR4 are critical for normal protein synthesis and expression, possibly for the stability of the F protein monomer, formation of trimer and conformational changes.


Mutagenesis, Site-Directed , Newcastle disease virus , Viral Fusion Proteins , Virus Internalization , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Animals , Amino Acid Substitution , Cell Line , Mutation , Proteolysis , Membrane Fusion
3.
Sci Rep ; 14(1): 11823, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783052

Our previous findings indicated that many respiratory syncytial virus (RSV) isolates are unstable at 4 °C compared to 20 °C. Some of the strains completely lose infectivity after 24 h at 4 °C. This study analyzed the inactivation process at 4 °C using a representative strain, RSV/Sendai/851/13. After 24 h of storage at 4 °C, the virus was completely inactivated but retained its ability to attach to and to be taken into host cells. It suggested a reduced fusion ability between the viral and cellular membranes. During storage at 4 °C, the RSV fusion (F) protein underwent a conformational change and was no longer recognized by pre-fusion form-specific antibodies. When the RSV/Sendai/851/13 strain was passaged at 4 °C, a variant with an amino acid substitution, I148T, in the F protein fusion peptide was selected. Also, an amino acid change in G protein demonstrating stability at low temperatures was obtained. These results show that the inactivation of RSV at 4 °C is due to the loss of membrane fusion activity in the F protein, which cannot maintain its pre-fusion state at 4 °C.


Cold Temperature , Respiratory Syncytial Virus, Human , Viral Fusion Proteins , Virus Inactivation , Viral Fusion Proteins/metabolism , Viral Fusion Proteins/genetics , Viral Fusion Proteins/chemistry , Humans , Respiratory Syncytial Virus, Human/physiology , Animals , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses
4.
Nat Commun ; 15(1): 4629, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821950

The Paramyxoviridae family encompasses medically significant RNA viruses, including human respiroviruses 1 and 3 (RV1, RV3), and zoonotic pathogens like Nipah virus (NiV). RV3, previously known as parainfluenza type 3, for which no vaccines or antivirals have been approved, causes respiratory tract infections in vulnerable populations. The RV3 fusion (F) protein is inherently metastable and will likely require prefusion (preF) stabilization for vaccine effectiveness. Here we used structure-based design to stabilize regions involved in structural transformation to generate a preF protein vaccine antigen with high expression and stability, and which, by stabilizing the coiled-coil stem region, does not require a heterologous trimerization domain. The preF candidate induces strong neutralizing antibody responses in both female naïve and pre-exposed mice and provides protection in a cotton rat challenge model (female). Despite the evolutionary distance of paramyxovirus F proteins, their structural transformation and local regions of instability are conserved, which allows successful transfer of stabilizing substitutions to the distant preF proteins of RV1 and NiV. This work presents a successful vaccine antigen design for RV3 and provides a toolbox for future paramyxovirus vaccine design and pandemic preparedness.


Antibodies, Neutralizing , Antibodies, Viral , Sigmodontinae , Viral Fusion Proteins , Viral Vaccines , Animals , Female , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/chemistry , Mice , Viral Vaccines/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Mice, Inbred BALB C , Paramyxoviridae Infections/prevention & control , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/virology , Parainfluenza Virus 3, Human/immunology , Parainfluenza Virus 3, Human/genetics
5.
Arch Virol ; 169(5): 106, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644429

In this study, conducted at the National Institute of Health, Islamabad, during an outbreak of human respiratory syncytial virus (hRSV) from December 2022 to January 2023, the first whole-genome sequences of hRSV isolates from Islamabad, Pakistan, were determined. Out of 10 positive samples, five were sequenced, revealing the presence of two genotypes: RSV-A (GA2.3.5, ON1 strain) and RSV-B (GB5.0.5.a, BA-10 strain). A rare non-synonymous substitution (E232G) in G the protein and N276S in the F protein were found in RSV-A. In RSV-B, the unique mutations K191R, Q209R, and I206M were found in the F protein. These mutations could potentially influence vaccine efficacy and viral pathogenicity. This research underscores the importance of genomic surveillance for understanding RSV diversity and guiding public health responses in Pakistan.


Disease Outbreaks , Genome, Viral , Genotype , Phylogeny , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Pakistan/epidemiology , Humans , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/isolation & purification , Genome, Viral/genetics , Mutation , Whole Genome Sequencing , Genomics , Female , Infant , Male , Viral Fusion Proteins/genetics , Child, Preschool
6.
PLoS One ; 19(4): e0301773, 2024.
Article En | MEDLINE | ID: mdl-38593167

Respiratory syncytial virus (RSV) is the leading viral cause of bronchiolitis and pneumonia in infants and toddlers, but there currently is no licensed pediatric vaccine. A leading vaccine candidate that has been evaluated for intranasal immunization in a recently completed phase 1/2 clinical trial is an attenuated version of RSV strain A2 called RSV/ΔNS2/Δ1313/I1314L (hereafter called ΔNS2). ΔNS2 is attenuated by deletion of the interferon antagonist NS2 gene and introduction into the L polymerase protein gene of a codon deletion (Δ1313) that confers temperature-sensitivity and is stabilized by a missense mutation (I1314L). Previously, introduction of four amino acid changes derived from a second RSV strain "line 19" (I79M, K191R, T357K, N371Y) into the F protein of strain A2 increased the stability of infectivity and the proportion of F protein in the highly immunogenic pre-fusion (pre-F) conformation. In the present study, these four "line 19" assignments were introduced into the ΔNS2 candidate, creating ΔNS2-L19F-4M. During in vitro growth in Vero cells, ΔNS2-L19F-4M had growth kinetics and peak titer similar to the ΔNS2 parent. ΔNS2-L19F-4M exhibited an enhanced proportion of pre-F protein, with a ratio of pre-F/total F that was 4.5- to 5.0-fold higher than that of the ΔNS2 parent. The stability of infectivity during incubation at 4°C, 25°C, 32°C and 37°C was greater for ΔNS2-L19F-4M; for example, after 28 days at 32°C, its titer was 100-fold greater than ΔNS2. ΔNS2-L19F-4M exhibited similar levels of replication in human airway epithelial (HAE) cells as ΔNS2. The four "line 19" F mutations were genetically stable during 10 rounds of serial passage in Vero cells. In African green monkeys, ΔNS2-L19F-4M and ΔNS2 had similar growth kinetics, peak titer, and immunogenicity. These results suggest that ΔNS2-L19F-4M is an improved live attenuated vaccine candidate whose enhanced stability may simplify its manufacture, storage and distribution, which merits further evaluation in a clinical trial in humans.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Humans , Chlorocebus aethiops , Child , Respiratory Syncytial Virus Vaccines/genetics , Vero Cells , Antibodies, Viral , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Antibodies, Neutralizing , Mutation, Missense
7.
Vaccine ; 42(15): 3474-3485, 2024 May 31.
Article En | MEDLINE | ID: mdl-38641492

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) vaccines have been long overdue. Structure-based vaccine design created a new momentum in the last decade, and the first RSV vaccines have finally been approved in older adults and pregnant individuals. These vaccines are based on recombinant stabilized pre-fusion F glycoproteins administered as soluble proteins. Multimeric antigenic display could markedly improve immunogenicity and should be evaluated in the next generations of vaccines. Here we tested a new virus like particles-based vaccine platform which utilizes the direct fusion of an immunogen of interest to the structural human immunodeficient virus (HIV) protein Gag to increase its surface density and immunogenicity. We compared, in mice, the immunogenicity of RSV-F or hMPV-F based immunogens delivered either as soluble proteins or displayed on the surface of our VLPs. VLP associated F-proteins showed better immunogenicity and induced superior neutralizing responses. Moreover, when combining both VLP associated and soluble immunogens in a heterologous regimen, VLP-associated immunogens provided added benefits when administered as the prime immunization.


Antibodies, Neutralizing , Antibodies, Viral , Metapneumovirus , Mice, Inbred BALB C , Vaccines, Virus-Like Particle , Viral Fusion Proteins , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Metapneumovirus/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Female , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , Respiratory Syncytial Virus, Human/immunology , Immunogenicity, Vaccine , Humans , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage
8.
J Immunol ; 212(9): 1450-1456, 2024 May 01.
Article En | MEDLINE | ID: mdl-38488511

Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.


Antibodies, Neutralizing , Parainfluenza Virus 3, Human , Humans , Viral Fusion Proteins/genetics , Epitopes , Antibodies, Viral
9.
Hum Vaccin Immunother ; 20(1): 2327142, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38508690

Respiratory syncytial virus (RSV) is a highly contagious virus that affects the lungs and respiratory passages of many vulnerable people. It is a leading cause of lower respiratory tract infections and clinical complications, particularly among infants and elderly. It can develop into serious complications such as pneumonia and bronchiolitis. The development of RSV vaccine or immunoprophylaxis remains highly active and a global health priority. Currently, GSK's Arexvy™ vaccine is approved for the prevention of lower respiratory tract disease in older adults (>60 years). Palivizumab and currently nirsevimab are the approved monoclonal antibodies (mAbs) for RSV prevention in high-risk patients. Many studies are ongoing to develop additional therapeutic antibodies for preventing RSV infections among newborns and other susceptible groups. Recently, additional antibodies have been discovered and shown greater potential for development as therapeutic alternatives to palivizumab and nirsevimab. Plant expression platforms have proven successful in producing recombinant proteins, including antibodies, offering a potential cost-effective alternative to mammalian expression platforms. Hence in this study, an attempt was made to use a plant expression platform to produce two anti-RSV fusion (F) mAbs 5C4 and CR9501. The heavy-chain and light-chain sequences of both these antibodies were transiently expressed in Nicotiana benthamiana plants using a geminiviral vector and then purified using single-step protein A affinity column chromatography. Both these plant-produced mAbs showed specific binding to the RSV fusion protein and demonstrate effective viral neutralization activity in vitro. These preliminary findings suggest that plant-produced anti-RSV mAbs are able to neutralize RSV in vitro.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Infant , Animals , Humans , Infant, Newborn , Aged , Palivizumab/therapeutic use , Nicotiana/genetics , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , Antibodies, Neutralizing , Viral Fusion Proteins/genetics , Mammals/metabolism
10.
Mol Ther ; 32(4): 1033-1047, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38341613

As the world continues to confront severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV) is also causing severe respiratory illness in millions of infants, elderly individuals, and immunocompromised people globally. Exacerbating the situation is the fact that co-infection with multiple viruses is occurring, something which has greatly increased the clinical severity of the infections. Thus, our team developed a bivalent vaccine that delivered mRNAs encoding SARS-CoV-2 Omicron spike (S) and RSV fusion (F) proteins simultaneously, SF-LNP, which induced S and F protein-specific binding antibodies and cellular immune responses in BALB/c mice. Moreover, SF-LNP immunization effectively protected BALB/c mice from RSV infection and hamsters from SARS-CoV-2 Omicron infection. Notably, our study pointed out the antigenic competition problem of bivalent vaccines and provided a solution. Overall, our results demonstrated the potential of preventing two infectious diseases with a single vaccine and provided a paradigm for the subsequent design of multivalent vaccines.


COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Mice , Infant , Cricetinae , Animals , Aged , mRNA Vaccines , Vaccines, Combined , Antibodies, Viral , Respiratory Syncytial Virus Vaccines/genetics , Viral Fusion Proteins/genetics , COVID-19/prevention & control , SARS-CoV-2/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Neutralizing
11.
Microbiol Spectr ; 12(4): e0306723, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38411056

Prevention of respiratory syncytial virus (RSV) infection is now a global health priority, with a long-acting monoclonal antibody and two RSV vaccines recently licenced for clinical use. Most licenced and candidate interventions target the RSV fusion (RSV-F) protein. New interventions may be associated with the spread of mutations, reducing susceptibility to antibody neutralization in RSV-F. There is a need for ongoing longitudinal global surveillance of circulating RSV strains. To achieve this large-scale genomic surveillance, a reliable, high-throughput RSV sequencing assay is required. Here we report an improved high-throughput RSV whole-genome sequencing (WGS) assay performed directly on clinical samples without additional enrichment, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. Using upper respiratory tract (URT) RSV-positive clinical samples obtained from a sentinel network of primary care providers and from hospital patients (29.7% and 70.2%, respectively; n = 1,037), collected over the period 2019 to 2023, this assay had a threshold of approximately 4 × 103 to 8 × 103 copies/mL (RSV-B and RSV-A sub-types, respectively) as the lowest amount of virus needed in the sample to achieve >96% of whole-genome coverage at a high-quality level. Using a Ct value of 31 as an empirical cut-off, the overall assay success rate of obtaining >90% genome coverage at a read depth minimum of 20 was 96.83% for clinical specimens successfully sequenced from a total of 1,071. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national programs for the surveillance of RSV genomic variation. IMPORTANCE: In this paper, we report an improved high-throughput respiratory syncytial virus (RSV) whole-genome sequencing (WGS) assay performed directly on clinical samples, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national and global programs for the surveillance of RSV genomic variation. The quality of sequence produced is essential for preparedness for new interventions in monitoring antigenic escape, where a single point mutation might lead to a reduction in antibody binding effectiveness and neutralizing activity, or indeed in the monitoring of retaining susceptibility to neutralization by existing and new interventions.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/diagnosis , Antibodies, Monoclonal , High-Throughput Nucleotide Sequencing
12.
Nat Commun ; 15(1): 1173, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38332002

Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.


Dibenzocycloheptenes , Pyridines , Respiratory Syncytial Virus Infections , Animals , Female , Mice , Drug Repositioning , Piperidines/pharmacology , Piperidines/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Viral Fusion Proteins/genetics , Viral Fusion Proteins/chemistry
13.
J Gen Virol ; 105(1)2024 01.
Article En | MEDLINE | ID: mdl-38231539

Respiratory syncytial virus (RSV) has two main surface glycoproteins, the attachment glycoprotein (G) and the fusion (F) protein, which together mediate viral entry. Attachment is mediated by the RSV-G protein, while the RSV-F protein makes specific contact with the cellular insulin-like growth factor 1 receptor (IGF1R). This interaction leads to IGF1R activation and initiates a signalling cascade that calls the co-receptor, nucleolin, from the nucleus to the cell surface, where it can trigger viral fusion. We performed molecular docking analysis, which provided a potential set of 35 residues in IGF1R that may be important for interactions with RSV-F. We used alanine-scanning mutagenesis to generate IGF1R mutants and assessed their abundance and maturation, as well as the effect of mutation on RSV infection. We identified several mutations that appear to inhibit IGF1R maturation; but surprisingly, these mutations had no significant effect on RSV infection. This suggests that maturation of IGF1R may not be required for RSV infection. Additionally, we identified one residue, S788, that, when mutated, significantly reduced RSV infection. Further analysis revealed that this mutation disrupted a hydrogen bonding network that may be important for both IGF1R maturation and RSV infection.


Receptor, IGF Type 1 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viral Fusion Proteins , Humans , Alanine/genetics , Molecular Docking Simulation , Mutagenesis , Receptor, IGF Type 1/genetics , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics
14.
Virology ; 591: 109985, 2024 03.
Article En | MEDLINE | ID: mdl-38227992

Evidence for a stable interaction between the respiratory syncytial virus (RSV) F and G proteins on the surface of virus filaments was provided using antibody immunoprecipitation studies on purified RSV particles, and by the in situ analysis on the surface of RSV-infected cells using the proximity ligation assay. Imaging of the F and G protein distribution on virus filaments suggested that this protein complex was localised at the distal ends of the virus filaments, and suggested that this protein complex played a direct role in mediating efficient localised cell-to-cell virus transmission. G protein expression was required for efficient localised cell-to-cell transmission of RSV in cell monolayers which provided evidence that this protein complex mediates efficient multiple cycle infection. Collectively, these data provide evidence that F and G proteins form a complex on the surface of RSV particles, and that a role for this protein complex in promoting virus transmission is suggested.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Viral Fusion Proteins/genetics , Cytoskeleton , Protein Processing, Post-Translational , GTP-Binding Proteins/metabolism , Antibodies, Viral
15.
Euro Surveill ; 28(49)2023 12.
Article En | MEDLINE | ID: mdl-38062945

To advance our understanding of respiratory syncytial virus (RSV) impact through genomic surveillance, we describe two PCR-based sequencing systems, (i) RSVAB-WGS for generic whole-genome sequencing and (ii) RSVAB-GF, which targets major viral antigens, G and F, and is used as a complement for challenging cases with low viral load. These methods monitor RSV genetic diversity to inform molecular epidemiology, vaccine effectiveness and treatment strategies, contributing also to the standardisation of surveillance in a new era of vaccines.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Genomics , Whole Genome Sequencing , Antibodies, Viral
16.
J Virol ; 97(12): e0134323, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37975688

IMPORTANCE: Vaccinia virus infection requires virus-cell membrane fusion to complete entry during endocytosis; however, it contains a large viral fusion protein complex of 11 viral proteins that share no structure or sequence homology to all the known viral fusion proteins, including type I, II, and III fusion proteins. It is thus very challenging to investigate how the vaccinia fusion complex works to trigger membrane fusion with host cells. In this study, we crystallized the ectodomain of vaccinia H2 protein, one component of the viral fusion complex. Furthermore, we performed a series of mutational, biochemical, and molecular analyses and identified two surface loops containing 170LGYSG174 and 125RRGTGDAW132 as the A28-binding region. We also showed that residues in the N-terminal helical region (amino acids 51-90) are also important for H2 function.


Membrane Fusion , Vaccinia virus , Viral Fusion Proteins , Virus Internalization , Vaccinia virus/chemistry , Vaccinia virus/genetics , Vaccinia virus/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism
17.
Emerg Infect Dis ; 29(11): 2380-2382, 2023 11.
Article En | MEDLINE | ID: mdl-37705075

We conducted surveillance of respiratory syncytial virus (RSV) genomic sequences for 100 RSV-A and 27 RSV-B specimens collected during November 2022-April 2023 in Arizona, USA. We identified mutations within prefusion F-protein antigenic sites in both subtypes. Continued genomic surveillance will be critical to ensure RSV vaccine effectiveness.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Respiratory Syncytial Virus Infections/epidemiology , Arizona/epidemiology , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Antibodies, Neutralizing , Antibodies, Viral , Mutation
18.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Article En | MEDLINE | ID: mdl-37494386

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Measles , Neurodegenerative Diseases , Subacute Sclerosing Panencephalitis , Humans , Measles virus/genetics , SSPE Virus/genetics , SSPE Virus/metabolism , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology , Viral Replicase Complex Proteins/metabolism , Persistent Infection , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Measles/genetics , Measles/metabolism
19.
Viruses ; 15(7)2023 07 14.
Article En | MEDLINE | ID: mdl-37515234

Respiratory syncytial virus (RSV) infection can cause life-threatening pneumonia and bronchiolitis, posing a significant threat to human health worldwide, especially to children and the elderly. Currently, there is no specific treatment for RSV infection. The most effective measures for preventing RSV infection are vaccines and prophylactic medications. However, not all population groups are eligible for the approved vaccines or antibody-based preventive medications. Therefore, there is an urgent need to develop novel vaccines and prophylactic drugs available for people of all ages. High-throughput assays that evaluate the efficacy of viral entry inhibitors or vaccine-induced neutralizing antibodies in blocking RSV entry are crucial for evaluating vaccine and prophylactic drug candidates. We developed an efficient entry assay using a lentiviral pseudovirus carrying the fusion (F) protein of type A or B RSV. In addition, the essential parameters were systematically optimized, including the number of transfected plasmids, storage conditions of the pseudovirus, cell types, cell numbers, virus inoculum, and time point of detection. Furthermore, the convalescent sera exhibited comparable inhibitory activity in this assay as in the authentic RSV virus neutralization assay. We established a robust pseudovirus-based entry assay for RSV, which holds excellent promise for studying entry mechanisms, evaluating viral entry inhibitors, and assessing vaccine-elicited neutralizing antibodies against RSV.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Child , Humans , Aged , Antibodies, Viral , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Neutralizing
20.
Virus Res ; 333: 199142, 2023 Aug.
Article En | MEDLINE | ID: mdl-37270034

Few evolutionary studies of the human respiratory virus (HRV) have been conducted, but most of them have focused on HRV3. In this study, the full-length fusion (F) genes in HRV1 strains collected from various countries were subjected to time-scaled phylogenetic, genome population size, and selective pressure analyses. Antigenicity analysis was performed on the F protein. The time-scaled phylogenetic tree using the Bayesian Markov Chain Monte Carlo method estimated that the common ancestor of the HRV1 F gene diverged in 1957 and eventually formed three lineages. Phylodynamic analyses showed that the genome population size of the F gene has doubled over approximately 80 years. Phylogenetic distances between the strains were short (< 0.02). No positive selection sites were detected for the F protein, whereas many negative selection sites were identified. Almost all conformational epitopes of the F protein, except one in each monomer, did not correspond to the neutralising antibody (NT-Ab) binding sites. These results suggest that the HRV1 F gene has constantly evolved over many years, infecting humans, while the gene may be relatively conserved. Mismatches between computationally predicted epitopes and NT-Ab binding sites may be partially responsible for HRV1 reinfection and other viruses such as HRV3 and respiratory syncytial virus.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Phylogeny , Bayes Theorem , Respiratory Syncytial Virus, Human/genetics , Epitopes , Respirovirus , Respiratory Syncytial Virus Infections/epidemiology , Viral Fusion Proteins/genetics
...