Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.459
Filter
1.
Methods Mol Biol ; 2856: 445-453, 2025.
Article in English | MEDLINE | ID: mdl-39283468

ABSTRACT

Cohesin is a protein complex that plays a key role in regulating chromosome structure and gene expression. While next-generation sequencing technologies have provided extensive information on various aspects of cohesin, integrating and exploring the vast datasets associated with cohesin are not straightforward. CohesinDB ( https://cohesindb.iqb.u-tokyo.ac.jp ) offers a web-based interface for browsing, searching, analyzing, visualizing, and downloading comprehensive multiomics cohesin information in human cells. In this protocol, we introduce how to utilize CohesinDB to facilitate research on transcriptional regulation and chromatin organization.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , Web Browser , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Humans , Software , Computational Biology/methods , Genomics/methods , Databases, Genetic , Chromatin/metabolism , Chromatin/genetics , Internet , Multiomics
2.
Methods Mol Biol ; 2856: 179-196, 2025.
Article in English | MEDLINE | ID: mdl-39283452

ABSTRACT

Hi-C and Micro-C are the three-dimensional (3D) genome assays that use high-throughput sequencing. In the analysis, the sequenced paired-end reads are mapped to a reference genome to generate a two-dimensional contact matrix for identifying topologically associating domains (TADs), chromatin loops, and chromosomal compartments. On the other hand, the distance distribution of the paired-end mapped reads also provides insight into the 3D genome structure by highlighting global contact frequency patterns at distances indicative of loops, TADs, and compartments. This chapter presents a basic workflow for visualizing and analyzing contact distance distributions from Hi-C data. The workflow can be run on Google Colaboratory, which provides a ready-to-use Python environment accessible through a web browser. The notebook that demonstrates the workflow is available in the GitHub repository at https://github.com/rnakato/Springer_contact_distance_plot.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , High-Throughput Nucleotide Sequencing/methods , Computational Biology/methods , Web Browser , Workflow , Humans , Chromatin/genetics , Genomics/methods
3.
Curr Protoc ; 4(8): e1120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39126338

ABSTRACT

JBrowse 2 is a modular genome browser that can visualize many common genomic file formats. While JBrowse 2 supports a variety of different usages, it is particularly suited for deployment on websites, such as model organism databases or other web-based genomic data resources. This protocol provides detailed instructions for setting up JBrowse 2 on an Ubuntu Linux web server, loading a reference genome from a FASTA format file, and adding a gene annotation track from a GFF3 format file. By the end of the protocol, users will have a working JBrowse 2 instance that is accessible via the web. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Setting up JBrowse 2 on your web server.


Subject(s)
Genomics , Genomics/methods , Software , Web Browser , Databases, Genetic , Internet , Genome/genetics , Humans , User-Computer Interface
4.
Methods Mol Biol ; 2836: 219-233, 2024.
Article in English | MEDLINE | ID: mdl-38995543

ABSTRACT

Channels, tunnels, and pores serve as pathways for the transport of molecules and ions through protein structures, thus participating to their functions. MOLEonline ( https://mole.upol.cz ) is an interactive web-based tool with enhanced capabilities for detecting and characterizing channels, tunnels, and pores within protein structures. MOLEonline has two distinct calculation modes for analysis of channel and tunnels or transmembrane pores. This application gives researchers rich analytical insights into channel detection, structural characterization, and physicochemical properties. ChannelsDB 2.0 ( https://channelsdb2.biodata.ceitec.cz/ ) is a comprehensive database that offers information on the location, geometry, and physicochemical characteristics of tunnels and pores within macromolecular structures deposited in Protein Data Bank and AlphaFill databases. These tunnels are sourced from manual deposition from literature and automatic detection using software tools MOLE and CAVER. MOLEonline and ChannelsDB visualization is powered by the LiteMol Viewer and Mol* viewer, ensuring a user-friendly workspace. This chapter provides an overview of user applications and usage.


Subject(s)
Databases, Protein , Software , Protein Conformation , User-Computer Interface , Models, Molecular , Ion Channels/metabolism , Ion Channels/chemistry , Computational Biology/methods , Proteins/chemistry , Proteins/metabolism , Web Browser
5.
mSystems ; 9(7): e0026724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38958457

ABSTRACT

Are two adjacent genes in the same operon? What are the order and spacing between several transcription factor binding sites? Genome browsers are software data visualization and exploration tools that enable biologists to answer questions such as these. In this paper, we report on a major update to our browser, Genome Explorer, that provides nearly instantaneous scaling and traversing of a genome, enabling users to quickly and easily zoom into an area of interest. The user can rapidly move between scales that depict the entire genome, individual genes, and the sequence; Genome Explorer presents the most relevant detail and context for each scale. By downloading the data for the entire genome to the user's web browser and dynamically generating visualizations locally, we enable fine control of zoom and pan functions and real-time redrawing of the visualization, resulting in smoother and more intuitive exploration of a genome than is possible with other browsers. Further, genome features are presented together, in-line, using familiar graphical depictions. In contrast, many other browsers depict genome features using data tracks, which have low information density and can visually obscure the relative positions of features. Genome Explorer diagrams have a high information density that provides larger amounts of genome context and sequence information to be presented in a given-sized monitor than for tracks-based browsers. Genome Explorer provides optional data tracks for the analysis of large-scale data sets and a unique comparative mode that aligns genomes at orthologous genes with synchronized zooming. IMPORTANCE: Genome browsers provide graphical depictions of genome information to speed the uptake of complex genome data by scientists. They provide search operations to help scientists find information and zoom operations to enable scientists to view genome features at different resolutions. We introduce the Genome Explorer browser, which provides extremely fast zooming and panning of genome visualizations and displays with high information density.


Subject(s)
Software , Genomics/methods , Web Browser , Genome/genetics , User-Computer Interface
6.
Methods Mol Biol ; 2825: 361-391, 2024.
Article in English | MEDLINE | ID: mdl-38913321

ABSTRACT

The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for helping researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.


Subject(s)
Databases, Genetic , Genomics , Internet , Humans , Genomics/methods , User-Computer Interface , Cytogenetic Analysis/methods , Cytogenetics/methods , Computational Biology/methods , Web Browser
7.
Methods Mol Biol ; 2809: 19-36, 2024.
Article in English | MEDLINE | ID: mdl-38907888

ABSTRACT

The allele frequency net database (AFND, http://www.allelefrequencies.net ) is an online web-based repository that contains information on the frequencies of immune-related genes and their corresponding alleles in worldwide human populations. At present, the website contains data from 1784 population samples in more than 14 million individuals from 129 countries on the frequency of genes from different polymorphic regions including data for the human leukocyte antigen (HLA) system. In addition, over the last four years, AFND has also incorporated genotype raw data from 85,000 individuals comprising 215 population samples from 39 countries. Moreover, more population data sets containing next generation sequencing data spanning >3 million individuals have been added. This resource has been widely used in a variety of contexts such as histocompatibility, immunology, epidemiology, pharmacogenetics, epitope prediction algorithms for population coverage in vaccine development, population genetics, among many others. In this chapter, we present an update of the most used searching mechanisms as described in a previous volume and some of the latest developments included in AFND.


Subject(s)
Databases, Genetic , Gene Frequency , Genetics, Population , Humans , Genetics, Population/methods , HLA Antigens/genetics , Alleles , Computational Biology/methods , Internet , Web Browser , Genotype , High-Throughput Nucleotide Sequencing/methods
8.
Methods Mol Biol ; 2802: 547-571, 2024.
Article in English | MEDLINE | ID: mdl-38819571

ABSTRACT

As genomic and related data continue to expand, research biologists are often hampered by the computational hurdles required to analyze their data. The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Centers (BRC) to assist researchers with their analysis of genome sequence and other omics-related data. Recently, the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD), and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs merged to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) at https://www.bv-brc.org/ . The combined BV-BRC leverages the functionality of the original resources for bacterial and viral research communities with a unified data model, enhanced web-based visualization and analysis tools, and bioinformatics services. Here we demonstrate how antimicrobial resistance data can be analyzed in the new resource.


Subject(s)
Bacteria , Computational Biology , Databases, Genetic , Drug Resistance, Bacterial , Genomics , Genomics/methods , Computational Biology/methods , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/drug effects , Humans , Software , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Web Browser , United States , National Institute of Allergy and Infectious Diseases (U.S.)
9.
Nucleic Acids Res ; 52(W1): W498-W506, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38783339

ABSTRACT

Molecular docking advances early-stage drug discovery by predicting the geometries and affinities of small-molecule compounds bound to drug-target receptors, predictions that researchers can leverage in prioritizing drug candidates for experimental testing. Unfortunately, existing docking tools often suffer from poor usability, data security, and maintainability, limiting broader adoption. Additionally, the complexity of the docking process, which requires users to execute a series of specialized steps, often poses a substantial barrier for non-expert users. Here, we introduce MolModa, a secure, accessible environment where users can perform molecular docking entirely in their web browsers. We provide two case studies that illustrate how MolModa provides valuable biological insights. We further compare MolModa to other docking tools to highlight its strengths and limitations. MolModa is available free of charge for academic and commercial use, without login or registration, at https://durrantlab.com/molmoda.


Subject(s)
Molecular Docking Simulation , Web Browser , Software , Internet , Drug Discovery , Humans
10.
Clin Anat ; 37(6): 640-648, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38556919

ABSTRACT

TA2Viewer is an open-access, web-based application and database for browsing anatomical terms and associated medical information on a computer or mobile device (https://ta2viewer.openanatomy.org/). It incorporates the official digital version of the second edition of Terminologia Anatomica (TA2) as published by the Federative International Programme for Anatomical Terminology (FIPAT), and adopted by the International Federation of Associations of Anatomists (IFAA) and other associations. It provides a dynamic and interactive view of the Latin and English nomenclatures. The organizational hierarchy of the terminology can be navigated by using a scrollable, expandable, and collapsible structured listing. Interactive search includes the official TA2 terms, synonyms, and related terms. TA2Viewer also uses TA2 term information to provide convenient access to other online resources, including Google web and image searches, PubMed, and Radiopaedia. Using cross-references from Wikidata, which were provided by the Wikipedia community, TA2Viewer offers links to Wikipedia, UBERON, UMLS, FMA, MeSH, NeuroNames, the public domain 20th edition of Gray's Anatomy, and other data sources. In addition, it can optionally use unofficial synonyms from Wikidata to provide multilingual term searches in hundreds of languages. By leveraging TA2, TA2Viewer provides free access to a curated anatomical nomenclature and serves as an index of online anatomical knowledge.


Subject(s)
Anatomy , Terminology as Topic , Anatomy/education , Humans , Internet , Web Browser , Databases, Factual
11.
BMC Genomics ; 25(1): 405, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658835

ABSTRACT

Graph-based pangenome is gaining more popularity than linear pangenome because it stores more comprehensive information of variations. However, traditional linear genome browser has its own advantages, especially the tremendous resources accumulated historically. With the fast-growing number of individual genomes and their annotations available, the demand for a genome browser to visualize genome annotation for many individuals together with a graph-based pangenome is getting higher and higher. Here we report a new pangenome browser PPanG, a precise pangenome browser enabling nucleotide-level comparison of individual genome annotations together with a graph-based pangenome. Nine rice genomes with annotations were provided by default as potential references, and any individual genome can be selected as the reference. Our pangenome browser provides unprecedented insights on genome variations at different levels from base to gene, and reveals how the structures of a gene could differ for individuals. PPanG can be applied to any species with multiple individual genomes available and it is available at https://cgm.sjtu.edu.cn/PPanG .


Subject(s)
Genomics , Genomics/methods , Oryza/genetics , Molecular Sequence Annotation , Genome, Plant , Genetic Variation , Software , Web Browser , Databases, Genetic , Nucleotides/genetics , Genome
13.
Bioinformatics ; 40(3)2024 03 04.
Article in English | MEDLINE | ID: mdl-38444087

ABSTRACT

MOTIVATION: Spatial transcriptomics (ST) experiments provide spatially localized measurements of genome-wide gene expression allowing for an unprecedented opportunity to investigate cellular heterogeneity and organization within a tissue. Statistical and computational frameworks exist that implement robust methods for pre-processing and analyzing data in ST experiments. However, the lack of an interactive suite of tools for visualizing ST data and results currently limits the full potential of ST experiments. RESULTS: To fill the gap, we developed SpatialView, an open-source web browser-based interactive application for visualizing data and results from multiple 10× Genomics Visium ST experiments. We anticipate SpatialView will be useful to a broad array of clinical and basic science investigators utilizing ST to study disease. AVAILABILITY AND IMPLEMENTATION: SpatialView is available at https://github.com/kendziorski-lab/SpatialView (and https://doi.org/10.5281/zenodo.10223907); a demo application is available at https://www.biostat.wisc.edu/˜kendzior/spatialviewdemo/.


Subject(s)
Genomics , Software , Genomics/methods , Genome , Web Browser , Gene Expression Profiling/methods
14.
Bioinformatics ; 40(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38200583

ABSTRACT

MOTIVATION: The genomic surveillance of viral pathogens such as SARS-CoV-2 and HIV-1 has been critical to modern epidemiology and public health, but the use of sequence analysis pipelines requires computational expertise, and web-based platforms require sending potentially sensitive raw sequence data to remote servers. RESULTS: We introduce ViralWasm, a user-friendly graphical web application suite for viral genomics. All ViralWasm tools utilize WebAssembly to execute the original command line tools client-side directly in the web browser without any user setup, with a cost of just 2-3x slowdown with respect to their command line counterparts. AVAILABILITY AND IMPLEMENTATION: The ViralWasm tool suite can be accessed at: https://niema-lab.github.io/ViralWasm.


Subject(s)
Genomics , Software , Humans , Genomics/methods , Web Browser , Genome, Viral
15.
J Chem Inf Model ; 64(7): 2150-2157, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38289046

ABSTRACT

SerotoninAI is an innovative web application for scientific purposes focused on the serotonergic system. By leveraging SerotoninAI, researchers can assess the affinity (pKi value) of a molecule to all main serotonin receptors and serotonin transporters based on molecule structure introduced as SMILES. Additionally, the application provides essential insights into critical attributes of potential drugs such as blood-brain barrier penetration and human intestinal absorption. The complexity of the serotonergic system demands advanced tools for accurate predictions, which is a fundamental requirement in drug development. SerotoninAI addresses this need by providing an intuitive user interface that generates predictions of pKi values for the main serotonergic targets. The application is freely available on the Internet at https://serotoninai.streamlit.app/, implemented in Streamlit with all major web browsers supported. Currently, to the best of our knowledge, there is no tool that allows users to access affinity predictions for serotonergic targets without registration or financial obligations. SerotoninAI significantly increases the scope of drug development activities worldwide. The source code of the application is available at https://github.com/nczub/SerotoninAI_streamlit.


Subject(s)
Artificial Intelligence , Software , Humans , Web Browser , Drug Discovery , Internet
16.
PLoS One ; 18(11): e0294236, 2023.
Article in English | MEDLINE | ID: mdl-37943830

ABSTRACT

Graphics are widely used to provide summarization of complex data in scientific publications. Although there are many tools available for drawing graphics, their use is limited by programming skills, costs, and platform specificities. Here, we presented a freely accessible easy-to-use web server named SRplot that integrated more than a hundred of commonly used data visualization and graphing functions together. It can be run easily using all Web browsers and there are no strong requirements on the computing power of users' machines. With a user-friendly graphical interface, users can simply paste the contents of the input file into the text box according to the defined file format. Modification operations can be easily performed, and graphs can be generated in real-time. The resulting graphs can be easily downloaded in bitmap (PNG or TIFF) or vector (PDF or SVG) format in publication quality. The website is updated promptly and continuously. Functions in SRplot have been improved, optimized and updated depend on feedback and suggestions from users. The graphs prepared with SRplot have been featured in more than five hundred peer-reviewed publications. The SRplot web server is now freely available at http://www.bioinformatics.com.cn/SRplot.


Subject(s)
Data Visualization , Software , Computer Graphics , Web Browser , Internet , User-Computer Interface
17.
Sci Rep ; 13(1): 17843, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857659

ABSTRACT

Anti-Microbial Peptide Database version 1 (AMPDB v1) is a meticulously curated resource that aims to address the limitations of existing databases in the field of antimicrobial research. We have utilized the latest technology and put our best efforts into adding all relevant tools to cater to the needs of our users. AMPDB v1 is a derived database, built upon information gathered from the available resources and boasts a significant size of 59,122 entries which are classified into 88 classes. All the information in this resource was curated manually. Sequence alignment and protein feature calculation tools were integrated into the database in the form of web applications, to make them easy to use, quick, and responsive in real-time. We have included multiple types of browsing and searching options to enhance the user experience, from simple text search to a completely customizable advanced search page with intuitive options that let the user combine multiple options together to make a powerful search query. The database is accessible by a web browser at https://bblserver.org.in/ampdb/ .


Subject(s)
Anti-Infective Agents , Peptides , Databases, Factual , Anti-Infective Agents/pharmacology , Software , Web Browser , Databases, Protein
18.
Database (Oxford) ; 20232023 10 20.
Article in English | MEDLINE | ID: mdl-37864836

ABSTRACT

The European Union Data Collection Framework (DCF) states that scientific data-driven assessments are essential to achieve sustainable fisheries. To respond to the DCF call, this study introduces the information systems developed and used by Institut Català de Recerca per a la Governança del Mar (ICATMAR), the Catalan Institute of Research for the Governance of the Seas. The information systems include data from a biological monitoring, curation, processing, analysis, publication and web visualization for bottom trawl fisheries. Over the 4 years of collected data (2019-2022), the sampling program developed a dataset of over 1.1 million sampled individuals accounting for 24.6 tons of catch. The sampling data are ingested into a database through a data input website ensuring data management control and quality. The standardized metrics are automatically calculated and the data are published in the web visualizer, combined with fishing landings and Vessel Monitoring System (VMS) records. As the combination of remote sensing data with fisheries monitoring offers new approaches for ecosystem assessment, the collected fisheries data are also visualized in combination with georeferenced seabed habitats from the European Marine Observation and Data Network (EMODnet), climate and sea conditions from Copernicus Monitoring Environment Marine Service (CMEMS) on the web browser. Three public web-based products have been developed in the visualizer: geolocated bottom trawl samplings, biomass distribution per port or season and length-frequency charts per species. These information systems aim to fulfil the gaps in the scientific community, administration and civil society to access high-quality data for fisheries management, following the Findable, Accessible, Interoperable, Reusable (FAIR) principles, enabling scientific knowledge transfer. Database URL  https://icatmar.github.io/VISAP/(www.icatmar.cat).


Subject(s)
Ecosystem , Fisheries , Humans , Animals , Data Management , Data Collection , Web Browser , Fishes
19.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37609950

ABSTRACT

Ion mobility coupled to mass spectrometry informs on the shape and size of protein structures in the form of a collision cross section (CCSIM). Although there are several computational methods for predicting CCSIM based on protein structures, including our previously developed projection approximation using rough circular shapes (PARCS), the process usually requires prior experience with the command-line interface. To overcome this challenge, here we present a web application on the Rosetta Online Server that Includes Everyone (ROSIE) webserver to predict CCSIM from protein structure using projection approximation with PARCS. In this web interface, the user is only required to provide one or more PDB files as input. Results from our case studies suggest that CCSIM predictions (with ROSIE-PARCS) are highly accurate with an average error of 6.12%. Furthermore, the absolute difference between CCSIM and CCSPARCS can help in distinguishing accurate from inaccurate AlphaFold2 protein structure predictions. ROSIE-PARCS is designed with a user-friendly interface, is available publicly and is free to use. The ROSIE-PARCS web interface is supported by all major web browsers and can be accessed via this link (https://rosie.graylab.jhu.edu).


Subject(s)
Proteins , Software , Proteins/chemistry , Web Browser
20.
Methods Mol Biol ; 2649: 261-279, 2023.
Article in English | MEDLINE | ID: mdl-37258867

ABSTRACT

Cloud Computing services such as Microsoft Azure, Amazon Web Services, and Google Cloud provide a range of tools and services that enable scientists to rapidly prototype, build, and deploy platforms for their computational experiments.This chapter describes a protocol to deploy and configure an Ubuntu Linux Virtual Machine in the Microsoft Azure cloud, which includes Minconda Python, a Jupyter Lab server, and the QIIME toolkit configured for access through a web browser to facilitate a typical metagenomics analysis pipeline.


Subject(s)
Metagenomics , Software , Cloud Computing , Computers , Web Browser , Computational Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL