Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.070
1.
Food Res Int ; 188: 114475, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823838

This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.


Chitosan , Nanocomposites , Resins, Plant , Solubility , Waxes , Zinc Oxide , Chitosan/chemistry , Zinc Oxide/chemistry , Nanocomposites/chemistry , Resins, Plant/chemistry , Waxes/chemistry , Nanoparticles/chemistry , Food Packaging/methods , Permeability
2.
Open Biol ; 14(5): 230430, 2024 May.
Article En | MEDLINE | ID: mdl-38806146

Both leaves and petals are covered in a cuticle, which itself contains and is covered by cuticular waxes. The waxes perform various roles in plants' lives, and the cuticular composition of leaves has received much attention. To date, the cuticular composition of petals has been largely ignored. Being the outermost boundary between the plant and the environment, the cuticle is the first point of contact between a flower and a pollinator, yet we know little about how plant-pollinator interactions shape its chemical composition. Here, we investigate the general structure and composition of floral cuticular waxes by analysing the cuticular composition of leaves and petals of 49 plant species, representing 19 orders and 27 families. We show that the flowers of plants from across the phylogenetic range are nearly devoid of wax crystals and that the total wax load of leaves in 90% of the species is higher than that of petals. The proportion of alkanes is higher, and the chain lengths of the aliphatic compounds are shorter in petals than in leaves. We argue these differences are a result of adaptation to the different roles leaves and petals play in plant biology.


Flowers , Plant Leaves , Waxes , Plant Leaves/chemistry , Plant Leaves/metabolism , Waxes/chemistry , Waxes/metabolism , Flowers/chemistry , Flowers/metabolism , Phylogeny , Plant Epidermis/chemistry , Plant Epidermis/metabolism , Plants/chemistry , Plants/metabolism , Species Specificity
3.
Food Chem ; 453: 139680, 2024 Sep 30.
Article En | MEDLINE | ID: mdl-38788648

Hydrophobic coatings have wide applications, but face challenges in food flexible packaging in terms of poor adhesion and inadequate wear resistance. Health hazards and poor adhesion drive the search for novel hydrophobic coatings substitutes. Here, we introduced rationally synthesized carnauba wax-SiO2 microspheres as a component to composite polyethylene (PE) film construction, and created a wear-resistant hydrophobic composite PE film via the blown film technique. The resultant hydrophobic composite film demonstrated an enhanced water contact angle from 86° to above 100°, coupled with favorable mechanical properties such as wear resistance, tensile strength and effective barrier performance against water vapor and oxygen. Upon implementation in the preservation of a Cantonese delicacy, Chaoshan fried shrimp rolls, it was observed that at 25 °C, the carnauba wax-SiO2-PE composite packaging film extended the shelf life of the product by 3 days compared to pure PE film.


Food Packaging , Food Preservation , Hydrophobic and Hydrophilic Interactions , Polyethylene , Waxes , Polyethylene/chemistry , Food Packaging/instrumentation , Animals , Waxes/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Tensile Strength , Silicon Dioxide/chemistry , Penaeidae/chemistry
4.
J Agric Food Chem ; 72(21): 11990-12002, 2024 May 29.
Article En | MEDLINE | ID: mdl-38757490

The main challenge in the development of agrochemicals is the lack of new leads and/or targets. It is critical to discover new molecular targets and their corresponding ligands. YZK-C22, which contains a 1,2,3-thiadiazol-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole skeleton, is a fungicide lead compound with broad-spectrum fungicidal activity. Previous studies suggested that the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole scaffold exhibited good antifungal activity. Inspired by this, a series of pyrrolo[2,3-d]thiazole derivatives were designed and synthesized through a bioisosteric strategy. Compounds C1, C9, and C20 were found to be more active against Rhizoctonia solani than the positive control YZK-C22. More than half of the target compounds provided favorable activity against Botrytis cinerea, where the EC50 values of compounds C4, C6, C8, C10, and C20 varied from 1.17 to 1.77 µg/mL. Surface plasmon resonance and molecular docking suggested that in vitro potent compounds C9 and C20 have a new mode of action instead of acting as pyruvate kinase inhibitors. Transcriptome analysis revealed that compound C20 can impact the tryptophan metabolic pathway, cutin, suberin, and wax biosynthesis of B. cinerea. Overall, pyrrolo[2,3-d]thiazole is discovered as a new fungicidal lead structure with a potential new mode of action for further exploration.


Botrytis , Fungicides, Industrial , Rhizoctonia , Thiazoles , Tryptophan , Waxes , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Botrytis/drug effects , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Tryptophan/metabolism , Tryptophan/chemistry , Waxes/chemistry , Waxes/metabolism , Structure-Activity Relationship , Metabolic Networks and Pathways/drug effects , Molecular Docking Simulation , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/metabolism , Plant Diseases/microbiology , Molecular Structure
5.
Anal Methods ; 16(21): 3372-3384, 2024 May 30.
Article En | MEDLINE | ID: mdl-38747244

Microfluidic channels fabricated over fabrics or papers have the potential to find substantial application in the next generation of wearable healthcare monitoring systems. The present work focuses on the fabrication procedures that can be used to obtain practically realizable fabric-based microfluidic channels (µFADs) utilizing patterning masks and wax, unlike conventional printing techniques. In this study, comparative analysis was used to differentiate channels obtained using different masking tools for channel patterning as well as different wax materials as hydrophobic barriers. Drawbacks of the conventional tape and candle wax technique were noted and a novel approach was used to create microfluidic channels through a facile and simple masking technique using PVC clear sheets as channel stencils and beeswax as the channel barriers. The resulting fabric based microfluidic channels with varying widths as well as complex microchannel, microwell, and micromixer designs were investigated and a minimum channel width resolution of 500 µm was successfully obtained over cotton based fabrics. Thereafter, the PVC clear sheet-beeswax based microwells were successfully tested to confine various organic and inorganic samples indicating vivid applicability of the technique. Finally, the microwells were used to make a simple and facile colorimetric assay for glucose detection and demonstrated effective detection of glucose levels from 10 mM to 50 mM with significant color variation using potassium iodide as the coloring agent. The above findings clearly suggest the potential of this alternative technique for making low-cost and practically realizable fabric based diagnostic devices (µFADs) in contrast to the other approaches that are currently in use.


Polyvinyl Chloride , Textiles , Waxes , Waxes/chemistry , Polyvinyl Chloride/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Cost-Benefit Analysis , Glucose/analysis , Lab-On-A-Chip Devices , Humans , Equipment Design , Wearable Electronic Devices
6.
Theor Appl Genet ; 137(6): 123, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722407

KEY MESSAGE: BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.


Alleles , Brassica , Mutation , Phenotype , Waxes , Brassica/genetics , Waxes/chemistry , Waxes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Polymorphism, Single Nucleotide , Plant Leaves/genetics , Transaminases/genetics
7.
Food Chem ; 449: 139234, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38608604

Cuticle wax chemicals are cultivar-dependent and contribute to storage quality. Few research reported on wax analysis between melting flesh-type (MF; 'Jinhuami 25') and nonmelting flesh-type (NMF; 'Xizhoumi 17' and 'Chougua') Hami melons. Chemicals and crystal structures of Hami melon cuticular wax, cell wall metabolism related to fruit melting, and fruit physiology were analyzed to observe wax functions. Results showed that Hami melon cuticle wax predominantly consists of esters, alkanes, alcohols, aldehydes, and terpenoids. MF-type has a lower alkane/terpenoid ratio, concomitant to its higher weight loss and cuticle permeability. Micromorphology of wax crystals appears as numerous platelets with irregular crystals, and the transformation of wax structure in NMF Hami melon is delayed. Waxy components affect cell wall metabolism and physiological quality, which results in the pulp texture difference between MF-type and NMF-type during storage. Results provide a reference for the regulation of wax synthesis in both types of melons.


Cucumis melo , Fruit , Waxes , Waxes/chemistry , Fruit/chemistry , Cucumis melo/chemistry , Cell Wall/chemistry
8.
Food Chem ; 450: 139334, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38636379

We investigated the ripening and skin greasiness of "Hongro" apples during storage at 20 °C. Postharvest treatment using 100 µLL-1 ethylene accelerated ripening and increased greasiness, whereas treatment using 1 µLL-1 1-methylcyclopropene delayed ripening and reduced greasiness. Scanning electron microscopy showed changes in cuticular wax structure linked to greasiness. Metabolic analysis identified specific metabolites related to greasiness, which varied upon postharvest treatment. Greasiness was positively associated with ethylene production and butyl-9,12-octadecadienoate content. Random forest modeling predicted greasiness levels with high accuracy, with root mean square error values of 0.322 and 0.362 for training and validation datasets, respectively. These findings illuminate the complex interplay between postharvest treatment, apple ripening, wax composition, and skin greasiness. The application of predictive models exemplifies the potential for technology-driven approaches in agriculture and aids in the development of postharvest strategies to control greasiness and maintain fruit quality.


Fruit , Malus , Waxes , Malus/chemistry , Malus/metabolism , Malus/growth & development , Fruit/chemistry , Fruit/metabolism , Fruit/growth & development , Waxes/chemistry , Waxes/metabolism , Food Storage , Ethylenes/chemistry , Ethylenes/metabolism
9.
J Food Sci ; 89(5): 2943-2955, 2024 May.
Article En | MEDLINE | ID: mdl-38557930

Bell pepper presents rapid weight loss and is highly susceptible to gray mold caused by the fungus Botrytis cinerea. The most employed method to control this disease is the application of synthetic fungicides such as thiabendazole (TBZ); however, its continued use causes resistance in fungi as well as environmental problems. For these reasons, natural alternatives arise as a more striking option. Currently, bell pepper fruits are coated with carnauba wax (CW) to prevent weight loss and improve appearance. Moreover, CW can be used as a carrier to incorporate essential oils, and previous studies have shown that thyme essential oil (TEO) is highly effective against B. cinerea. Therefore, this study aimed to evaluate the effect of CW combined with TEO on the development of gray mold and maintenance of microestructural and postharvest quality in bell pepper stored at 13°C. The minimal inhibitory concentration of TEO was 0.5%. TEO and TBZ provoked the leakage of intracellular components. TEO and CW + TEO treatments were equally effective to inhibit the development of gray mold. On the quality parameters, firmness and weight loss were ameliorated with CW and CW + TEO treatments; whereas lightness increased in these treatments. The structural analysis showed that CW + TEO treatment maintained the cell structure reducing the apparition of deformities. The results suggest that CW + TEO treatment could be used as a natural and effective antifungal retarding the appearance of gray mold and maintaining the postharvest quality of bell pepper. PRACTICAL APPLICATION: CW and TEO are classified as generally recognized as safe (GRAS) by the US Food and Drug Administration (FDA). This combination can be employed on the bell pepper packaging system to extend shelf life and oppose gray mold developments. Bell pepper fruits are normally coated with lipid-base coatings such as CW before commercialization; therefore, TEO addition would represent a small investment without any changes on the packaging system infrastructure.


Botrytis , Capsicum , Food Preservation , Fruit , Oils, Volatile , Thymus Plant , Waxes , Botrytis/drug effects , Capsicum/microbiology , Capsicum/chemistry , Thymus Plant/chemistry , Oils, Volatile/pharmacology , Waxes/chemistry , Waxes/pharmacology , Food Preservation/methods , Fruit/microbiology , Fruit/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fungicides, Industrial/pharmacology
10.
Food Res Int ; 182: 114178, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519192

To explore the feasibility of substituting waxy rice with waxy or sweet-waxy corn, eight varieties of waxy and sweet-waxy corns were selected, including three self-cultivated varieties (Feng nuo 168, Feng nuo 211, and Feng nuo 10). Their starches were isolated and used as research objects, and commercially available waxy rice starch (CAWR) and waxy corn starch (CAWC) were used as controls. X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, rapid viscosity analyzer, and rotational rheometer were used to analyze their physicochemical and structural characteristics. The morphologies of all corn starch granules were generally oval or round, with significant differences in particle size distributions. All ten starches exhibited a typical A-type crystal structure; however, their relative crystallinity varied from 20.08% to 31.43%. Chain length distribution analysis showed that the A/B ratio of Jing cai tian nuo 18 and Feng nuo 168 was similar to that of CAWR. Peak viscosities of corn starches were higher than that of CAWR, except for Feng nuo 10, while their setback values were lower than that of CAWR. Except for Feng nuo 10, the paste transparency of corn starches was higher than that of CAWR (10.77%), especially for Jing cai tian nuo 18 (up to 24%). In summary, Jing cai tian nuo 18 and Feng nuo 168 are promising candidates to replace CAWR in developing various rice-based products.


Oryza , Zea mays , Zea mays/chemistry , Oryza/chemistry , Waxes/chemistry , Feasibility Studies , Starch/chemistry , Amylopectin/chemistry
11.
J Nat Prod ; 87(4): 954-965, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38547477

The tear film lipid layer (TFLL) plays a vital part in maintenance of ocular health and represents a unique biological barrier comprising unusual and specialized lipid classes and species. The wax and cholesteryl esters (WEs and CEs) constitute roughly 80-90% of the TFLL. The majority of species in these lipid classes are branched and it is therefore surprising that the synthesis and properties of the second largest category of species, i.e., the anteiso-branched species, remain poorly characterized. In this study, we have developed a total synthesis route and completed a detailed NMR spectroscopic characterization of two common anteiso-branched species, namely: (22S)-22-methyltetracosanyl oleate and cholesteryl (22'S)-22'-methyltetracosanoate. In addition, we have studied their structural properties in the bulk state by wide-angle and small-angle X-ray scattering and their behavior at the aqueous interface using Langmuir monolayer techniques. A comparison to the properties displayed by iso-branched and straight-chain analogues indicate that branching patterns lead to distinct properties in the CE and WE lipid classes. Overall, this study complements the previous work in the field and adds another important brick in the tear film insights wall.


Cholesterol Esters , Tears , Waxes , Cholesterol Esters/chemistry , Cholesterol Esters/chemical synthesis , Tears/chemistry , Waxes/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Humans
12.
Drug Dev Ind Pharm ; 50(5): 432-445, 2024 May.
Article En | MEDLINE | ID: mdl-38526993

OBJECTIVE: The purpose of this research was to determine any connections between the characteristics of oleogels made of beeswax and the impact of mango butter. METHODS: Oleogel was prepared through inverted tube methods, and optimized through oil binding capacity. Other evaluations like bright field and polarized microscopy, Fourier-transform infrared (FTIR) spectroscopy, crystallization kinetics, mechanical study, and X-ray diffractometry (XRD). The drug release kinetic studies and in vitro antibacterial studies were performed. RESULTS: FTIR study reveals that the gelation process does not significantly alter the chemical composition of the individual components. Prepared gel exhibiting fluid-like behavior or composed of brittle networks is particularly vulnerable to disruptions in their network design. The incorporation of mango butter increases the drug permeation. In-vitro microbial efficacy study was found to be excellent. CONCLUSION: The studies revealed that mango butter can be used to modify the physico-chemical properties of the oleogels.


Mangifera , Organic Chemicals , Plant Oils , Waxes , Waxes/chemistry , Mangifera/chemistry , Organic Chemicals/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Seeds/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Administration, Topical , Spectroscopy, Fourier Transform Infrared/methods , Drug Liberation
13.
Environ Res ; 249: 118306, 2024 May 15.
Article En | MEDLINE | ID: mdl-38307184

Argentina is a leading honey producer and honey bees are also critical for pollination services and wild plants. At the same time, it is a major crop producer with significant use of insecticides, posing risks to bees. Therefore, the presence of the highly toxic insecticide chlorpyrifos, and forbidden contaminants (organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)) was investigated in honey bee, beebread, wax and honey samples in apiaries from three contrasting regions of Argentina. Chlorpyrifos was detected in all samples with higher levels during period 1 (spring) in contrast to period 2 (fall), agreeing with its season-wise use in different crops, reaching 3.05 ng/g in honey bees. A subsequent first-tier pesticide hazard analysis revealed that it was relevant to honey bee health, mainly due to the high concentrations found in wax samples from two sites, reaching 132.4 ng/g. In addition, wax was found to be the most contaminated matrix with a prevalence of OCPs (∑OCPs 58.23-172.99 ng/g). Beebread samples showed the highest concentrations and diversity of pesticide residues during period 1 (higher temperatures). A predominance of the endosulfan group was registered in most samples, consistent with its intensive past use, especially in Central Patagonia before its prohibition. Among the industrial compounds, lighter PCB congeners dominated, suggesting the importance of atmospheric transport. The spatio-temporal distribution of pesticides shows a congruence with the environmental characteristics of the areas where the fields are located (i.e., land use, type of productive activities and climatic conditions). Sustained monitoring of different pollutants in beekeeping matrices is recommended to characterize chemical risks, assess the health status of honey bee hives and the pollution levels of different agroecosystems. This knowledge will set a precedent for South America and be helpful for actions focused on the conservation of pollination services, apiculture and ecosystems in Argentina.


Environmental Monitoring , Environmental Pollutants , Honey , Bees , Argentina , Animals , Honey/analysis , Environmental Pollutants/analysis , Polychlorinated Biphenyls/analysis , Waxes/analysis , Waxes/chemistry , Halogenated Diphenyl Ethers/analysis , Pesticides/analysis , Seasons , Chlorpyrifos/analysis
14.
Int J Biol Macromol ; 259(Pt 1): 129139, 2024 Feb.
Article En | MEDLINE | ID: mdl-38176497

Normal and waxy maize starches with and without removal of starch granule surface lipids (SGSLs) were crosslinked by POCl3 (0.01 %, 0.1 % and 1 %). Crosslinked starches showed lower swelling power and solubility, but higher pasting viscosity, pseudoplasticity, thixotropy, storage modulus and loss modulus. Crosslinking increased the double helical structure but decreased the crystallinity for waxy maize starch. The phosphorus content of crosslinked waxy maize starches after SGSLs removal increased, indicating SGSLs removal promoted crosslinking. SGSLs removal increased G' and G" for crosslinked waxy maize starches. SGSLs removal increased SP and solubility and decreased pasting and rheological parameters of starches. With increased POCl3 dosage, the effect of SGSLs removal on starch properties was gradually suppressed by crosslinking. Waxy and normal maize starches showed significantly different changes with crosslinking and SGSLs removal, and the presence of amylose seemed to impede the effect of crosslinking and SGSLs removal. The removal of SGSLs could extend the application of crosslinked starch in frozen foods, drinks, and canned foods as thickener and stabilizer, due to its better hydrophilicity and viscous liquid-like rheological properties. The study will assist carbohydrate chemists and food processors in developing new food products.


Starch , Zea mays , Zea mays/chemistry , Starch/chemistry , Amylose/chemistry , Amylopectin/chemistry , Viscosity , Waxes/chemistry
15.
Int J Biol Macromol ; 254(Pt 1): 127765, 2024 Jan.
Article En | MEDLINE | ID: mdl-38287575

Waxy maize starch serves as a pivotal component in global food processing and industrial applications, while high temperature (HT) during the grain-filling stage seriously affects its quality. Salicylic acid (SA) has been recognized for its role in enhancing plant heat resistance. Nonetheless, its regulatory effect on the quality of waxy maize starch under HT conditions remains unclear. In this study, two waxy maize varieties, JKN2000 (heat-tolerant) and SYN5 (heat-sensitive) were treated with SA after pollination and then subjected to HT during the grain-filling stage to explore the effect of SA on grain yield and starch quality. The results indicate that exogenous SA under HT treatment led to an increase in kernel weight and starch content in both varieties. Moreover, SA reduced the HT-induced holes on the surfaces of starch granules, enlarged the starch granule size, elevated the amylopectin branching degree, and reduced amylopectin average chain length. Consequently, improvements of pasting viscosity and the decrease of retrogradation percentage of starch were observed with SA under HT. Exogenous SA reduced HT-induced rapidly digestible starch content in SYN5, but had no significant effect on that in JKN2000. In summary, SA pretreatment effectively alleviated the detrimental effects of HT on starch pasting and thermal properties of waxy maize.


Amylopectin , Starch , Starch/chemistry , Amylopectin/chemistry , Zea mays/chemistry , Waxes/chemistry , Edible Grain , Heat-Shock Response , Digestion
16.
Food Chem ; 441: 138277, 2024 May 30.
Article En | MEDLINE | ID: mdl-38176138

Surface wax crystals play important roles in protecting plants from pest and disease invasions, and UV irradiation. The wax crystals are less probed individually from the fruit surfaces. Herein the morphologies, chemicals and an efficient method to sample the wax blooms of white wax gourd were addressed. Various crystalloids such as rodlets, platelets, fragments, and granules were observed, which stacked as fine wax film covering on wax gourd fruit surface. The wax blooms were effectively removed by cryo-adhesive after consecutive manipulating set by a high-end device with cylinders. Wax crystals were dominated by triterpenols and triterpenol acetates over 61 % of total crystals, followed by vey-long-chain aliphatics. Accordingly, the high-end device with cryo-adhesive provides an efficient approach to selectively probe the wax crystals from those fruits covering wax blooms. The elucidation of morphologies and chemical compositions of wax crystals may help to better understand their regulations on fruit quality traits.


Cucurbitaceae , Fruit , Vegetables , Waxes/chemistry
17.
Int J Biol Macromol ; 254(Pt 2): 127776, 2024 Jan.
Article En | MEDLINE | ID: mdl-37907180

Inspired by the natural plant cuticles, a novel strategy was proposed for the fabrication of biomimetic plant cuticles from pullulan-graphene oxide (PU-GO) and beeswax-stearic acid (BW-SA), which could serve as hydrophilic polysaccharides and hydrophobic waxes, respectively. PU-GO and PU-GO/BW-SA in different GO concentrations (0, 10, 30 and 50 µg/mL) were prepared, and their structural characteristics and basic properties were investigated. Results showed that PU-GO/BW-SA possessed a hydrophilic layer and a hydrophobic structure similar to the structure of natural plant cuticles. The incorporation of GO enhanced the barrier properties of the films and PU-GO/BW-SA showed a higher contact angle, lower tensile strength and higher barrier properties compared with PU-GO. In addition, PU-GO/BW-SA in 10 µg/mL GO concentration (PU-GO10/BW-SA) possessed the lowest WVP (7.2 × 10-7 g/(m h Pa)) and a contact angle (93.78°) similar to natural plant cuticles. Applications in Citrus Limon Rosso further proved the potential of PU-GO10/BW-SA as a biomimetic plant cuticle in fruit preservation.


Citrus , Biomimetics , Waxes/chemistry
18.
Int J Cosmet Sci ; 46(2): 162-174, 2024 Apr.
Article En | MEDLINE | ID: mdl-37840342

OBJECTIVE: Rice (Oryza sativa) bran waxes, the by-products of rice bran oil manufacturing, are widely used as inactive components in several preparations. Nevertheless, the function of rice bran waxes against skin ageing has never been reported. This study aimed to investigate thermal property and fatty acid profile of rice bran waxes, including rice bran soft (RBS) and hard (RBH) waxes, and the activities against skin ageing in cultured skin cells. METHODS: Thermal property and fatty acid profile of rice bran waxes were analysed by differential scanning calorimetry and gas chromatography-mass spectrometry, respectively. The cytotoxicity assay of waxes was performed in B16F10 melanoma cells, human skin fibroblasts and co-culture cells of HaCaT cells and human skin fibroblasts. The non-cytotoxic concentrations of waxes were evaluated for their activities against skin ageing, including melanogenesis assay, antioxidant activity, collagen content analysis, matrix metalloproteinase-1 and matrix metalloproteinase-2 inhibitory assay and anti-inflammatory activity. RESULTS: Thermal property indicated the endotherm peaks with melting temperatures at 40.89 ± 0.27°C and 69.64 ± 0.34°C for RBS and RBH, respectively. The main fatty acids in RBS were oleic (31.68 ± 0.75%) and linoleic acids (27.19 ± 0.40%), whereas those in RBH were palmitic (36.24 ± 1.08%) and stearic acids (35.21 ± 4.51%). The cytotoxicity assay in single cells and co-culture cells showed the non-cytotoxicity of RBS (0.0001-1 mg/mL) and RBH (0.0001-0.1 mg/mL). The anti-skin ageing activities of 1 mg/mL RBS and 0.1 mg/mL RBH included the melanogenesis inhibition by suppression of tyrosinase and tyrosinase-related protein-2 enzymes, the antioxidant activity by cellular protection against cell damage and cell death, the collagen stimulation, the matrix metalloproteinase-1 and matrix metalloproteinase-2 suppression and the anti-inflammation. CONCLUSIONS: The study results suggest that RBS and RBH can potentially be applied as the functional ingredients in formulations against skin ageing as well as provide the superior benefit on skin moisturization.


OBJECTIF: Les cires de son de riz (Oryza sativa) et les sous­produits de la fabrication de l'huile de son de riz sont largement utilisées comme composants inactifs dans plusieurs préparations. Néanmoins, l'effet des cires de son de riz contre le vieillissement de la peau n'a jamais été rapporté. Cette étude visait à étudier les propriétés thermiques et le profil d'acides gras des cires de son de riz, y compris les cires dures et douces de son de riz, et les activités contre le vieillissement de la peau dans les cellules cutanées en culture. MÉTHODES: La propriété thermique et le profil d'acides gras des cires de son de riz ont été analysés par calorimétrie différentielle à balayage et chromatographie en phase gazeuse couplée spectrométrie de masse, respectivement. Le dosage de la cytotoxicité des cires a été réalisé sur des cellules de mélanome B16F10, des fibroblastes de peau humaine, et des cellules de co­culture de cellules HaCaT et des fibroblastes de peau humaine. Les concentrations non cytotoxiques des cires ont été évaluées pour leurs activités contre le vieillissement de la peau, y compris l'analyse de la mélanogenèse, l'activité antioxydante, l'analyse de la teneur en collagène, le test de l'inhibiteur de la métalloprotéinase matricielle­1 et de la métalloprotéinase matricielle­2 et l'activité anti­inflammatoire. RÉSULTATS: La propriété thermique indiquait des pics endothermes avec des températures de fusion à 40,89 ± 0,27 °C et 69,64 ± 0,34 °C pour les cires dures et douces de son de riz, respectivement. Les principaux acides gras des cires douces de son de riz étaient des acides oléiques (31,68 ± 0,75 %) et des acides linoléiques (27,19 ± 0,40 %), tandis que ceux des cires dures de son de riz étaient des acides palmitiques (36,24 ± 1,08 %) et des acides stéariques (35,21 ± 4,51 %). Le dosage de la cytotoxicité dans les cellules individuelles et les cellules de co­culture a montré la non­cytotoxicité des cires douces de son de riz (0,0001 à 1 mg/ml) et des cires dures de son de riz (0,0001 à 0,1 mg/ml). Les activités antivieillissement de la peau de 1 mg/ml de cire douce de son de riz et de 0,1 mg/ml de cire dure de son de riz comprenaient l'inhibition de la mélanogenèse par suppression des enzymes de la tyrosinase et de la protéine liée à la tyrosinase 2, l'activité antioxydante par protection cellulaire contre les dommages et la mort cellulaires, la stimulation du collagène, la suppression de la métalloprotéinase matricielle­1 et la métalloprotéinase matricielle­2 et l'activité anti­inflammatoire. CONCLUSIONS: Les résultats de l'étude indiquent que les cires dures et douces de son de riz peuvent potentiellement être appliquées comme ingrédients fonctionnels dans des formulations contre le vieillissement de la peau et fournir un bénéfice supérieur en termes d'hydratation de la peau.


Oryza , Skin Aging , Humans , Waxes/chemistry , Matrix Metalloproteinase 2 , Antioxidants/pharmacology , Oryza/chemistry , Matrix Metalloproteinase 1 , Fatty Acids , Collagen
19.
Chem Biodivers ; 21(2): e202301433, 2024 Feb.
Article En | MEDLINE | ID: mdl-38156744

The cuticle is important in the interaction between the plant and its environment, especially in the dry areas. Four species of junipers from the section Sabina wild growing in the Balkans were selected to study leaf wax composition using GC/MS and GC-FID and its surface morphology under SEM to understand the correlation between the distribution and/or habitat of these species and their cuticles. SEM micrographs showed continuous, smooth epicuticular layers with crusts in all species but with a species-specific distribution of different 3D crystalloid types and different cuticle thickness. n-C33 alkane was the most abundant compound, followed by n-C29, n-C31, and n-C35, depending on the species and the site. The average chain length (N) was the lowest in J. phoenicea, but with the greatest dispersion around it. At the same time, the two most continental species (J. foetidissima and J. excelsa) show the N with the lowest dispersion around it. The statistical analyses confirmed the significance of climate on the evolution of the specific epicuticular wax composition in studied junipers.


Juniperus , Juniperus/chemistry , Waxes/chemistry , Balkan Peninsula , Gas Chromatography-Mass Spectrometry , Alkanes/chemistry , Plant Leaves/chemistry
20.
Molecules ; 28(21)2023 Oct 30.
Article En | MEDLINE | ID: mdl-37959755

Natural waxes have demonstrated exceptional potential as oil gels for saturated and trans fatty acids, but their application has been limited by issues such as temperature sensitivity, lack of stability and durability, and compatibility. In this study, three types of wax (Beeswax (BW), Rice bran wax (RBW), and Carnauba wax (CW)) were combined with calcium hydroxide to produce calcified wax. The calcified Korean pine seed oil gel obtained by heating and stirring with Korean pine seed oil is responsive to temperature and has environmental adaptability. The effects of critical gel concentration, temperature regulation, texture properties, microstructure, oil-holding capacity, and FT-IR on the quality parameters of oil gel were investigated. Additionally, an in vitro digestion model was developed to comprehend the decomposition rate of fat during gel structure digestion and transportation. The results demonstrated a close correlation between the critical gelation concentration and calcium ion content. Furthermore, after calcification, the hardness followed the order BW > CW > RBW. Moreover, there was an approximate 10 °C increase in wax melting point. Conversely, BW:Ca exhibited the lowest oil leakage. The microstructures revealed that the oil gels formed post-wax calcification exhibited similar fractal dimension (Db) values (<7 µm), and the intermolecular forces were characterized by van der Waals forces, which were consistent with those observed in the non-calcified group. In conjunction with the vitro digestion simulation, our findings demonstrated that RBW and CW oil gels gradually released 20%, 35%, and 35% of free fatty acids (FFA) within the initial 30 min of intestinal digestion. Importantly, the FFA release rate was significantly attenuated, thereby providing a foundation for developing wax-based gel processed foods that facilitate gentle energy release benefits for healthy weight management.


Plant Oils , Waxes , Spectroscopy, Fourier Transform Infrared , Waxes/chemistry , Plant Oils/chemistry , Gels/chemistry , Digestion , Republic of Korea
...