Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.802
Filter
1.
Arch Dermatol Res ; 316(7): 449, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958777

ABSTRACT

Several auto-immune diseases have been linked to vitamin D deficiency as a contributing environmental factor. Its pleiotropic effects on the immune system, especially its essential role in maintaining immune tolerance, make the vitamin D pathway of great interest. In this study, we focused on Pemphigus foliaceous (PF) in Tunisian population. we aimed to quantify the Serum 25[OH]D levels using chemiluminescence assay and to analyze the differential expression of the VDR, CYP27B1 and CYP24A1 genes in the circulating blood cells and lesional skin tissue of PF patients using Q-PCR. A genetic explanation was then sought to explore any direct relationship between tag polymorphisms and the inherited features of PF. Results confirmed a vitamin D hypovitaminosis in Tunisian PF patients. Interestingly, a differential gene expression correlated to the disease stratification was noted. Indeed, at the systemic level, an upregulation of VDR and CYP27B1 genes was observed in healthy controls compared to PF patients. Notably, in lesional skin tissue, the clinical and serological remission phase was correlated with high transcriptional levels of the VDR gene and conversely a drop in expression of the CYP24A1 gene. Genetic analysis indicated the involvement of the most appealing polymorphisms, rs2228570 and poly (A) microsatellite, in PF etiopathogenesis. Indeed, CAC13 haplotype was associated with a higher risk of PF development. Our findings suggest that alterations in the vitamin D-VDR pathway may influence PF physiopathology, making this pathway a potential target for pharmacological modulation, especially for cortico-resistant PF patients.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Pemphigus , Receptors, Calcitriol , Vitamin D Deficiency , Vitamin D3 24-Hydroxylase , Vitamin D , Humans , Pemphigus/immunology , Pemphigus/genetics , Pemphigus/diagnosis , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Vitamin D/metabolism , Vitamin D/blood , Vitamin D/analogs & derivatives , Female , Male , Middle Aged , Adult , Vitamin D Deficiency/complications , Vitamin D Deficiency/immunology , Vitamin D Deficiency/blood , Tunisia , Aged , Polymorphism, Single Nucleotide , Skin/pathology , Skin/immunology , Skin/metabolism , Genetic Predisposition to Disease , Case-Control Studies
2.
Sci Adv ; 10(24): eadi1621, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865462

ABSTRACT

The function of germ cells in somatic growth and aging has been demonstrated in invertebrate models but remains unclear in vertebrates. We demonstrated sex-dependent somatic regulation by germ cells in the short-lived vertebrate model Nothobranchius furzeri. In females, germ cell removal shortened life span, decreased estrogen, and increased insulin-like growth factor 1 (IGF-1) signaling. In contrast, germ cell removal in males improved their health with increased vitamin D signaling. Body size increased in both sexes but was caused by different signaling pathways, i.e., IGF-1 and vitamin D in females and males, respectively. Thus, vertebrate germ cells regulate somatic growth and aging through different pathways of the endocrine system, depending on the sex, which may underlie the sexual difference in reproductive strategies.


Subject(s)
Aging , Germ Cells , Insulin-Like Growth Factor I , Animals , Germ Cells/metabolism , Germ Cells/cytology , Male , Female , Aging/physiology , Insulin-Like Growth Factor I/metabolism , Vertebrates , Signal Transduction , Sex Characteristics , Body Size , Vitamin D/metabolism , Estrogens/metabolism
3.
Zhonghua Yan Ke Za Zhi ; 60(6): 547-558, 2024 Jun 11.
Article in Chinese | MEDLINE | ID: mdl-38825955

ABSTRACT

With the increasing prevalence of myopia among adolescents, the pathogenesis of this condition has garnered significant attention. Studies have discovered the expression of various hormone receptors in ocular tissues of both animals and humans. Additionally, changes in hormone levels accompany the development of myopia, although the exact relationships remain inconclusive. This article reviews the potential influences and mechanisms of action of endogenous hormones such as melatonin, serotonin, insulin, glucagon, sex hormones, vitamin D, and prostaglandins in ocular tissues including the retina, choroid, and sclera. It elaborates on the relationship between fluctuations in these hormone levels and the progression of myopia, aiming to provide guidance for exploring targets for myopia prevention and control.


Subject(s)
Melatonin , Myopia , Humans , Myopia/metabolism , Melatonin/metabolism , Vitamin D/metabolism , Serotonin/metabolism , Insulin/metabolism , Glucagon/metabolism , Animals , Gonadal Steroid Hormones/metabolism , Prostaglandins/metabolism , Hormones/metabolism , Retina/metabolism
4.
Mol Biol Rep ; 51(1): 748, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874843

ABSTRACT

Background this study was conducted to assess the effects of vitamin D on differentiation of bone marrow- derived mesenchymal stem cells (BM-MSCs) into insulin producing cells (IPCs). Method BM-MSCs were isolated from femur and tibia of rats and incubated in low (LG) or high glucose (HG) (5mM or 25mM), or high glucose DMEM media supplemented with vitamin D (0.2nM) (HGD) for 14 days. Cells viability was analysis by MTT assay. Differentiation of SCs was confirmed using measuring genes expression level of pdx1 and insulin, and insulin secretion, glucose stimulated insulin secretion, and insulin content by ELISA method. Results Cell viability was significantly higher in HGD than LG (p < 0.05) in day 3, also, in HG and HGD than LG (p < 0.001), and HGD vs. HG (p < 0.001) in day 7. Pdx1 and insulin level was markedly higher in HGD than LG (p < 0.05 and p < 0.01). pdx1 expression was markedly higher in HGD (p < 0.05) than LG, also insulin expression the HG (p < 0.05), and HGD (p < 0.01) groups compared to the LG group. Insulin release at 5mM glucose was notably higher in the HGD group compared to LG (p < 0.05), and at 25mM glucose, both HG and HGD showed significant increases vs. LG (p < 0.05 and p < 0.01, respectively). Insulin content was significantly higher in both 5mM and 25mM glucose for HG and HGD vs. LG (p < 0.01 and p < 0.001, respectively). In conclusion, treatment BM-MSCs with vitamin D could increase their differentiation into IPCs and it can be considered as a potential supplementary agent in enhancing differentiation SCs into insulin generating cells.


Subject(s)
Bone Marrow Cells , Cell Differentiation , Insulin-Secreting Cells , Insulin , Mesenchymal Stem Cells , Vitamin D , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation/drug effects , Vitamin D/pharmacology , Vitamin D/metabolism , Rats , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/cytology , Glucose/metabolism , Glucose/pharmacology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cells, Cultured , Cell Survival/drug effects , Male , Trans-Activators/metabolism , Trans-Activators/genetics , Dietary Supplements , Insulin Secretion/drug effects
5.
Front Endocrinol (Lausanne) ; 15: 1406248, 2024.
Article in English | MEDLINE | ID: mdl-38904051

ABSTRACT

Magnesium (Mg), a nutritional element which is essential for bone development and mineralization, has a role in the progression of osteoporosis. Osteoporosis is a multifactorial disease characterized by significant deterioration of bone microstructure and bone loss. Mg deficiency can affect bone structure in an indirect way through the two main regulators of calcium homeostasis (parathyroid hormone and vitamin D). In human osteoblasts (OBs), parathyroid hormone regulates the expression of receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin (OPG) to affect osteoclast (OC) formation. In addition, Mg may also affect the vitamin D3 -mediated bone remodeling activity. vitamin D3 usually coordinates the activation of the OB and OC. The unbalanced activation OC leads to bone resorption. The RANK/RANKL/OPG axis is considered to be a key factor in the molecular mechanism of osteoporosis. Mg participates in the pathogenesis of osteoporosis by affecting the regulation of parathyroid hormone and vitamin D levels to affect the RANK/RANKL/OPG axis. Different factors affecting the axis and enhancing OC function led to bone loss and bone tissue microstructure damage, which leads to the occurrence of osteoporosis. Clinical research has shown that Mg supplementation can alleviate the symptoms of osteoporosis to some extent.


Subject(s)
Magnesium , Osteoporosis , Humans , Osteoporosis/etiology , Osteoporosis/metabolism , Magnesium/metabolism , Animals , Parathyroid Hormone/metabolism , RANK Ligand/metabolism , Osteoblasts/metabolism , Bone Remodeling/physiology , Vitamin D/metabolism , Magnesium Deficiency/metabolism , Magnesium Deficiency/complications , Osteoclasts/metabolism , Osteoprotegerin/metabolism
6.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892126

ABSTRACT

The association between vitamin D deficiency and cardiovascular disease remains a controversial issue. This study aimed to further elucidate the role of vitamin D signaling in the development of left ventricular (LV) hypertrophy and dysfunction. To ablate the vitamin D receptor (VDR) specifically in cardiomyocytes, VDRfl/fl mice were crossed with Mlcv2-Cre mice. To induce LV hypertrophy experimentally by increasing cardiac afterload, transverse aortic constriction (TAC) was employed. Sham or TAC surgery was performed in 4-month-old, male, wild-type, VDRfl/fl, Mlcv2-Cre, and cardiomyocyte-specific VDR knockout (VDRCM-KO) mice. As expected, TAC induced profound LV hypertrophy and dysfunction, evidenced by echocardiography, aortic and cardiac catheterization, cardiac histology, and LV expression profiling 4 weeks post-surgery. Sham-operated mice showed no differences between genotypes. However, TAC VDRCM-KO mice, while having comparable cardiomyocyte size and LV fibrosis to TAC VDRfl/fl controls, exhibited reduced fractional shortening and ejection fraction as measured by echocardiography. Spatial transcriptomics of heart cryosections revealed more pronounced pro-inflammatory and pro-fibrotic gene regulatory networks in the stressed cardiac tissue niches of TAC VDRCM-KO compared to VDRfl/fl mice. Hence, our study supports the notion that vitamin D signaling in cardiomyocytes plays a protective role in the stressed heart.


Subject(s)
Disease Models, Animal , Fibrosis , Gene Regulatory Networks , Hypertrophy, Left Ventricular , Mice, Knockout , Myocytes, Cardiac , Receptors, Calcitriol , Signal Transduction , Vitamin D , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Vitamin D/metabolism , Male , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology
7.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892458

ABSTRACT

Vitamin D-binding protein (DBP), also known as Gc-globulin, is a protein that affects several physiological processes, including the transport and regulation of vitamin D metabolites. Genetic polymorphisms in the DBP gene have a significant impact on vitamin D levels and may have implications for disease risk. DBP polymorphisms are linked to differential immune responses, which could influence the onset of juvenile diseases. This narrative review examines the various roles of DBP, with a focus on bone health, immunological regulation, and lipid metabolism in children. Chronic disorders affected by DBP polymorphisms include bone abnormalities, autoimmune diseases, cardiovascular issues, childhood asthma, allergies, cystic fibrosis, acute liver failure, celiac disease, inflammatory bowel disease, and chronic kidney disease. Future research should focus on identifying the processes that underpin the many roles that DBP plays and developing customized therapeutics to improve health outcomes in the juvenile population.


Subject(s)
Vitamin D-Binding Protein , Humans , Vitamin D-Binding Protein/genetics , Vitamin D-Binding Protein/metabolism , Child , Child Health , Vitamin D/metabolism , Lipid Metabolism , Polymorphism, Genetic
8.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928369

ABSTRACT

Lung cancer has an unfavorable prognosis with a rate of low overall survival, caused by the difficulty of diagnosis in the early stages and resistance to therapy. In recent years, there have been new therapies that use specific molecular targets and are effective in increasing the survival chances of advanced cancer. Therefore, it is necessary to find more specific biomarkers that can identify early changes in carcinogenesis and allow the earliest possible treatment. Vitamin D (VD) plays an important role in immunity and carcinogenesis. Furthermore, the vitamin D receptor (VDR) regulates the expression of various genes involved in the physiological functions of the human organism. The genes encoding the VDR are extremely polymorphic and vary greatly between human populations. To date, there are significant associations between VDR polymorphism and several types of cancer, but the data on the involvement of VDR polymorphism in lung cancer are still conflicting. Therefore, in this review, our aim was to investigate the relationship between VDR single-nucleotide polymorphisms in humans and the degree of risk for developing lung cancer. The studies showcased different gene polymorphisms to be associated with an increased risk of lung cancer: TaqI, ApaI, BsmI, FokI, and Cdx2. In addition, there is a strong positive correlation between VD deficiency and lung cancer development. Still, due to a lack of awareness, the assessment of VD status and VDR polymorphism is rarely considered for the prediction of lung cancer evolution and their clinical applicability, despite the fact that studies have shown the highest risk for lung cancer given by TaqI gene polymorphisms and that VDR polymorphisms are associated with more aggressive cancer evolution.


Subject(s)
Genetic Predisposition to Disease , Lung Neoplasms , Polymorphism, Single Nucleotide , Receptors, Calcitriol , Vitamin D , Humans , Receptors, Calcitriol/genetics , Lung Neoplasms/genetics , Vitamin D/metabolism , Risk Factors
9.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891771

ABSTRACT

Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.


Subject(s)
DNA Damage , Poly (ADP-Ribose) Polymerase-1 , Ultraviolet Rays , Vitamin D , Humans , Ultraviolet Rays/adverse effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Vitamin D/pharmacology , Vitamin D/metabolism , Vitamin D/analogs & derivatives , DNA Damage/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Keratinocytes/drug effects , Calcitriol/pharmacology , Calcitriol/metabolism , DNA Repair/drug effects , Phosphorylation/drug effects
10.
Biomolecules ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927120

ABSTRACT

Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.


Subject(s)
Receptors, Calcitriol , Vitamin D3 24-Hydroxylase , Vitamin D , Animals , Vitamin D/metabolism , Humans , Vitamin D3 24-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/genetics , Mice , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Intestinal Mucosa/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Intestines/enzymology , Calcitriol/metabolism
11.
Adv Food Nutr Res ; 109: 160-184, 2024.
Article in English | MEDLINE | ID: mdl-38777412

ABSTRACT

Current global estimation suggests that about 10% of adults worldwide have diabetes, thus, various strategies are needed to address the issue, including dietary factors such as vitamin D. Various studies have suggested an inverse associations between vitamin D and the risks and pathogenesis of all forms of diabetes (type 1, type 2 and gestational diabetes). The underlying mechanism is not fully understood; however, the expression of vitamin D receptors in pancreatic beta cells suggests an important physiological role for vitamin D in beta cell function. Vitamin D deficiency may impair blood glucose control and decrease insulin sensitivity by reducing insulin secretion from beta cells. Many studies suggest that vitamin D intervention may be beneficial; however, there is inconclusive evidence of the effectiveness of vitamin D supplementation on reducing the risks or managing the pathogenesis of all forms of diabetes. Part of the pathogenesis of vitamin D for reducing diabetes is thought to be related to its impact on gut microbiota profile, via the suggested prebiotic properties of vitamin D.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D/pharmacology , Vitamin D/metabolism , Gastrointestinal Microbiome/drug effects , Diabetes Mellitus/prevention & control , Dietary Supplements
12.
Clin Transl Med ; 14(5): e1681, 2024 May.
Article in English | MEDLINE | ID: mdl-38725048

ABSTRACT

BACKGROUND: We explored the potential novel anticancer mechanisms of 25-hydroxyvitamin D (25(OH)D), a vitamin D metabolite with antitumour effects in breast cancer. It is stable in serum and is used to assess vitamin D levels in clinical practice. Transfer RNA-derived small RNAs are small noncoding RNAs that generate various distinct biological functions, but more research is needed on their role in breast cancer. METHODS: Small RNA microarrays were used to explore the novel regulatory mechanism of 25(OH)D. High-throughput RNA-sequencing technology was used to detect transcriptome changes after 25(OH)D treatment and tRF-1-Ser knockdown. RNA pull-down and high-performance liquid chromatography-mass spectrometry/mass spectrometry were used to explore the proteins bound to tRF-1-Ser. In vitro and in vivo functional experiments were conducted to assess the influence of 25(OH)D and tRF-1-Ser on breast cancer. Semi-quantitative PCR was performed to detect alternative splicing events. Western blot assay and qPCR were used to assess protein and mRNA expression. RESULTS: The expression of tRF-1-Ser is negatively regulated by 25(OH)D. In our breast cancer (BRCA) clinical samples, we found that the expression of tRF-1-Ser was higher in cancer tissues than in paired normal tissues, and was significantly associated with tumour invasion. Moreover, tRF-1-Ser inhibits the function of MBNL1 by hindering its nuclear translocation. Functional experiments and transcriptome data revealed that the downregulation of tRF-1-Ser plays a vital role in the anticancer effect of 25(OH)D. CONCLUSIONS: In brief, our research revealed a novel anticancer mechanism of 25(OH)D, unveiled the vital function of tRF-1-Ser in BRCA progression, and suggested that tRF-1-Ser could emerge as a new therapeutic target for BRCA.


Subject(s)
Breast Neoplasms , Cell Proliferation , RNA-Binding Proteins , Vitamin D , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Proliferation/genetics , Mice , Animals
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732007

ABSTRACT

Due to the high mortality rate in Western countries, pancreatic cancer is considered one of the big killers, leaving patients and their families with little hope upon diagnosis. Although surgical and drug therapies are critical for cancer patients to improve life expectancy and alleviation of suffering, nutrition plays a key role in improving cancer treatment outcomes. This narrative review, conducted as part of the activities of the Italian Society of Human Nutrition (SINU) working group in oncology, focuses on the prevalence of vitamin malnutrition among pancreatic cancer patients. The results of the literature search show that pancreatic cancer patients are at a heightened risk of water-soluble vitamin deficiencies, particularly of vitamins B1, B3, and B6. Additionally, they also face an increased risk of deficiency of fat-soluble vitamins. Among these vitamins, the potential role of vitamin D in pancreatic cancer has garnered the most attention, with its plasma levels being identified as a significant factor in patient survival. Investigating vitamin nutritional status could provide valuable insights for incorporating nutritional approaches into the prevention and treatment of pancreatic cancer, thereby reducing the exacerbation of symptoms associated with the diagnosis.


Subject(s)
Nutritional Status , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/blood , Vitamins/therapeutic use , Vitamins/blood , Vitamins/metabolism , Vitamin D/blood , Vitamin D/metabolism
14.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732118

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.


Subject(s)
Fatty Liver , Receptors, Calcitriol , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D/metabolism , Animals , Vitamin D Deficiency/complications , Vitamin D Deficiency/metabolism , Receptors, Calcitriol/metabolism , Fatty Liver/metabolism , Fatty Liver/etiology , Insulin Resistance , Liver/metabolism , Liver/pathology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology
15.
Minerva Med ; 115(3): 320-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727708

ABSTRACT

Phosphate is a key component of mineralized tissues and is also part of many organic compounds. Phosphorus homeostasis depends especially upon intestinal absorption, and renal excretion, which are regulated by various hormones, such as PTH, 1,25-dihydroxyvitamin D, and fibroblast growth factor 23. In this review we provide an update of several genetic disorders that affect phosphate transporters through cell membranes or the phosphate-regulating hormones, and, consequently, result in hypophosphatemia.


Subject(s)
Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Hypophosphatemia , Parathyroid Hormone , Humans , Hypophosphatemia/genetics , Hypophosphatemia/etiology , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Parathyroid Hormone/metabolism , Phosphates/metabolism , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Klotho Proteins , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Intestinal Absorption/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , Phosphorus/metabolism
17.
Steroids ; 207: 109437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723841

ABSTRACT

Vitamin D resistance (VDRES) explains the necessity for higher doses of Vitamin D (VD) than those recommended for treatment success. VD receptor (VDR) signaling blockade, such as that caused by infections and poisons, is one basis for VDRES etiology. Mutations within genes affecting the VD system cause susceptibility to developing low VD responsiveness and autoimmunity. In contrast, VD hypersensitivity (VDHY) occurs if there is extra VD in the body; for example, as a result of an overdose of a VD supplement. Excess 1,25(OH)2D3 is produced in lymphomas and granulomatous diseases. The placenta produces excess 1,25(OH)2D3. Gene mutations regulating the production or degradation of 1,25(OH)2D3 enhance the effects of 1,25(OH)2D3. Increased 1,25(OH)2D3 levels stimulate calcium absorption in the gut, leading to hypercalcemia. Hypercalcemia can result in the calcification of the kidneys, circulatory system, or placenta, leading to kidney failure, cardiovascular disease, and pregnancy complications. The primary treatment involves avoiding exposure to the sun and VD supplements. The prevalence rates of VDRES and VDHY remain unclear. One estimate was that 25%, 51%, and 24% of the patients had strong, medium, and poor responses, respectively. Heavy-dose VD therapy may be a promising method for the treatment of autoimmune diseases; however, assessing its potential side effects is essential. To avoid VD-mediated hypercalcemia, responsiveness must be considered when treating pregnancies or cardiovascular diseases associated with VD. Furthermore, how VD is associated with the related disorders remains unclear. Investigating responsiveness to VD may provide more accurate results.


Subject(s)
Vitamin D , Humans , Vitamin D/metabolism , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Pregnancy , Female , Animals
18.
Mitochondrion ; 77: 101891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692383

ABSTRACT

Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.


Subject(s)
Ion Channels , Mitochondria , Ion Channels/metabolism , Ion Channels/genetics , Humans , Mitochondria/metabolism , Animals , Gene Expression Regulation/drug effects , Vitamin D/pharmacology , Vitamin D/metabolism
19.
Reprod Health ; 21(1): 61, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698459

ABSTRACT

Vitamin D is a fat-soluble steroid hormone that was initially known only for regulating calcium and phosphorus levels and maintaining bone health. However, it was later discovered that many organs express vitamin D metabolizing enzymes and have a ligand for vitamin D, which regulates the expression of an extensive assortment of genes. As a result, vitamin D is indispensable for the proper function of organs, and its deficiency is believed to be a critical factor in symptoms and disorders such as cardiovascular diseases, autoimmune diseases, and cancers. The significance of vitamin D in reproductive tissues was recognized later, and studies have revealed its crucial role in male and female fertility, as well as proper reproductive function during pregnancy. Vitamin D deficiency has been identified as a risk factor for infertility, gonadal cancers, pregnancy complications, polycystic ovary syndrome, and endometriosis. However, data investigating the association between vitamin D levels and reproductive disorders, including endometriosis, have encountered inconsistencies. Therefore, the present study aims to review existing research on the effect of vitamin D on proper reproductive function, and the role of deficiency in reproductive diseases and specifically focuses on endometriosis.


Subject(s)
Endometriosis , Vitamin D Deficiency , Vitamin D , Humans , Endometriosis/metabolism , Female , Vitamin D/blood , Vitamin D/metabolism , Vitamin D Deficiency/complications , Pregnancy , Reproduction/physiology , Infertility, Female/etiology
20.
Front Immunol ; 15: 1373904, 2024.
Article in English | MEDLINE | ID: mdl-38715605

ABSTRACT

Having increased popularity during the Covid-19 pandemic, vitamin D3 is currently impressing thanks to the numerous researches aimed at its interactions with the body's homeostasis. At the same time, there is a peak in terms of recommendations for supplementation with it. Some of the studies focus on the link between autoimmune diseases and nutritional deficiencies, especially vitamin D3. Since the specialized literature aimed at children (patients between 0-18 years old) is far from equal to the informational diversity of the adult-centered branch, this review aims to bring up to date the relationship between the microbial and nutritional balance and the activity of pediatric systemic lupus erythematosus (pSLE). The desired practical purpose resides in a better understanding and an adequate, individualized management of the affected persons to reduce morbidity. The center of the summary is to establish the impact of hypovitaminosis D in the development and evolution of pediatric lupus erythematosus. We will address aspects related to the two entities of the impact played by vitamin D3 in the pathophysiological cascade of lupus, but also the risk of toxicity and its effects when the deficiency is over supplemented (hypervitaminosis D). We will debate the relationship of hypovitaminosis D with the modulation of immune function, the potentiation of inflammatory processes, the increase of oxidative stress, the perfusion of cognitive brain areas, the seasonal incidence of SLE and its severity. Finally, we review current knowledge, post-pandemic, regarding the hypovitaminosis D - pSLE relationship.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Vitamin D Deficiency , Vitamin D , Humans , Lupus Erythematosus, Systemic/immunology , COVID-19/immunology , Child , Vitamin D Deficiency/immunology , Vitamin D Deficiency/complications , Vitamin D/metabolism , SARS-CoV-2/immunology , Adolescent , Child, Preschool , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...