Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.595
Filter
2.
J Vis Exp ; (209)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39141538

ABSTRACT

Vocal communication plays a crucial role in the social interactions of primates, particularly in survival and social organization. Humans have developed a unique and advanced vocal communication strategy in the form of language. To study the evolution of human language, it is necessary to investigate the neural mechanisms underlying vocal processing in humans, as well as to understand how brain mechanisms have evolved by comparing them with those in nonhuman primates. Herein, we developed a method to noninvasively measure the electroencephalography (EEG) of awake nonhuman primates. This recording method allows for long-term studies without harming the animals, and, importantly, allows us to directly compare nonhuman primate EEG data with human data, providing insights into the evolution of human language. In the current study, we used the scalp EEG recording method to investigate brain activity in response to species-specific vocalizations in marmosets. This study provides novel insights by using scalp EEG to capture widespread neural representations in marmosets during vocal perception, filling gaps in existing knowledge.


Subject(s)
Callithrix , Electroencephalography , Vocalization, Animal , Animals , Electroencephalography/methods , Vocalization, Animal/physiology , Callithrix/physiology , Auditory Perception/physiology , Male , Wakefulness/physiology , Female
3.
PLoS One ; 19(8): e0305708, 2024.
Article in English | MEDLINE | ID: mdl-39133732

ABSTRACT

The classification of bird species is of significant importance in the field of ornithology, as it plays an important role in assessing and monitoring environmental dynamics, including habitat modifications, migratory behaviors, levels of pollution, and disease occurrences. Traditional methods of bird classification, such as visual identification, were time-intensive and required a high level of expertise. However, audio-based bird species classification is a promising approach that can be used to automate bird species identification. This study aims to establish an audio-based bird species classification system for 264 Eastern African bird species employing modified deep transfer learning. In particular, the pre-trained EfficientNet technique was utilized for the investigation. The study adapts the fine-tune model to learn the pertinent patterns from mel spectrogram images specific to this bird species classification task. The fine-tuned EfficientNet model combined with a type of Recurrent Neural Networks (RNNs) namely Gated Recurrent Unit (GRU) and Long short-term memory (LSTM). RNNs are employed to capture the temporal dependencies in audio signals, thereby enhancing bird species classification accuracy. The dataset utilized in this work contains nearly 17,000 bird sound recordings across a diverse range of species. The experiment was conducted with several combinations of EfficientNet and RNNs, and EfficientNet-B7 with GRU surpasses other experimental models with an accuracy of 84.03% and a macro-average precision score of 0.8342.


Subject(s)
Birds , Deep Learning , Animals , Birds/physiology , Birds/classification , Neural Networks, Computer , Vocalization, Animal/physiology , Sound Spectrography/methods
4.
Sci Rep ; 14(1): 18474, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122779

ABSTRACT

Sperm whales (Physeter macrocephalus) have been studied for decades, but the development of their clicks during the animal growth is not yet well known. The click they emit during socialization and echolocation contains information about the length of their acoustic organs and, therefore the length of the body through the interpulse interval (IPI). This paper provides the first IPI/age relationship for juvenile male and female sperm whales (Physeter macrocephalus) based on field recordings of individuals whose age is largely known. Across 9 years, audiovisual recordings of a Mauritian sperm whale social unit were carried out. Adult female and juvenile sperm whales were identified and aged. The dataset made from those recordings is publicly available. The interpulse interval was measured for individuals whose ages ranged from 7 days to around 38 years. The growth of the acoustic organ of juveniles showed an early inter-individual variability as well as sexual dimorphism. Usual growth models were also fitted, predicting a mean I P I ∞ of 3.5 ms for adults and a physical maturity reached at around 30 years old. The use of passive acoustic monitoring (PAM) is one of the main tools used to study sperm whales. This IPI-age relationship may aid demographic studies on sperm whales by enabling PAM to assess the ages of recorded sperm whales.


Subject(s)
Sperm Whale , Animals , Sperm Whale/physiology , Female , Male , Mauritius , Vocalization, Animal/physiology , Echolocation/physiology , Age Factors , Animals, Newborn
5.
J Acoust Soc Am ; 156(2): 1070-1080, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39140880

ABSTRACT

This study focuses on the acoustic classification of delphinid species at the southern continental slope of Brazil. Recordings were collected between 2013 and 2015 using towed arrays and were processed using a classifier to identify the species in the recordings. Using Raven Pro 1.6 software (Cornell Laboratory of Ornithology, Ithaca, NY), we analyzed whistles for species identification. The random forest algorithm in R facilitates classification analysis based on acoustic parameters, including low, high, delta, center, beginning, and ending frequencies, and duration. Evaluation metrics, such as correct and incorrect classification percentages, global accuracy, balanced accuracy, and p-values, were employed. Receiver operating characteristic curves and area-under-the-curve (AUC) values demonstrated well-fitting models (AUC ≥ 0.7) for species definition. Duration and delta frequency emerged as crucial parameters for classification, as indicated by the decrease in mean accuracy. Multivariate dispersion plots visualized the proximity between acoustic and visual match data and exclusively acoustic encounter (EAE) data. The EAE results classified as Delphinus delphis (n = 6), Stenella frontalis (n = 3), and Stenella longirostris (n = 2) provide valuable insights into the presence of these species between approximately 23° and 34° S in Brazil. This study demonstrates the effectiveness of acousting classification in discriminating delphinids through whistle parameters.


Subject(s)
Acoustics , Dolphins , Vocalization, Animal , Animals , Vocalization, Animal/classification , Atlantic Ocean , Dolphins/classification , Dolphins/physiology , Sound Spectrography , Brazil , Species Specificity , Signal Processing, Computer-Assisted
7.
J Exp Biol ; 227(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38989535

ABSTRACT

The ability to communicate through vocalization plays a key role in the survival of animals across all vertebrate groups. Although avian reptiles have received much attention relating to their stunning sound repertoire, non-avian reptiles have been wrongfully assumed to have less elaborate vocalization types, and little is known about the biomechanics of sound production and their underlying neural pathways in this group. We investigated alarm calls of Gekko gecko using audio and cineradiographic recordings. Acoustic analysis revealed three distinct call types: a sinusoidal call type (type 1); a train-like call type, characterized by distinct pulse trains (type 3); and an intermediate type, which showed both sinusoidal and pulse train components (type 2). Kinematic analysis of cineradiographic recordings showed that laryngeal movements differ significantly between respiratory and vocal behavior. During respiration, animals repeatedly moved their jaws to partially open their mouths, which was accompanied by small glottal movements. During vocalization, the glottis was pulled back, contrasting with what has previously been reported. In vitro retrograde tracing of the nerve innervating the laryngeal constrictor and dilator muscles revealed round to fusiform motoneurons in the hindbrain-spinal cord transition ipsilateral to the labeled nerve. Taken together, our observations provide insight into the alarm calls generated by G. gecko, the biomechanics of this sound generation and the underlying organization of motoneurons involved in the generation of vocalizations. Our observations suggest that G. gecko may be an excellent non-avian reptile model organism for enhancing our understanding of the evolution of vertebrate vocalization.


Subject(s)
Biological Evolution , Larynx , Lizards , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Lizards/physiology , Larynx/physiology , Biomechanical Phenomena , Models, Animal , Male
8.
Proc Natl Acad Sci U S A ; 121(28): e2400596121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968119

ABSTRACT

In adult songbirds, new neurons are born in large numbers in the proliferative ventricular zone in the telencephalon and migrate to the adjacent song control region HVC (acronym used as proper name) [A. Reiner et al., J. Comp. Neurol. 473, 377-414 (2004)]. Many of these new neurons send long axonal projections to the robust nucleus of the arcopallium (RA). The HVC-RA circuit is essential for producing stereotyped learned song. The function of adult neurogenesis in this circuit has not been clear. A previous study suggested that it is important for the production of well-structured songs [R. E. Cohen, M. Macedo-Lima, K. E. Miller, E. A. Brenowitz, J. Neurosci. 36, 8947-8956 (2016)]. We tested this hypothesis by infusing the neuroblast migration inhibitor cyclopamine into HVC of male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to block seasonal regeneration of the HVC-RA circuit. Decreasing the number of new neurons in HVC prevented both the increase in spontaneous electrical activity of RA neurons and the improved structure of songs that would normally occur as sparrows enter breeding condition. These results show that the incorporation of new neurons into the adult HVC is necessary for the recovery of both electrical activity and song behavior in breeding birds and demonstrate the value of the bird song system as a model for investigating adult neurogenesis at the level of long projection neural circuits.


Subject(s)
Neurogenesis , Prosencephalon , Vocalization, Animal , Animals , Neurogenesis/physiology , Prosencephalon/physiology , Prosencephalon/cytology , Vocalization, Animal/physiology , Male , Sparrows/physiology , Neurons/physiology , Nerve Regeneration/physiology
9.
PeerJ ; 12: e17574, 2024.
Article in English | MEDLINE | ID: mdl-38948235

ABSTRACT

Anurans are among the most vocally active vertebrate animals and emit calls with different functions. In order to attract a mate, during the breeding season male frogs produce mating calls which have species-specific structure and parameters, and have been successfully used to resolve issues in taxonomy and phylogenetic relations. This is particularly useful when closely related taxa are concerned, as many species are morphologically almost identical, but still their status is well-supported by molecular and genetic data, suggesting the existence of mechanisms for reproductive isolation. Such is the case for treefrogs from the Hyla arborea group, which are now recognized as several distinct species. The present study aims to establish differences in call parameters between the European tree frog, Hyla arborea, and the Eastern tree frog, Hyla orientalis, which both occur on the territory of Bulgaria. Using autonomous audio loggers, calls from six sites (three in the range of H. arborea and three in the range of H. orientalis) were recorded between 7 p.m. and 12 a.m. during the breeding season in 2020-2023. The following parameters in a total of 390 mating calls were analyzed: call count, pulse count, call series duration, call period, peak (dominant) frequency, entropy. Results indicated that sites formed two distinct groups, which corresponded to the known distribution ranges of H. arborea and H. orientalis. The first two components of the PCA explained 71% of the total variance, with variables call count, call series duration, peak frequency and entropy being most important for differentiation between the sites. This study presents the first attempt to differentiate between the calls of these two sister taxa, which both fall within the "short-call treefrogs" group, and results are discussed in terms of known data for mating calls in Hyla sp., as well as limitations and future perspectives.


Subject(s)
Anura , Sexual Behavior, Animal , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Bulgaria , Male , Anura/physiology , Sexual Behavior, Animal/physiology , Species Specificity , Phylogeny , Female
10.
Proc Biol Sci ; 291(2026): 20240150, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955229

ABSTRACT

Vocal turn-taking has been described in a diversity of species. Yet, a model that is able to capture the various processes underlying this social behaviour across species has not been developed. To this end, here we recorded a large and diverse dataset of marmoset monkey vocal behaviour in social contexts comprising one, two and three callers and developed a model to determine the keystone factors that affect the dynamics of these natural communicative interactions. Notably, marmoset turn-taking did not abide by coupled-oscillator dynamics, but rather call timing was overwhelmingly stochastic in these exchanges. Our features-based model revealed four key factors that encapsulate the majority of patterns evident in the behaviour, ranging from internal processes, such as particular states of the individual driving increased calling, to social context-driven suppression of calling. These findings indicate that marmoset vocal turn-taking is affected by a broader suite of mechanisms than previously considered and that our model provides a predictive framework with which to further explicate this natural behaviour at both the behavioural and neurobiological levels, and for direct comparisons with the analogous behaviour in other species.


Subject(s)
Callithrix , Social Behavior , Vocalization, Animal , Animals , Callithrix/physiology , Male , Female , Models, Biological
11.
J Acoust Soc Am ; 156(1): 137-150, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958489

ABSTRACT

The artificial reefs in New York's waters provide structure in areas that are typically flat and sandy, creating habitat for a multitude of species as an area to spawn, forage, and reside. Passive acoustic data collected on the Fire Island and Shinnecock artificial reefs between 2018 and 2022 detected spawning-associated calls of weakfish (Cynoscion regalis) and Atlantic cod (Gadus morhua), as well as the presence of individual bottlenose dolphins (Tursiops truncatus) through their signature whistles. Weakfish and Atlantic cod were more vocally active on the Fire Island reef, where Atlantic cod grunts peaked during a new moon phase in December, and weakfish spawning experienced variable peaks between mid-July and mid-August on both reefs. Fifty-seven individual bottlenose dolphins were identified, with whistle repeats ranging from seconds to years apart. Passive acoustic monitoring allows for simultaneous collection of information on multiple species at different trophic levels as well as behavioral information that helps managers understand how these animals utilize these habitats, which can lead to improved conservation measures.


Subject(s)
Acoustics , Bottle-Nosed Dolphin , Gadus morhua , Vocalization, Animal , Animals , Bottle-Nosed Dolphin/physiology , Gadus morhua/physiology , Coral Reefs , Reproduction/physiology , Ecosystem , Environmental Monitoring/methods , Female , Perciformes/physiology
12.
J Acoust Soc Am ; 156(1): 16-28, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949290

ABSTRACT

Echolocating bats are known to vary their waveforms at the phases of searching, approaching, and capturing the prey. It is meaningful to estimate the parameters of the calls for bat species identification and the technological improvements of the synthetic systems, such as radar and sonar. The type of bat calls is species-related, and many calls can be modeled as hyperbolic frequency- modulated (HFM) signals. To obtain the parameters of the HFM-modeled bat calls, a reversible integral transform, i.e., hyperbolic scale transform (HST), is proposed to transform a call into two-dimensional peaks in the "delay-scale" domain, based on which harmonic separation and parameter estimation are realized. Compared with the methods based on time-frequency analysis, the HST-based method does not need to extract the instantaneous frequency of the bat calls, only searching for peaks. The verification results show that the HST is suitable for analyzing the HFM-modeled bat calls containing multiple harmonics with a large energy difference, and the estimated parameters imply that the use of the waveforms from the searching phase to the capturing phase is beneficial to reduce the ranging bias, and the trends in parameters may be useful for bat species identification.


Subject(s)
Acoustics , Chiroptera , Echolocation , Signal Processing, Computer-Assisted , Vocalization, Animal , Chiroptera/physiology , Chiroptera/classification , Animals , Vocalization, Animal/classification , Sound Spectrography , Time Factors , Models, Theoretical
13.
Sci Rep ; 14(1): 16519, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019952

ABSTRACT

Incidental capture of non-target species poses a pervasive threat to many marine species, with sometimes devastating consequences for both fisheries and conservation efforts. Because of the well-known importance of vocalizations in cetaceans, acoustic deterrents have been extensively used for these species. In contrast, acoustic communication for sea turtles has been considered negligible, and this question has been largely unexplored. Addressing this challenge therefore requires a comprehensive understanding of sea turtles' responses to sensory signals. In this study, we scrutinized the avenue of auditory cues, specifically the natural sounds produced by green turtles (Chelonia mydas) in Martinique, as a potential tool to reduce bycatch. We recorded 10 sounds produced by green turtles and identified those that appear to correspond to alerts, flight or social contact between individuals. Subsequently, these turtle sounds-as well synthetic and natural (earthquake) sounds-were presented to turtles in known foraging areas to assess the behavioral response of green turtles to these sounds. Our data highlighted that the playback of sounds produced by sea turtles was associated with alert or increased the vigilance of individuals. This therefore suggests novel opportunities for using sea turtle sounds to deter them from fishing gear or other potentially harmful areas, and highlights the potential of our research to improve sea turtles populations' conservation.


Subject(s)
Turtles , Vocalization, Animal , Animals , Turtles/physiology , Vocalization, Animal/physiology , Conservation of Natural Resources/methods , Sound
14.
PeerJ ; 12: e17767, 2024.
Article in English | MEDLINE | ID: mdl-39056054

ABSTRACT

Group-living animals engage in coordinated vocalizations to depart from a location as a group, and often, to come to a consensus about the direction of movement. Here, we document for the first time, the use of coordinated vocalizations, the "let's go" rumble, in wild male African elephant group departures from a waterhole. We recorded vocalizations and collected behavioral data as known individuals engaged in these vocal bouts during June-July field seasons in 2005, 2007, 2011, and 2017 at Mushara waterhole within Etosha National Park, Namibia. During departure events, we documented which individuals were involved in the calls, the signature structure of each individual's calls, as well as the ordering of callers, the social status of the callers, and those who initiated departure. The "let's go" rumble was previously described in tight-knit family groups to keep the family together during coordinated departures. Male elephants are described as living in loose social groups, making this finding particularly striking. We found that this vocal coordination occurs in groups of closely associated, highly bonded individuals and rarely occurs between looser associates. The three individuals most likely to initiate the "let's go" rumble bouts were all highly socially integrated, and one of these individuals was also the most dominant overall. This finding suggests that more socially integrated individuals might be more likely to initiate, or lead, a close group of associates in the context of leaving the waterhole, just as a high-ranking female would do in a family group. The fact that many individuals were involved in the vocal bouts, and that departure periods could be shorter, longer, or the same amount of time as pre-departure periods, all suggest that there is consensus with regard to the act of leaving, even though the event was triggered by a lead individual.


Subject(s)
Elephants , Leadership , Social Behavior , Vocalization, Animal , Male , Animals , Vocalization, Animal/physiology , Elephants/physiology , Namibia , Consensus
15.
PLoS One ; 19(7): e0306932, 2024.
Article in English | MEDLINE | ID: mdl-39058671

ABSTRACT

The impacts of human activities and climate change on animal populations often take considerable time before they are reflected in typical measures of population health such as population size, demography, and landscape use. Earlier detection of such impacts could enhance the effectiveness of conservation strategies, particularly for species with slow population growth. Passive acoustic monitoring is increasingly used to estimate occupancy and population size, but this tool can also monitor subtle shifts in behavior that might be early indicators of changing impacts. Here we use data from an acoustic grid, monitoring 1250 km2 of forest in northern Republic of Congo, to study how forest elephants (Loxodonta cyclotis) assess risk associated with human impacts across a landscape that includes a national park as well as active and inactive logging concessions. By quantifying emerging patterns of behavior at the population level, arising from individual-based decisions, we gain an understanding of how elephants perceive their landscape along an axis of human disturbance. Forest elephants in relatively undisturbed forests are active nearly equally day and night. However, they become more nocturnal when exposed to a perceived risk such as poaching. We assessed elephant perception of risk by monitoring changes in the likelihood of nocturnal vocal activity relative to differing levels of human activity. We show that logging is perceived to be a risk on moderate time and small spatial scales, but with little effect on elephant density. However, risk avoidance persisted in areas with relatively easy access to poachers and in more open habitats where poaching has historically been concentrated. Increased nocturnal activity is a common response in many animals to human intrusion on the landscape. Provided a species is acoustically active, passive acoustic monitoring can measure changes in human impact at early stages of such change, informing management priorities.


Subject(s)
Acoustics , Conservation of Natural Resources , Elephants , Forests , Elephants/physiology , Animals , Humans , Congo , Vocalization, Animal/physiology , Human Activities , Population Density , Climate Change
16.
Sci Rep ; 14(1): 15532, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969671

ABSTRACT

Acoustic communication is widespread in beetles, is often sexually dimorphic, and plays a significant role in behaviours such as premating recognition, courtship, and copulation. However, the factors that determine the presence or absence of acoustic signalling in a given species remain unclear. We examined acoustic communication in bark beetles (Scolytinae) and pinhole borers (Platypodinae), which are two speciose groups with widespread sound production capabilities. We show that body size along with the sequence of host colonisation predict the presence of acoustic communication, and report, for the first time in the animal kingdom, a size limit-1.9 mm-below which acoustic signalling ceases to be present.


Subject(s)
Body Size , Coleoptera , Animals , Coleoptera/physiology , Animal Communication , Acoustics , Female , Male , Vocalization, Animal/physiology
17.
Sci Rep ; 14(1): 17135, 2024 07 25.
Article in English | MEDLINE | ID: mdl-39054330

ABSTRACT

Nonhuman great apes have been claimed to be unable to learn human words due to a lack of the necessary neural circuitry. We recovered original footage of two enculturated chimpanzees uttering the word "mama" and subjected recordings to phonetic analysis. Our analyses demonstrate that chimpanzees are capable of syllabic production, achieving consonant-to-vowel phonetic contrasts via the simultaneous recruitment and coupling of voice, jaw and lips. In an online experiment, human listeners naive to the recordings' origins reliably perceived chimpanzee utterances as syllabic utterances, primarily as "ma-ma", among foil syllables. Our findings demonstrate that in the absence of direct data-driven examination, great ape vocal production capacities have been underestimated. Chimpanzees possess the neural building blocks necessary for speech.


Subject(s)
Pan troglodytes , Speech , Vocalization, Animal , Pan troglodytes/physiology , Animals , Vocalization, Animal/physiology , Speech/physiology , Humans , Male , Female , Phonetics
18.
PeerJ ; 12: e17635, 2024.
Article in English | MEDLINE | ID: mdl-38993974

ABSTRACT

Documenting changes in the distribution and abundance of a given taxon requires historical data. In the absence of long-term monitoring data collected throughout the range of a taxon, conservation biologists often rely on preserved museum specimens to determine the past or present, putative geographic distribution. Distributional data for the Houston Toad (Anaxyrus houstonensis) has consistently been confounded by similarities with a sympatric congener, the Dwarf American Toad (A. americanus charlesmithi), both in monitoring data derived from chorusing surveys, and in historical data via museum specimens. In this case, misidentification can have unintended impacts on conservation efforts, where the Houston Toad is federally endangered, and the Dwarf American Toad is of least concern. Previously published reports have compared these two taxon on the basis of their male advertisement call and morphological appearance, often with the goal of using these characters to substantiate their taxonomic status prior to the advent of DNA sequencing technology. However, numerous studies report findings that contradict one another, and no consensus on the true differences or similarities can be drawn. Here, we use contemporary recordings of wild populations of each taxon to test for quantifiable differences in male advertisement call. Additionally, we quantitatively examine a subset of vouchered museum specimens representing each taxon to test previously reported differentiating morphometric characters used to distinguish among other Bufonids of East-Central Texas, USA. Finally, we assemble and qualitatively evaluate a database of photographs representing catalogued museum vouchers for each taxon to determine if their previously documented historic ranges may be larger than are currently accepted. Our findings reveal quantifiable differences between two allopatric congeners with respect to their male advertisement call, whereas we found similarities among their detailed morphology. Additionally, we report on the existence of additional, historically overlooked, museum records for the Houston Toad in the context of its putative historic range, and discuss errors associated with the curation of these specimens whose identity and nomenclature have not been consistent through time. These results bookend decades of disagreement regarding the morphology, voice, and historic distribution of these taxa, and alert practitioners of conservation efforts for the Houston Toad to previously unreported locations of occurrence.


Subject(s)
Bufonidae , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Male , Bufonidae/anatomy & histology , Bufonidae/physiology , Bufonidae/classification , Texas , Conservation of Natural Resources , Female , Animal Distribution
19.
J Acoust Soc Am ; 156(1): 524-533, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39024385

ABSTRACT

Advertisement vocalizations that function in mate acquisition and resource defense within species may also mediate behavioral interactions among species. While olfactory signals play an important role in mate choice and territoriality in rodents, less is known about the function of acoustic signals in influencing interspecific interactions. In this study, we used playback experiments in the laboratory to assess the function of long-distance vocalizations within and among three sympatric species of grasshopper mice. We found that, within each species, individuals of both sexes varied widely in spontaneous vocal behavior and response to playback. The largest species (Onychomys leucogaster) was most responsive to conspecifics, but smaller O. arenicola and O. torridus exhibited no clear pattern in their vocal behavior and were even responsive to the white noise controls. Our results indicate that grasshopper mice are broadly responsive to a range of sounds that resemble calls and that long-distance vocalizations function primarily as signals that facilitate localization for subsequent close-distance assessment by both sexes in various social contexts. Variation in vocal responses among species may depend on competitive dominance, degree of interaction, acoustic similarity, or behavioral changes resulting from captivity. Replicating playback experiments in the field will help validate whether the observed variation in the laboratory reflects ecologically relevant patterns in nature.


Subject(s)
Species Specificity , Vocalization, Animal , Animals , Male , Female , Sympatry , Sound Spectrography , Acoustic Stimulation , Acoustics
20.
BMC Neurosci ; 25(1): 31, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965498

ABSTRACT

BACKGROUND: Most vocal learning species exhibit an early critical period during which their vocal control neural circuitry facilitates the acquisition of new vocalizations. Some taxa, most notably humans and parrots, retain some degree of neurobehavioral plasticity throughout adulthood, but both the extent of this plasticity and the neurogenetic mechanisms underlying it remain unclear. Differential expression of the transcription factor FoxP2 in both songbird and parrot vocal control nuclei has been identified previously as a key pattern facilitating vocal learning. We hypothesize that the resilience of vocal learning to cognitive decline in open-ended learners will be reflected in an absence of age-related changes in neural FoxP2 expression. We tested this hypothesis in the budgerigar (Melopsittacus undulatus), a small gregarious parrot in which adults converge on shared call types in response to shifts in group membership. We formed novel flocks of 4 previously unfamiliar males belonging to the same age class, either "young adult" (6 mo - 1 year) or "older adult" (≥ 3 year), and then collected audio-recordings over a 20-day learning period to assess vocal learning ability. Following behavioral recording, immunohistochemistry was performed on collected neural tissue to measure FoxP2 protein expression in a parrot vocal learning center, the magnocellular nucleus of the medial striatum (MMSt), and its adjacent striatum. RESULTS: Although older adults show lower vocal diversity (i.e. repertoire size) and higher absolute levels of FoxP2 in the MMSt than young adults, we find similarly persistent downregulation of FoxP2 and equivalent vocal plasticity and vocal convergence in the two age cohorts. No relationship between individual variation in vocal learning measures and FoxP2 expression was detected. CONCLUSIONS: We find neural evidence to support persistent vocal learning in the budgerigar, suggesting resilience to aging in the open-ended learning program of this species. The lack of a significant relationship between FoxP2 expression and individual variability in vocal learning performance suggests that other neurogenetic mechanisms could also regulate this complex behavior.


Subject(s)
Aging , Forkhead Transcription Factors , Learning , Vocalization, Animal , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Vocalization, Animal/physiology , Male , Aging/physiology , Aging/metabolism , Learning/physiology , Melopsittacus/physiology , Neurons/metabolism , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL