Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
ChemMedChem ; 16(23): 3588-3599, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34519427

ABSTRACT

Three analogues of To042, a tocainide-related lead compound recently reported for the treatment of myotonia, were synthesized and evaluated in vitro as skeletal muscle sodium channel blockers possibly endowed with enhanced use-dependent behavior. Patch-clamp experiments on hNav1.4 expressed in HEK293 cells showed that N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine, the aryloxyalkyl bioisostere of To042, exerted a higher use-dependent block than To042 thus being able to preferentially block the channels in over-excited membranes while preserving healthy tissue function. It also showed the lowest active transport across BBB according to the results of P-glycoprotein (P-gp) interacting activity evaluation and the highest cytoprotective effect on HeLa cells. Quantum mechanical calculations and dockings gave insights on the most probable conformation of the aryloxyalkyl bioisostere of To042 in solution and the target residues involved in the binding, respectively. Both approaches indicated the conformations that might be adopted in both the unbound and bound state of the ligand. Overall, N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine exhibits an interesting toxico-pharmacological profile and deserves further investigation.


Subject(s)
Butylamines/pharmacology , NAV1.4 Voltage-Gated Sodium Channel/metabolism , Phenyl Ethers/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Antioxidants/chemical synthesis , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/toxicity , Butylamines/chemical synthesis , Butylamines/metabolism , Butylamines/toxicity , HEK293 Cells , HeLa Cells , Humans , Mexiletine/pharmacology , Molecular Docking Simulation , Phenyl Ethers/chemical synthesis , Phenyl Ethers/metabolism , Phenyl Ethers/toxicity , Protein Binding , Reactive Oxygen Species/metabolism , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/toxicity
2.
Cells ; 10(8)2021 08 16.
Article in English | MEDLINE | ID: mdl-34440870

ABSTRACT

Cardiac ryanodine receptor (RyR2) mutations are implicated in the potentially fatal catecholaminergic polymorphic ventricular tachycardia (CPVT) and in atrial fibrillation. CPVT has been successfully treated with flecainide monotherapy, with occasional notable exceptions. Reported actions of flecainide on cardiac sodium currents from mice carrying the pro-arrhythmic homozygotic RyR2-P2328S mutation prompted our explorations of the effects of flecainide on their RyR2 channels. Lipid bilayer electrophysiology techniques demonstrated a novel, paradoxical increase in RyR2 activity. Preceding flecainide exposure, channels were mildly activated by 1 mM luminal Ca2+ and 1 µM cytoplasmic Ca2+, with open probabilities (Po) of 0.03 ± 0.01 (wild type, WT) or 0.096 ± 0.024 (P2328S). Open probability (Po) increased within 0.5 to 3 min of exposure to 0.5 to 5.0 µM cytoplasmic flecainide, then declined with higher concentrations of flecainide. There were no such increases in a subset of high Po channels with Po ≥ 0.08, although Po then declined with ≥5 µM (WT) or ≥50 µM flecainide (P2328S). On average, channels with Po < 0.08 were significantly activated by 0.5 to 10 µM of flecainide (WT) or 0.5 to 50 µM of flecainide (P2328S). These results suggest that flecainide can bind to separate activation and inhibition sites on RyR2, with activation dominating in lower activity channels and inhibition dominating in more active channels.


Subject(s)
Arrhythmias, Cardiac/metabolism , Flecainide/pharmacology , Ion Channel Gating/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/genetics , Calcium/metabolism , Flecainide/metabolism , Ion Channel Gating/physiology , Lipid Bilayers/metabolism , Membrane Potentials , Mice , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
3.
J Mol Cell Cardiol ; 158: 26-37, 2021 09.
Article in English | MEDLINE | ID: mdl-34004185

ABSTRACT

It is imperative to develop better approaches to predict how antiarrhythmic drugs with multiple interactions and targets may alter the overall electrical and/or mechanical function of the heart. Safety Pharmacology studies have provided new insights into the multi-target effects of many different classes of drugs and have been aided by the addition of robust new in vitro and in silico technology. The primary focus of Safety Pharmacology studies has been to determine the risk profile of drugs and drug candidates by assessing their effects on repolarization of the cardiac action potential. However, for decades experimental and clinical studies have described substantial and potentially detrimental effects of Na+ channel blockers in addition to their well-known conduction slowing effects. One such side effect, associated with administration of some Na+ channel blocking drugs is negative inotropy. This reduces the pumping function of the heart, thereby resulting in hypotension. Flecainide is a well-known example of a Na+ channel blocking drug, that exhibits strong rate-dependent block of INa and may cause negative cardiac inotropy. While the phenomenon of Na+ channel suppression and resulting negative inotropy is well described, the mechanism(s) underlying this effect are not. Here, we set out to use a modeling and simulation approach to reveal plausible mechanisms that could explain the negative inotropic effect of flecainide. We utilized the Grandi-Bers model [1] of the cardiac ventricular myocyte because of its robust descriptions of ion homeostasis in order to characterize and resolve the relative effects of QRS widening, flecainide off-target effects and changes in intracellular Ca2+ and Na+ homeostasis. The results of our investigations and predictions reconcile multiple data sets and illustrate how multiple mechanisms may play a contributing role in the flecainide induced negative cardiac inotropic effect.


Subject(s)
Anti-Arrhythmia Agents/adverse effects , Computer Simulation , Flecainide/adverse effects , Myocardial Contraction/drug effects , Voltage-Gated Sodium Channel Blockers/adverse effects , Action Potentials/drug effects , Anti-Arrhythmia Agents/metabolism , Calcium Channels/metabolism , Flecainide/metabolism , Heart Rate/drug effects , Heart Ventricles/cytology , Heart Ventricles/drug effects , Homeostasis/drug effects , Humans , Models, Cardiovascular , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Signal Transduction/drug effects , Sodium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism
4.
Toxins (Basel) ; 13(3)2021 03 07.
Article in English | MEDLINE | ID: mdl-33800031

ABSTRACT

Gating modifier toxins (GMTs) isolated from venomous organisms such as Protoxin-II (ProTx-II) and Huwentoxin-IV (HwTx-IV) that inhibit the voltage-gated sodium channel NaV1.7 by binding to its voltage-sensing domain II (VSDII) have been extensively investigated as non-opioid analgesics. However, reliably predicting how a mutation to a GMT will affect its potency for NaV1.7 has been challenging. Here, we hypothesize that structure-based computational methods can be used to predict such changes. We employ free-energy perturbation (FEP), a physics-based simulation method for predicting the relative binding free energy (RBFE) between molecules, and the cryo electron microscopy (cryo-EM) structures of ProTx-II and HwTx-IV bound to VSDII of NaV1.7 to re-predict the relative potencies of forty-seven point mutants of these GMTs for NaV1.7. First, FEP predicted these relative potencies with an overall root mean square error (RMSE) of 1.0 ± 0.1 kcal/mol and an R2 value of 0.66, equivalent to experimental uncertainty and an improvement over the widely used molecular-mechanics/generalized born-surface area (MM-GB/SA) RBFE method that had an RMSE of 3.9 ± 0.8 kcal/mol. Second, inclusion of an explicit membrane model was needed for the GMTs to maintain stable binding poses during the FEP simulations. Third, MM-GB/SA and FEP were used to identify fifteen non-standard tryptophan mutants at ProTx-II[W24] predicted in silico to have a at least a 1 kcal/mol gain in potency. These predicted potency gains are likely due to the displacement of high-energy waters as identified by the WaterMap algorithm for calculating the positions and thermodynamic properties of water molecules in protein binding sites. Our results expand the domain of applicability of FEP and set the stage for its prospective use in biologics drug discovery programs involving GMTs and NaV1.7.


Subject(s)
Ion Channel Gating/drug effects , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Peptides/toxicity , Spider Venoms/toxicity , Voltage-Gated Sodium Channel Blockers/toxicity , Binding Sites , Computer Simulation , Cryoelectron Microscopy , Models, Molecular , Mutation , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Conformation , Spider Venoms/genetics , Spider Venoms/metabolism , Structure-Activity Relationship , Voltage-Gated Sodium Channel Blockers/metabolism
5.
Med Chem ; 17(9): 1023-1045, 2021.
Article in English | MEDLINE | ID: mdl-32998678

ABSTRACT

BACKGROUND: Anticonvulsants are drugs used in the treatment of seizures; their pharmacology includes promoters of brain inhibition and inhibitors of brain activity. Of the latter, voltagedependent sodium channel blockers (VGSCB) are the most widely used in therapeutics. OBJECTIVE: The study aimed at proposing the structural requirements of VGSC blockers through a quantitative structure-activity relationship analysis of drugs with proven activity. METHODS: IC50 values of anticonvulsant drugs on VGSCs were considered under similar experimental conditions; some physicochemical properties of the molecules that were correlated with their biological activity were determined in silico. RESULTS: Relationships were observed between the dipole moment, pKa, EHOMO, and MR with the biological activity, which infers that between greater polarity and basicity of the drugs, their activity as blockers will increase. Subsequently, the structural subclassification of the drugs was carried out, based on the urea derivation, the groups of which were: Group 1 (direct and bioisostere derivatives) and Group 2 (homologue and vinylogue derivatives of urea). CONCLUSION: The biological activity depends on the polarity, basicity, and electronic density of the drugs. The derivation of urea is essential, which is present in its original substituted form or a bioisosteric form. Urea can be in the form of a homologue or a vinylogue at the ends of the molecule. Aromatic substitution to the urea portion is necessary.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Quantitative Structure-Activity Relationship , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Epilepsy/metabolism , Humans , Voltage-Gated Sodium Channel Blockers/metabolism
6.
Mol Pharmacol ; 99(1): 49-59, 2021 01.
Article in English | MEDLINE | ID: mdl-33298520

ABSTRACT

Voltage-gated sodium channels (Navs) are promising targets for analgesic and antiepileptic therapies. Although specificity between Nav subtypes may be desirable to target specific neural types, such as nociceptors in pain, many broadly acting Nav inhibitors are clinically beneficial in neuropathic pain and epilepsy. Here, we present the first systematic characterization of vixotrigine, a Nav blocker. Using recombinant systems, we find that vixotrigine potency is enhanced in a voltage- and use-dependent manner, consistent with a state-dependent block of Navs. Furthermore, we find that vixotrigine potently inhibits sodium currents produced by both peripheral and central nervous system Nav subtypes, with use-dependent IC50 values between 1.76 and 5.12 µM. Compared with carbamazepine, vixotrigine shows higher potency and more profound state-dependent inhibition but a similar broad spectrum of action distinct from Nav1.7- and Nav1.8-specific blockers. We find that vixotrigine rapidly inhibits Navs and prolongs recovery from the fast-inactivated state. In native rodent dorsal root ganglion sodium channels, we find that vixotrigine shifts steady-state inactivation curves. Based on these results, we conclude that vixotrigine is a broad-spectrum, state-dependent Nav blocker. SIGNIFICANCE STATEMENT: Vixotrigine blocks both peripheral and central voltage-gated sodium channel subtypes. Neurophysiological approaches in recombinant systems and sensory neurons suggest this block is state-dependent.


Subject(s)
Phenyl Ethers/metabolism , Phenyl Ethers/pharmacology , Proline/analogs & derivatives , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , HEK293 Cells , Humans , Male , Phenyl Ethers/chemistry , Proline/chemistry , Proline/metabolism , Proline/pharmacology , Rats , Rats, Sprague-Dawley , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channels/chemistry
7.
J Med Chem ; 63(21): 12773-12785, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33078946

ABSTRACT

Voltage-gated sodium (NaV) channels are pore-forming transmembrane proteins that play essential roles in excitable cells, and they are key targets for antiepileptic, antiarrhythmic, and analgesic drugs. We implemented a heterobivalent design strategy to modulate the potency, selectivity, and binding kinetics of NaV channel ligands. We conjugated µ-conotoxin KIIIA, which occludes the pore of the NaV channels, to an analogue of huwentoxin-IV, a spider-venom peptide that allosterically modulates channel gating. Bioorthogonal hydrazide and copper-assisted azide-alkyne cycloaddition conjugation chemistries were employed to generate heterobivalent ligands using polyethylene glycol linkers spanning 40-120 Å. The ligand with an 80 Å linker had the most pronounced bivalent effects, with a significantly slower dissociation rate and 4-24-fold higher potency compared to those of the monovalent peptides for the human NaV1.4 channel. This study highlights the power of heterobivalent ligand design and expands the repertoire of pharmacological probes for exploring the function of NaV channels.


Subject(s)
Ligands , NAV1.4 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Voltage-Gated Sodium Channel Blockers/chemistry , Action Potentials/drug effects , Amino Acid Sequence , Animals , Binding Sites , Conotoxins/chemistry , Conotoxins/metabolism , Cycloaddition Reaction , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , NAV1.4 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Patch-Clamp Techniques , Polyethylenes/chemistry , Spider Venoms/chemical synthesis , Spider Venoms/chemistry , Spider Venoms/metabolism , Spiders/metabolism , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
8.
Neuropharmacology ; 179: 108266, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32853658

ABSTRACT

Lacosamide is a new-generation anticonvulsant acting on Na+ channels. Compared to the classic anticonvulsants targeting Na+ channels, lacosamide is unique in structure and in its molecular action requiring longer membrane depolarization. Selective binding to the slow inactivated state of Na+ channels was then advocated for lacosamide, although slow binding to the fast inactivated state was alternatively proposed recently. In addition, quantitative characterization of lacosamide action has been deficient. We investigated the interactions between lacosamide and Na+ channels in native mammalian neurons, and found that the apparent dissociation constant (~13.7 µM) of lacosamide to the slow inactivated state is well within the therapeutic concentration range and is much (>15-fold) lower than the dissociation constant of lacosamide to the fast inactivated state. Besides, lacosamide has extremely slow binding rates (<400 M-1sec-1) to the fast but much faster binding rates (>3000 M-1sec-1) to the slow inactivated Na+ channels. Consistent with these biophysical characters, we further demonstrated that lacosamide is much more effective against the repetitive burst discharges with interburst intervals at -60 mV than -80 mV. With preponderant binding to the slow inactivation state in therapeutic concentrations and thus less propensity to affect normal discharges, lacosamide could be a drug of choice for seizure discharges characterized by relatively depolarized interburst intervals, during which more slow inactivated states could be generated and more binding of lacosamide would ensue.


Subject(s)
Lacosamide/metabolism , Lacosamide/pharmacology , Neurons/drug effects , Neurons/metabolism , Sodium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Binding Sites/drug effects , Binding Sites/physiology , Dose-Response Relationship, Drug , Female , Hippocampus/drug effects , Hippocampus/metabolism , Kinetics , Lacosamide/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
9.
J Med Chem ; 62(8): 4091-4109, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30943032

ABSTRACT

Using structure- and ligand-based design principles, a novel series of piperidyl chromane arylsulfonamide Nav1.7 inhibitors was discovered. Early optimization focused on improvement of potency through refinement of the low energy ligand conformation and mitigation of high in vivo clearance. An in vitro hepatotoxicity hazard was identified and resolved through optimization of lipophilicity and lipophilic ligand efficiency to arrive at GNE-616 (24), a highly potent, metabolically stable, subtype selective inhibitor of Nav1.7. Compound 24 showed a robust PK/PD response in a Nav1.7-dependent mouse model, and site-directed mutagenesis was used to identify residues critical for the isoform selectivity profile of 24.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/chemistry , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Analgesics/chemistry , Analgesics/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Binding Sites , Cell Line , Cell Survival/drug effects , Chronic Pain/drug therapy , Chronic Pain/pathology , Dogs , Half-Life , Humans , Ligands , Male , Mice , Molecular Docking Simulation , Mutagenesis, Site-Directed , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Rats , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use
10.
PLoS One ; 14(3): e0213751, 2019.
Article in English | MEDLINE | ID: mdl-30856233

ABSTRACT

Voltage-gated sodium channels (NaVs) are key therapeutic targets for pain, epilepsy and cardiac arrhythmias. Here we describe the development of a no-wash fluorescent sodium influx assay suitable for high-throughput screening and characterization of novel drug leads. Addition of red-violet food dyes (peak absorbance range 495-575 nm) to assays in HEK293 cells heterologously expressing hNaV1.1-1.8 effectively quenched background fluorescence of the sodium indicator dye Asante NaTRIUM Green-2 (ANG-2; peak emission 540 nm), negating the need for a wash step. Ponceau 4R (1 mM) was identified as a suitable quencher, which had no direct effect on NaV channels as assessed by patch-clamp experiments, and did not alter the pharmacology of the NaV1.1-1.7 activator veratridine (EC50 10-29 µM) or the NaV1.1-1.8 inhibitor tetracaine (IC50's 6-66 µM). In addition, we also identified that the food dyes Ponceau 4R, Brilliant Black BN, Allura Red and Amaranth are effective at quenching the background fluorescence of the calcium indicator dyes fluo-4, fura-2 and fura-5F, identifying them as potential inexpensive alternatives to no-wash calcium ion indicator kits. In summary, we have developed a no-wash fluorescent sodium influx assay suitable for high-throughput screening based on the sodium indicator dye ANG-2 and the quencher Ponceau 4R.


Subject(s)
High-Throughput Screening Assays/methods , Sodium/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , HEK293 Cells , Humans , Patch-Clamp Techniques , Sodium/analysis , Spectrometry, Fluorescence , Tetracaine/chemistry , Tetracaine/metabolism , Veratridine/chemistry , Veratridine/metabolism , Voltage-Gated Sodium Channel Agonists/chemistry , Voltage-Gated Sodium Channel Agonists/metabolism , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism
11.
ChemMedChem ; 14(5): 570-582, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30676691

ABSTRACT

We previously reported that a lipophilic N-(4'-hydroxy-3',5'-di-tert-butylbenzyl) derivative (1) of the voltage-gated sodium channel blocker mexiletine, was a more potent sodium channel blocker in vitro and in vivo. We demonstrate that replacing the chiral methylethylene linker between the amine and di-tert-butylphenol with an achiral 1,3-propylene linker (to give (2)) maintains potency in vitro. We synthesized 25 analogues bearing the 1,3-propylene linker and found that minor structural changes resulted in pronounced changes in state dependence of blocking human NaV 1.2 and 1.6 channels by high-throughput patch-clamp analysis. Compared to mexiletine, compounds 1 and 2 are highly selective NaV 1.2 inhibitors and >500 times less potent in inhibiting NaV 1.6 channels. On the other hand, a derivative (compound 4) bearing 2,6-dimethoxy groups in place of the 2,6-dimethyl groups found in mexiletine was found to be the most potent inhibitor, but is nonselective against both channels in the tonic, frequency-dependent and inactivated states. In a kindled mouse model of refractory epilepsy, compound 2 inhibited seizures induced by 6 Hz 44 mA electrical stimulation with an IC50 value of 49.9±1.6 mg kg-1 . As established sodium channel blockers do not suppress seizures in this mouse model, this indicates that 2 could be a promising candidate for treating pharmaco-resistant epilepsy.


Subject(s)
Benzylamines/chemical synthesis , Seizures/drug therapy , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channels/metabolism , Animals , Benzylamines/metabolism , Drug Stability , Electric Stimulation , Humans , Mexiletine/metabolism , Mice , Molecular Structure , Patch-Clamp Techniques/methods , Structure-Activity Relationship , Voltage-Gated Sodium Channel Blockers/metabolism
12.
J Med Chem ; 62(2): 908-927, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30499663

ABSTRACT

Herein, we report the discovery and optimization of a series of orally bioavailable acyl sulfonamide NaV1.7 inhibitors that are selective for NaV1.7 over NaV1.5 and highly efficacious in in vivo models of pain and hNaV1.7 target engagement. An analysis of the physicochemical properties of literature NaV1.7 inhibitors suggested that acyl sulfonamides with high fsp3 could overcome some of the pharmacokinetic (PK) and efficacy challenges seen with existing series. Parallel library syntheses lead to the identification of analogue 7, which exhibited moderate potency against NaV1.7 and an acceptable PK profile in rodents, but relatively poor stability in human liver microsomes. Further, design strategy then focused on the optimization of potency against hNaV1.7 and improvement of human metabolic stability, utilizing induced fit docking in our previously disclosed X-ray cocrystal of the NaV1.7 voltage sensing domain. These investigations culminated in the discovery of tool compound 33, one of the most potent and efficacious NaV1.7 inhibitors reported to date.


Subject(s)
Analgesics/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Analgesics/metabolism , Analgesics/therapeutic use , Animals , Binding Sites , Drug Design , Half-Life , Humans , Male , Mice , Mice, Transgenic , Microsomes, Liver/metabolism , Molecular Docking Simulation , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/chemically induced , Pain/drug therapy , Pain/pathology , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/therapeutic use
13.
Acta Pharmacol Sin ; 40(7): 859-866, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30382183

ABSTRACT

Human genetic and pharmacological studies have demonstrated that voltage-gated sodium channels (VGSCs) are promising therapeutic targets for the treatment of pain. Spider venom contains many toxins that modulate the activity of VGSCs. To date, only 0.01% of such spider toxins has been explored, and thus there is a great potential for discovery of novel VGSC modulators as useful pharmacological tools or potential therapeutics. In the current study, we identified a novel peptide, µ-TRTX-Ca1a (Ca1a), in the venom of the tarantula Cyriopagopus albostriatus. This peptide consisted of 38 residues, including 6 cysteines, i.e. IFECSISCEIEKEGNGKKCKPKKCKGGWKCKFNICVKV. In HEK293T or ND7/23 cells expressing mammalian VGSCs, this peptide exhibited the strongest inhibitory activity on Nav1.7 (IC50 378 nM), followed by Nav1.6 (IC50 547 nM), Nav1.2 (IC50 728 nM), Nav1.3 (IC50 2.2 µM) and Nav1.4 (IC50 3.2 µM), and produced negligible inhibitory effect on Nav1.5, Nav1.8, and Nav1.9, even at high concentrations of up to 10 µM. Furthermore, this peptide did not significantly affect the activation and inactivation of Nav1.7. Using site-directed mutagenesis of Nav1.7 and Nav1.4, we revealed that its binding site was localized to the DIIS3-S4 linker region involving the D816 and E818 residues. In three different mouse models of pain, pretreatment with Cala (100, 200, 500 µg/kg) dose-dependently suppressed the nociceptive responses induced by formalin, acetic acid or heat. These results suggest that Ca1a is a novel neurotoxin against VGSCs and has a potential to be developed as a novel analgesic.


Subject(s)
Analgesics/pharmacology , Arthropod Proteins/pharmacology , Neurotoxins/pharmacology , Spider Venoms/pharmacology , Spiders/chemistry , Amino Acid Sequence , Analgesics/isolation & purification , Analgesics/metabolism , Animals , Arthropod Proteins/isolation & purification , Arthropod Proteins/metabolism , Cell Line, Tumor , Ganglia, Spinal/drug effects , HEK293 Cells , Humans , Mice, Inbred C57BL , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/drug effects , Neurotoxins/isolation & purification , Neurotoxins/metabolism , Periplaneta , Protein Binding , Spider Venoms/isolation & purification , Spider Venoms/metabolism , Voltage-Gated Sodium Channel Blockers/isolation & purification , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
14.
J Med Chem ; 62(2): 831-856, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30576602

ABSTRACT

3-Aryl-indole and 3-aryl-indazole derivatives were identified as potent and selective Nav1.7 inhibitors. Compound 29 was shown to be efficacious in the mouse formalin assay and also reduced complete Freund's adjuvant (CFA)-induced thermal hyperalgesia and chronic constriction injury (CCI) induced cold allodynia and models of inflammatory and neuropathic pain, respectively, following intraperitoneal (IP) doses of 30 mg/kg. The observed efficacy could be correlated with the mouse dorsal root ganglion exposure and NaV1.7 potency associated with 29.


Subject(s)
Indazoles/chemistry , Indoles/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Neuralgia/drug therapy , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/therapeutic use , Animals , Drug Evaluation, Preclinical , HEK293 Cells , Half-Life , Humans , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Male , Mice , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neuralgia/pathology , Patch-Clamp Techniques , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/metabolism
15.
Mol Biol Rep ; 45(5): 721-740, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29931533

ABSTRACT

Chan-su (toad venom) has been used as an analgesic agent in China from ancient to modern times. Bufalin, a non-peptide toxin extracted from toad venom, is considered as one of the analgesic components. The molecular mechanism underlying the anti-nociceptive effects of bufalin remains unclear so far. In this study, we investigated the pharmacological effects of bufalin on pain-related ion channels as well as animal models through patch clamping, calcium imaging and animal behavior observation. Using the whole-cell recording, bufalin caused remarkable suppressive effect on the peak currents of Nav channels (voltage gated sodium channels, VGSCs) of dorsal root ganglion neuroblastomas (ND7-23 cell) in a dose-dependent manner. Bufalin facilitated the voltage-dependent activation and induced a negative shift on the fast inactivation of VGSCs. The recovery kinetics of VGSCs were significantly slowed and the recovery proportion were reduced after administering bufalin. However, bufalin prompted no significant effect not only on Kv4.2, Kv4.3 and BK channels heterologously expressed in HEK293T cells, but also on the capsaicin and allyl isothiocyanate induced Ca2+ influx. What's more, bufalin could observably relieve formalin-induced spontaneous flinching and licking response as well as carrageenan-induced thermal and mechanical hyperalgesia in dose-dependent manner in agreement with the results of in vitro experiments. The present results imply that the remarkable anti-nociceptive effects produced by bufalin are probably ascribed to its specific regulation on Nav channels. Bufalin inhibits the Nav channels in a dose-dependent manner, which will provide references for the optimal dose selection of analgesia drugs.


Subject(s)
Bufanolides/pharmacology , Bufanolides/therapeutic use , Voltage-Gated Sodium Channels/drug effects , Amphibian Venoms/therapeutic use , Animals , Bufanolides/metabolism , China , Ganglia, Spinal/drug effects , HEK293 Cells , Humans , Male , Neuroblastoma/metabolism , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
16.
J Biol Chem ; 293(23): 9041-9052, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29703751

ABSTRACT

Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures and modulate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here, we examined whether there is a relationship among spider GMT amphipathicity, membrane binding, and potency or selectivity for voltage-gated sodium (NaV) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to NaV channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of NaV channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT-lipid bilayer interactions did not correlate with potency or selectivity for NaVs. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaVs.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/metabolism , Spider Venoms/pharmacology , Toxins, Biological/pharmacology , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Arthropod Proteins/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , HEK293 Cells , Humans , Lipid Bilayers/metabolism , Models, Molecular , Spider Venoms/chemistry , Spider Venoms/metabolism , Spiders/chemistry , Toxins, Biological/chemistry , Toxins, Biological/metabolism , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
17.
Pak J Pharm Sci ; 31(1(Suppl.)): 297-303, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29386157

ABSTRACT

Vitex negundo (Vn) extract is famous for the treatment of neurological diseases such as migraine and epilepsy. These neurological diseases have been associated with abnormally increased influx of sodium ions into the neurons. Drugs that inhibit voltage gated sodium channels can be used as potent anti-epileptics. Till now, the effects of Vn on sodium channels have not been investigated. Therefore, we have investigated the effects of methalonic fraction of Vn extract in Murine Neuro 2A cell line. Cells were cultured in a defined medium with or without the Vn extract (100 µg/ml). Sodium currents were recorded using whole-cell patch clamp method. The data show that methanolic extract of Vn inhibited sodium currents in a dose dependent manner (IC50 =161µg/ml). Vn (100 µg/ml) shifted the steady-state inactivation curve to the left or towards the hyper polarization state. However, Vn did not show any effects on outward rectifying potassium currents. Moreover, Vn (100 µg/ml) significantly reduced the sustained repetitive (48±4.8%, P<0.01) firing from neonatal hippocampal neurons at 12 DIV. Hence, our data suggested that inhibition of sodium channels by Vn may exert pharmacological effects in reducing pain and convulsions.


Subject(s)
Anticonvulsants/pharmacology , Neurons/drug effects , Plant Extracts/pharmacology , Vitex/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Anticonvulsants/administration & dosage , Cell Line, Tumor , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Hippocampus/cytology , Mice , Neurons/metabolism , Patch-Clamp Techniques , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Potassium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/administration & dosage , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channels/metabolism
18.
Sci Rep ; 7(1): 1281, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28455536

ABSTRACT

Lidocaine is known to inhibit the hyperpolarization-activated mixed cation current (Ih) in cardiac myocytes and neurons, as well in cells transfected with cloned Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels. However, the molecular mechanism of Ih inhibition by this drug has been limitedly explored. Here, we show that inhibition of Ih by lidocaine, recorded from Chinese hamster ovary (CHO) cells expressing the HCN1 channel, reached a steady state within one minute and was reversible. Lidocaine inhibition of Ih was greater at less negative voltages and smaller current amplitudes whereas the voltage-dependence of Ih activation was unchanged. Lidocaine inhibition of Ih measured at -130 mV (a voltage at which Ih is fully activated) was reduced, and Ih amplitude was increased, when the concentration of extracellular potassium was raised to 60 mM from 5.4 mM. By contrast, neither Ih inhibition by the drug nor Ih amplitude at +30 mV (following a test voltage-pulse to -130 mV) were affected by this rise in extracellular potassium. Together, these data indicate that lidocaine inhibition of Ih involves a mechanism which is antagonized by hyperpolarizing voltages and current flow.


Subject(s)
Cations/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Lidocaine/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism , Animals , CHO Cells , Cricetulus , Potassium/metabolism
19.
Angew Chem Int Ed Engl ; 56(19): 5327-5331, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28370934

ABSTRACT

Saxitoxin (STX) and its analogues are potent voltage-gated sodium channel blockers biosynthesized by freshwater cyanobacteria and marine dinoflagellates. We previously identified genetically predicted biosynthetic intermediates of STX at early stages, Int-A' and Int-C'2, in these microorganisms. However, the mechanism to form the tricyclic skeleton of STX was unknown. To solve this problem, we screened for unidentified intermediates by analyzing the results from previous incorporation experiments with 15 N-labeled Int-C'2. The presence of monohydroxy-Int-C'2 and possibly Int-E' was suggested, and 11-hydroxy-Int-C'2 and Int-E' were identified from synthesized standards and LC-MS. Furthermore, we observed that the hydroxy group at C11 of 11-hydroxy-Int-C'2 was slowly replaced by CD3 O in CD3 OD. Based on this characteristic reactivity, we propose a possible mechanism to form the tricyclic skeleton of STX via a bicyclic intermediate from 11-hydroxy-Int-C'2.


Subject(s)
Cyanobacteria/metabolism , Dinoflagellida/metabolism , Saxitoxin/biosynthesis , Voltage-Gated Sodium Channel Blockers/metabolism , Molecular Conformation , Saxitoxin/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry
20.
Eur J Pharmacol ; 796: 215-223, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-28057491

ABSTRACT

Mefloquine constitutes a multitarget antimalaric that inhibits cation currents. However, the effect and the binding site of this compound on Na+ channels is unknown. To address the mechanism of action of mefloquine, we employed two-electrode voltage clamp recordings on Xenopus laevis oocytes, site-directed mutagenesis of the rat Na+ channel, and a combined in silico approach using Molecular Dynamics and docking protocols. We found that mefloquine: i) inhibited Nav1.4 currents (IC50 =60µM), ii) significantly delayed fast inactivation but did not affect recovery from inactivation, iii) markedly the shifted steady-state inactivation curve to more hyperpolarized potentials. The presence of the ß1 subunit significantly reduced mefloquine potency, but the drug induced a significant frequency-independent rundown upon repetitive depolarisations. Computational and experimental results indicate that mefloquine overlaps the local anaesthetic binding site by docking at a hydrophobic cavity between domains DIII and DIV that communicates the local anaesthetic binding site with the selectivity filter. This is supported by the fact that mefloquine potency significantly decreased on mutant Nav1.4 channel F1579A and significantly increased on K1237S channels. In silico this compound docked above F1579 forming stable π-π interactions with this residue. We provide structure-activity insights into how cationic amphiphilic compounds may exert inhibitory effects by docking between the local anaesthetic binding site and the selectivity filter of a mammalian Na+ channel. Our proposed synergistic cycle of experimental and computational studies may be useful for elucidating binding sites of other drugs, thereby saving in vitro and in silico resources.


Subject(s)
Anesthetics, Local/metabolism , Anesthetics, Local/pharmacology , Mefloquine/metabolism , Mefloquine/pharmacology , NAV1.4 Voltage-Gated Sodium Channel/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Binding Sites , Dose-Response Relationship, Drug , Electrophysiological Phenomena/drug effects , Lidocaine/metabolism , Lidocaine/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , NAV1.4 Voltage-Gated Sodium Channel/chemistry , NAV1.4 Voltage-Gated Sodium Channel/genetics , Protein Conformation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...