Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.133
Filter
1.
Waste Manag ; 186: 345-354, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959618

ABSTRACT

Stale bread is a waste product with a potential to be recycled. One way to manage this waste material is to process it by fermentation for the purpose of food production. This paper proposes the use of stale wheat and rye bread as ingredients in amazake, a liquid dessert traditionally obtained from rice by fermentation with the koji mould Aspergillus oryzae, followed by liquefaction by the action of fungal enzymes. The stale bread was introduced instead of rice at both the koji stage (wheat bread) and the liquefaction stage (wheat and rye bread). The resulting products had an extended volatile compound profile, from 5 to 15 compounds identified, and modified sensory parameters, compared to the traditional version. Amazake containing bread had an increased protein content, from 1.10 to 6.4 g/100 g, and were more abundant in dietary fibre (up to a maximum of 1.8 g/100 g), additionally enriched with a soluble fraction. The proposed procedure of obtaining of new formula amazake can be directly applied in households to reduce the amount of discarded bread. Due to its simplicity, it also has the potential for further modification in terms of production scale and product parameters.


Subject(s)
Bread , Recycling , Triticum , Bread/analysis , Recycling/methods , Fermentation , Aspergillus oryzae/metabolism , Dietary Fiber/analysis , Nutritive Value , Oryza , Waste Products/analysis , Taste
2.
Glob Chang Biol ; 30(6): e17313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837834

ABSTRACT

Anthropogenic debris is a global threat that impacts threatened species through various lethal and sub-lethal consequences, as well as overall ecosystem health. This study used a database of over 24,000 beach surveys of marine debris collated by the Australian Marine Debris Initiative from 2012 to 2021, with two key objectives: (1) identify variables that most influence the occurrence of debris hotspots on a continental scale and (2) use these findings to identify likely hotspots of interaction between threatened species and marine debris. The number of particles found in each beach survey was modelled alongside fifteen biological, social, and physical spatial variables including land use, physical oceanography, population, rainfall, distance to waste facilities, ports, and mangroves to identify the significant drivers of debris deposition. The model of best fit for predicting debris particle abundance was calculated using a generalized additive model. Overall, debris was more abundant at sites near catchments with high annual rainfall (mm), intensive land use (km2), and that were nearer to ports (km) and mangroves (km). These results support previous studies which state that mangroves are a significant sink for marine debris, and that large ports and urbanized catchments are significant sources for marine debris. We illustrate the applicability of these models by quantifying significant overlap between debris hotspots and the distributions for four internationally listed threatened species that exhibit debris interactions; green turtle (26,868 km2), dugong (16,164 km2), Australian sea lion (2903 km2) and Flesh-footed Shearwater (2413 km2). This equates to less than 1% (Flesh-footed Shearwater, Australian sea lion), over 2% (green sea turtle) and over 5% (dugong) of their habitat being identified as areas of high risk for marine debris interactions. The results of this study hold practical value, informing decision-making processes, managing debris pollution at continental scales, as well as identifying gaps in species monitoring.


Subject(s)
Endangered Species , Australia , Animals , Models, Theoretical , Waste Products/analysis , Waste Products/statistics & numerical data , Environmental Monitoring/methods
3.
Molecules ; 29(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893556

ABSTRACT

The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.


Subject(s)
Food Industry , Green Chemistry Technology , Green Chemistry Technology/methods , Industrial Waste , Polyphenols/isolation & purification , Polyphenols/chemistry , Humans , Waste Products/analysis , Solvents/chemistry
4.
Food Chem ; 455: 139848, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823122

ABSTRACT

Supercritical fluid extraction (SFE) employing carbon dioxide (SC-CO2) is an efficient method to extract bioactive compounds from agro-forest wastes. These compounds maintain and/or improve food nutrition, safety, freshness, taste, and health and are employed as natural functional food components. To highlight the potential of this technology, we focus on the following current advances: (I) parameters affecting solubility in SFE (pressure, temperature, SC-CO2 flow rate, extraction time, and co-solvents); (II) extraction spectra and yield obtained according to proportion and composition of co-solvents; (III) extract bioactivity for functional food production. Fatty acids, monoterpenes, sesquiterpenes, diterpenoids, and low-polarity phenolic acids and triterpenoids were extracted using SFE without a co-solvent. High-polarity phenolic acids and flavonoids, tannins, carotenoids, and alkaloids were only extracted with the help of co-solvents. Using a co-solvent significantly improved the triterpenoid, flavonoid, and phenolic acid yield with a medium polarity.


Subject(s)
Chromatography, Supercritical Fluid , Functional Food , Chromatography, Supercritical Fluid/methods , Forests , Functional Food/analysis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Waste Products/analysis
5.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731523

ABSTRACT

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Subject(s)
Cell Survival , Macrophages , Microplastics , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/metabolism , Animals , Mice , Nanoparticles/chemistry , Plastics/chemistry , RAW 264.7 Cells , Gene Expression/drug effects , Cell Line , Gene Expression Regulation/drug effects , Waste Products/analysis , Particle Size
6.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731546

ABSTRACT

Worldwide, a massive amount of agriculture and food waste is a major threat to the environment, the economy and public health. However, these wastes are important sources of phytochemicals (bioactive), such as polyphenols, carotenoids, carnitine, coenzymes, essential oils and tocopherols, which have antioxidant, antimicrobial and anticarcinogenic properties. Hence, it represents a promising opportunity for the food, agriculture, cosmetics, textiles, energy and pharmaceutical industries to develop cost effective strategies. The value of agri-food wastes has been extracted from various valuable bioactive compounds such as polyphenols, dietary fibre, proteins, lipids, vitamins, carotenoids, organic acids, essential oils and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market used for different industrial sectors. The value of agri-food wastes and by-products could assure food security, maintain sustainability, efficiently reduce environmental pollution and provide an opportunity to earn additional income for industries. Furthermore, sustainable extraction methodologies like ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, microwave-assisted extraction, pulse electric field-assisted extraction, ultrasound microwave-assisted extraction and high hydrostatic pressure extraction are extensively used for the isolation, purification and recovery of various bioactive compounds from agri-food waste, according to a circular economy and sustainable approach. This review also includes some of the critical and sustainable challenges in the valorisation of agri-food wastes and explores innovative eco-friendly methods for extracting bioactive compounds from agri-food wastes, particularly for food applications. The highlights of this review are providing information on the valorisation techniques used for the extraction and recovery of different bioactive compounds from agricultural food wastes, innovative and promising approaches. Additionally, the potential use of these products presents an affordable alternative towards a circular economy and, consequently, sustainability. In this context, the encapsulation process considers the integral and sustainable use of agricultural food waste for bioactive compounds that enhance the properties and quality of functional food.


Subject(s)
Phytochemicals , Phytochemicals/chemistry , Agriculture/methods , Waste Products/analysis , Food , Food Loss and Waste
7.
Food Chem ; 452: 139604, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749139

ABSTRACT

This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.


Subject(s)
Alcoholic Beverages , Charcoal , Hydroxides , Potassium Compounds , Alcoholic Beverages/analysis , Charcoal/chemistry , Humans , Hydroxides/chemistry , Potassium Compounds/chemistry , Adsorption , Taste , Waste Products/analysis , Flavoring Agents/chemistry , Edible Grain/chemistry , Odorants/analysis , Risk Factors , Male , Female , Adult , Young Adult , Middle Aged
8.
Food Chem ; 452: 139509, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703739

ABSTRACT

Pomaces obtained from three San Marzano tomato genotypes including the wild type (WT), Sun Black (SB), and colorless fruit epidermis (CL) were dried at 50 °C and analyzed for nutritional composition, total polyphenol (TPC), flavonoid (TFC) content, polyphenol qualitative profile, total antioxidant capacity (TAC), and antimicrobial activity. Commercial dried tomato powder (CTRP) was included as a control. No differences were detected nutritionally, in TPC and antimicrobial activity, but significant changes were observed for TFC and TAC, underlying variation in the phenolic profile. SB pomace (SBP) had the highest TFC and TAC. LC-HRMS analysis showed a flavonoid-enriched profile in SBP besides the exclusive presence of anthocyanins, with petanin and negretein as the most abundant. Among flavonoids, quercetin-hexose-deoxyhexose-pentose, naringenin, and rutin were the major. Overall, we showed the potential of dried tomato pomace, especially SBP, as an extremely valuable waste product to be transformed into a functional ingredient, reducing the food industry waste.


Subject(s)
Antioxidants , Flavonoids , Fruit , Solanum lycopersicum , Waste Products , Solanum lycopersicum/chemistry , Antioxidants/chemistry , Waste Products/analysis , Fruit/chemistry , Flavonoids/chemistry , Flavonoids/analysis , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Food Loss and Waste
9.
Mar Pollut Bull ; 203: 116484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781802

ABSTRACT

Community-based marine debris removal efforts on the Hawaiian Islands of Kaua'i and Hawai'i, spanning 2013-2022, provided large datasets and documented remarkable variations in annual amounts of debris, mainly from abandoned, lost and derelict fishing gear. To test the hypothesis that the influx of marine debris on Hawaiian shores is determined by the proximity of the North Pacific garbage patch, whose pattern changes under the control of large-scale ocean dynamics, we compared these observational data with the output of an oceanographic drift model. The high correlations between the total mass of debris collected and the model, ranging between r = 0.81 and r = 0.84, validate the attribution of the strong interannual signal to significant migrations of the garbage patch reproduced in the model experiments. Synchronous variations in marine debris fluxes on the two islands, separated by >500 km, confirm the large scale of the interannual changes in the North Pacific marine debris system.


Subject(s)
Environmental Monitoring , Waste Products , Hawaii , Pacific Ocean , Waste Products/analysis , Water Pollutants/analysis
10.
Environ Res ; 255: 119117, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729409

ABSTRACT

Plastic pollution is becoming a global problem due to its ubiquitous occurrence and the impacts detected for many species. However, the research about plastics in nests of terrestrial bird species has remained relatively overlooked in comparison to those devoted to marine ecosystems. Here we study the occurrence and patterns of use of anthropogenic material in nests of two passerine birds, the Eurasian magpie (Pica pica) and the European serin (Serinus serinus), breeding in an orange tree cultivation in Mediterranean Spain. Our results show that both species use extensively plastic debris as nest material; almost 71% of the European serin nests and 96% of nests of Eurasian magpies contained plastic debris. Furthermore, by analyzing the plastic debris availability in the agricultural landscape surveyed we confirmed a selection pattern in the two species. Thus, both species preferably select plastic filaments over other plastic debris. The Eurasian magpie does not select plastic based on size or color but the European serin avoid black plastics prefer smaller fragments in comparison to the average size available. Moreover, we suggest the apparent similarity of plastic filaments with the natural materials typically used by these species, as well as how they use the plastic in their nests could influence their selection behavior. More studies focused on terrestrial birds inhabiting human modified habitats could offer a deeper approach to how plastic debris interacts with wildlife in different ways.


Subject(s)
Agriculture , Nesting Behavior , Plastics , Animals , Plastics/analysis , Spain , Waste Products/analysis , Passeriformes , Environmental Monitoring
11.
Food Chem ; 454: 139791, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795616

ABSTRACT

The control of α-glucosidase activity has been associated with managing diabetes. We previously identified three peptides with high bioactive indices derived from protein hydrolysates of fermented spent coffee grounds. In this study, the peptides YGF, GMCC, and RMYRY were synthesized and tested in vitro for their α-glucosidase inhibition activity, complemented by in silico analyses. Two of the three peptides significantly inhibited α-glucosidase activity, with the more efficient peptides being YGF and GMCC (0.42 mg/mL), resulting in decreased enzymatic activity of 95.31% and 89.79%, respectively. These peptides exhibited binding free energies with the α-glucosidase complex of -8.5 and - 6.6 kcal/mol, respectively, through hydrogen bonds and van der Waals interactions with amino acids from the active site. Pharmacokinetic analysis indicated that YGF and GMCC profiles were unrelated to toxicity. These results underscore the importance of focusing on food waste bioprocessing products to expand the range of alternatives that could aid in diabetes treatment.


Subject(s)
Fermentation , Glycoside Hydrolase Inhibitors , Peptides , Waste Products , alpha-Glucosidases , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Waste Products/analysis , Humans , Coffee/chemistry , Coffea/chemistry , Animals
12.
Waste Manag ; 184: 1-9, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781721

ABSTRACT

Unavoidable food wastes could be an important feedstock for industrial biotechnology, while their valorization could provide added value for the food processor. However, despite their abundance and low costs, the heterogeneous/mixed nature of these food wastes produced by food processors and consumers leads to a high degree of variability in carbon and nitrogen content, as well as specific substrates, in food waste hydrolysate. This has limited their use for bioproduct synthesis. These wastes are often instead used in anaerobic digestion and mixed microbial culture, creating a significant knowledge gap in their use for higher value biochemical production via pure and single microbial culture. To directly investigate this knowledge gap, various waste streams produced by a single food processor were enzymatically hydrolyzed and characterized, and the degree of variability with regard to substrates, carbon, and nitrogen was quantified. The impact of hydrolysate variability on the viability and performance of polyhydroxyalkanoates biopolymers production using bacteria (Cupriavidus necator) and archaea (Haloferax mediterranei) as well as sophorolipids biosurfactants production with the yeast (Starmerella bombicola) was then elucidated at laboratory-scale. After which, strategies implemented during this experimental proof-of-concept study, and beyond, for improved industrial-scale valorization which addresses the high variability of food waste hydrolysate were discussed in-depth, including media standardization and high non-selective microbial organisms growth-associated product synthesis. The insights provided would be beneficial for future endeavors aiming to utilize food wastes as feedstocks for industrial biotechnology.


Subject(s)
Waste Products , Waste Products/analysis , Nitrogen/metabolism , Food , Carbon/metabolism , Polyhydroxyalkanoates/biosynthesis , Hydrolysis , Biotechnology/methods , Surface-Active Agents/metabolism , Biopolymers
13.
Waste Manag ; 185: 33-42, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820782

ABSTRACT

Higher heating value (HHV) is one of the most important parameters in determining the quality of the fuels. In this study, comparatively large datasets of ultimate and proximate analysis are constructed to be used in HHV estimation of several classes of fuels, including char & fossil fuels, agricultural wastes, manure (chicken, cow, horse, sheep, llama, and pig), sludge (like paper, paper-mil, sewage, and pulp), micro/macro-algae's, wastes (RDF and MSW), treated woods, untreated woods, and others (non-fossil pyrolysis oils) between the HHV range of 4.22-55.55 MJ/kg. The relationships of carbon, hydrogen, and oxygen atomic ratios for fuel classes are illustrated by using ternary plots, and the effects of elemental composition on HHV was analyzed with the extensive dataset. Then, the ultimate (U) and ultimate & proximate (UP) datasets were utilized separately to estimate the HHV by using artificial neural networks (ANN). Hyperparameter optimization was carried out and the best performing ANNs were determined for each dataset, which yielded R2 values of 0.9719 and 0.9715, respectively. The results indicated that while ANNs trained by both datasets perform remarkably well, utilization of U dataset is sufficient for HHV estimation. Finally, the best performing ANN models for both U and UP datasets are given in a directly utilizable format enabling the accurate estimation of HHV of any fuel for optimization of fuel processing and waste management operations.


Subject(s)
Heating , Neural Networks, Computer , Manure/analysis , Refuse Disposal/methods , Waste Products/analysis , Waste Management/methods , Animals , Wood , Sewage/analysis , Solid Waste/analysis
14.
Food Funct ; 15(12): 6232-6253, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38814112

ABSTRACT

Babassu coconut (Attalea speciosa syn. Orbignya phalerata) contains an oil-rich nut and is primarily found in South America's Amazon region. Future market researchers predict an increase in the babassu oil market from USD 227.7 million in 2022 to USD 347.0 million by 2032, and the yield of babassu oil from babassu-processed waste could reach 90%. Of these, mesocarp flour is an underrated by-product used only for animal feed purposes by local producers. This comprehensive review focuses on advances in knowledge and understanding of phytochemicals from babassu oil by-products considering the mechanisms of action - covering antioxidant, antimicrobial, antiparasitic, anti-inflammatory, antithrombotic, immunomodulatory, and anticancer effects. Babassu coconut fruit contains free fatty acids, (poly)phenols, phytosterols, and triterpenes. Pytochemicals, antiparasitic and antibacterial activities of babassu mesocarp flour were shown, but fungi and viruses can get more attention. Beyond its antioxidant capacity, babassu mesocarp flour showed potential as a dietary food supplement. Aqueous suspensions of mesocarp flour with a higher preference for cancer cells than normal cells and an antithrombotic effect were also identified, probably related to the antioxidant capacity of its secondary metabolites. Mesocarp flour, a starch-rich fraction, is promising for application as biodegradable packaging to improve the oxidative stability of foods. Finally, low-added value fractions can be considered bio-waste/co-products, and their phytochemicals may attract interest for applications in medicine and nutrition. Toxicological concerns, trends, and gaps are discussed for the future of foods and related sciences.


Subject(s)
Dietary Supplements , Humans , Plant Oils/chemistry , Plant Oils/pharmacology , Antioxidants/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , Animals , Waste Products/analysis
15.
Food Chem ; 453: 139586, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761723

ABSTRACT

To aid valorisation of beer brewing by-products, more insight into their composition is essential. We have analysed the phenolic compound composition of four brewing by-products, namely barley rootlets, spent grain, hot trub, and cold trub. The main phenolics detected were hydroxycinnamoylagmatines and dimers thereof. Barley rootlets contained the highest hydroxycinnamoylagmatine content and cold trub the highest dimer content. Additionally, variations in (dimeric) hydroxycinnamoylagmatine composition and content were observed in fourteen barley rootlet samples. The most abundant compound in all rootlets was the glycosylated 4-O-7'/3-8'-linked heterodimer of coumaroylagmatine and feruloylagmatine, i.e. CouAgm-4-O-7'/3-8'-(4'Hex)-DFerAgm. Structures of glycosylated and hydroxylated derivatives of coumaroylagmatine were elucidated by NMR spectroscopy after their purification from a rootlet extract. An MS-based decision tree was developed, which aids in identifying hydroxycinnamoylagmatine dimers in complex mixtures. In conclusion, this study shows that the diversity of phenolamides and (neo)lignanamides in barley-derived by-products is larger than previously reported.


Subject(s)
Beer , Hordeum , Hordeum/chemistry , Beer/analysis , Dimerization , Waste Products/analysis , Phenols/chemistry , Phenols/analysis , Coumaric Acids/chemistry , Coumaric Acids/analysis , Molecular Structure
16.
Waste Manag ; 181: 136-144, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608528

ABSTRACT

The interest in mass-rearing black soldier fly (Hermetia illucens) larvae for food and feed is rapidly increasing. This is partly sparked by the ability of the larvae to efficiently valorise a wide range of organic waste and by-products. Primarily, research has focused on the larval stage, hence underprioritizing aspects of the adult biology, and knowledge on reproduction-related traits such as egg production is needed. We investigated the impact of different organic waste and by-products as larval diets on various life-history traits of adult black soldier flies in a large-scale experimental setup. We reared larvae on four different diets: spent Brewer's grain, ground carrots, Gainesville diet, and ground oranges. Traits assessed were development time to pupa and adult life-stages, adult body mass, female lifespan, egg production, and egg hatch. Larval diet significantly impacted development time to pupa and adult, lifespan, body size, and egg production. In general, flies reared on Brewer's grain developed up to 4.7 d faster, lived up to 2.3 d longer, and produced up to 57% more eggs compared to flies reared on oranges on which they performed worst for these traits. There was no effect of diet type on egg hatch, suggesting that low-nutritious diets, i.e. carrots and oranges, do not reduce the quality but merely the quantity of eggs. Our results demonstrate the importance of larval diet on reproductive output and other adult traits, all important for an efficient valorisation of organic waste and by-products, which is important for a sustainable insect-based food and feed production.


Subject(s)
Larva , Reproduction , Animals , Female , Life History Traits , Diet , Diptera/physiology , Waste Products/analysis , Male , Simuliidae/growth & development
17.
J Agric Food Chem ; 72(17): 9621-9636, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648422

ABSTRACT

This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.


Subject(s)
Fusarium , Plant Extracts , Tandem Mass Spectrometry , Vitis , Vitis/chemistry , Vitis/microbiology , Fusarium/drug effects , Fusarium/growth & development , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Plant Diseases/microbiology , Waste Products/analysis
18.
Mar Pollut Bull ; 202: 116389, 2024 May.
Article in English | MEDLINE | ID: mdl-38677103

ABSTRACT

Plastic debris is a significant and rapidly developing ecological issue in coastal marine ecosystems, especially in areas where it accumulates. This study introduces "plasticlusters", a new form of floating debris agglomeration found in the Yasmine Hammamet marina (Tunisia, North-Africa), loosely attached to pontoon ropes around the water surface level. The analysis of two samples revealed that they were formed primarily by average 2.11 mm polystyrene fragments, 3.43 mm fibers, 104 mm polypropylene and polyethylene sheets, and 122 mm decomposing seagrass leaves. They were inhabited by several taxa, including at least 2 cryptogenic and 5 non-indigenous species (NIS). Unlike other plastic formations, plasticlusters provide a novel and potentially temporal microhabitat to fouling assemblages due to their loose and unconsolidated structure which, combined with marinas being NIS hubs, could enhance NIS dispersion. The results of this study raise concerns about the combined ecological effects of debris accumulation and biocontamination inside marinas.


Subject(s)
Ecosystem , Plastics , Tunisia , Plastics/analysis , Environmental Monitoring , Waste Products/analysis
19.
Int J Biol Macromol ; 267(Pt 1): 131419, 2024 May.
Article in English | MEDLINE | ID: mdl-38583831

ABSTRACT

The booming mushroom industry envisages economic merits, and massive unutilized waste production (∼ 20 %) creates an opportunity for valorization. Chitosan, a bioactive polysaccharide, has drawn immense attention for its invaluable therapeutic potential. Thus, the present study was conducted to extract chitosan from mushroom waste (MCH) for its prebiotic potential. The structural characterization of MCH was carried out using NMR, FTIR, and XRD. The CP/MAS-13CNMR spectrum of MCH appeared at δ 57.67 (C2), 61.19 (C6), 75.39 (C3/C5), 83.53 (C4), 105.13 (C1), 23.69 (CH3), and 174.19 (C = O) ppm. The FTIR showed characteristic peaks at 3361 cm-1, 1582 cm-1, and 1262 cm-1 attributed to -NH stretching, amide II, and amide III bands of MCH. XRD interpretation of MCH exhibited a single strong reflection at 2θ =20.19, which may correspond to the "form-II" polymorph. The extracted MCH (∼ 47 kDa) exhibited varying degrees of deacetylation from 79 to 84 %. The prebiotic activity score of 0.73 to 0.82 was observed for MCH (1 %) when supplemented with probiotic strains (Lactobacillus casei, L. helveticus, L. plantarum, and L. rhamnosus). MCH enhanced the growth of Lactobacillus strains and SCFA's levels, particularly in L. rhamnosus. The MCH also inhibited the growth of pathogenic strains (MIC of 0.125 and 0.25 mg/mL against E. coli and S. aureus, respectively) and enhanced the adhesion efficiency of probiotics (3 to 8 % at 1 % MCH supplementation). L. rhamnosus efficiency was higher against pathogens in the presence of MCH, as indicated by anti-adhesion assays. These findings suggested that extracted polysaccharides from mushroom waste can be used as a prebiotic for ameliorating intestinal dysbiosis.


Subject(s)
Chitosan , Molecular Weight , Pleurotus , Prebiotics , Pleurotus/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Waste Products/analysis
20.
Mar Pollut Bull ; 202: 116313, 2024 May.
Article in English | MEDLINE | ID: mdl-38593713

ABSTRACT

This study assessed the presence of marine litter along the beach of the city of Punta Arenas, Chile. The sampling period coincided with the COVID-19 pandemic. A total of 239 plastic waste items were identified out of a total of 638 litter items. The Clean Coast Index reported within this study ranged from Clean (CCI 2-5) to Extremely dirty (CCI >20), especially near the port. The majority of litter items has been classified as originating from varied origins, as it is not possible to pinpoint a precise origin in most items. The results indicate that the predominant plastic litter in Punta Arenas is PVC. The results are discussed in relation to the sources and composition of the residues, the morpho dynamics of the coast, and the CCI is compared with other locations around the globe.


Subject(s)
Bathing Beaches , Environmental Monitoring , Plastics , Chile , Plastics/analysis , Bathing Beaches/statistics & numerical data , COVID-19 , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...