Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.780
1.
Sci Rep ; 14(1): 12479, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816487

Insects often exhibit irruptive population dynamics determined by environmental conditions. We examine if populations of the Culex tarsalis mosquito, a West Nile virus (WNV) vector, fluctuate synchronously over broad spatial extents and multiple timescales and whether climate drives synchrony in Cx. tarsalis, especially at annual timescales, due to the synchronous influence of temperature, precipitation, and/or humidity. We leveraged mosquito collections across 9 National Ecological Observatory Network (NEON) sites distributed in the interior West and Great Plains region USA over a 45-month period, and associated gridMET climate data. We utilized wavelet phasor mean fields and wavelet linear models to quantify spatial synchrony for mosquitoes and climate and to calculate the importance of climate in explaining Cx. tarsalis synchrony. We also tested whether the strength of spatial synchrony may vary directionally across years. We found significant annual synchrony in Cx. tarsalis, and short-term synchrony during a single period in 2018. Mean minimum temperature was a significant predictor of annual Cx. tarsalis spatial synchrony, and we found a marginally significant decrease in annual Cx. tarsalis synchrony. Significant Cx. tarsalis synchrony during 2018 coincided with an anomalous increase in precipitation. This work provides a valuable step toward understanding broadscale synchrony in a WNV vector.


Culex , Mosquito Vectors , West Nile virus , Animals , Mosquito Vectors/virology , Mosquito Vectors/physiology , West Nile virus/physiology , Culex/virology , Culex/physiology , Temperature , West Nile Fever/transmission , Population Dynamics , Climate , Seasons
2.
Viruses ; 16(5)2024 04 30.
Article En | MEDLINE | ID: mdl-38793601

West Nile virus (WNV) is an arbovirus spread primarily by Culex mosquitoes, with humans being a dead-end host. WNV was introduced to Florida in 2001, with 467 confirmed cases since. It is estimated that 80 percent of cases are asymptomatic, with mild cases presenting as a non-specific flu-like illness. Currently, detection of WNV in humans occurs primarily in healthcare settings via RT-PCR or CSF IgM when patients present with severe manifestations of disease including fever, meningitis, encephalitis, or acute flaccid paralysis. Given the short window of detectable viremia and requirement for CSF sampling, most WNV infections never receive an official diagnosis. This study utilized enzyme-linked immunosorbent assay (ELISA) to detect WNV IgG antibodies in 250 patient serum and plasma samples collected at Tampa General Hospital during 2020 and 2021. Plaque reduction neutralization tests were used to confirm ELISA results. Out of the 250 patients included in this study, 18.8% of them were IgG positive, consistent with previous WNV exposure. There was no relationship between WNV exposure and age or sex.


Antibodies, Viral , Immunoglobulin G , West Nile Fever , West Nile virus , Humans , West Nile virus/immunology , West Nile Fever/epidemiology , West Nile Fever/virology , Florida/epidemiology , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/cerebrospinal fluid , Middle Aged , Seroepidemiologic Studies , Immunoglobulin G/blood , Immunoglobulin G/cerebrospinal fluid , Adult , Aged , Young Adult , Adolescent , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Hospitalization , Immunoglobulin M/blood , Immunoglobulin M/cerebrospinal fluid
3.
Viruses ; 16(5)2024 05 14.
Article En | MEDLINE | ID: mdl-38793662

Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.


Horse Diseases , Vaccination , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Fever/virology , West Nile Fever/epidemiology , West Nile Fever/transmission , Horses , Animals , West Nile virus/immunology , Humans , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/prevention & control , West Nile Virus Vaccines/immunology , Vaccination/veterinary , One Health , United States/epidemiology
4.
Viruses ; 16(5)2024 05 15.
Article En | MEDLINE | ID: mdl-38793670

The West Nile Virus (WNV), a member of the family Flaviviridae, is an emerging mosquito-borne flavivirus causing potentially severe infections in humans and animals involving the central nervous system (CNS). Due to its emerging tendency, WNV now occurs in many areas where other flaviviruses are co-occurring. Cross-reactive antibodies with flavivirus infections or vaccination (e.g., tick-borne encephalitis virus (TBEV), Usutu virus (USUV), yellow fever virus (YFV), dengue virus (DENV), Japanese encephalitis virus (JEV)) therefore remain a major challenge in diagnosing flavivirus infections. Virus neutralization tests are considered as reference tests for the detection of specific flavivirus antibodies, but are elaborate, time-consuming and need biosafety level 3 facilities. A simple and straightforward assay for the differentiation and detection of specific WNV IgG antibodies for the routine laboratory is urgently needed. In this study, we compared two commercially available enzyme-linked immunosorbent assays (anti-IgG WNV ELISA and anti-NS1-IgG WNV), a commercially available indirect immunofluorescence assay, and a newly developed in-house ELISA for the detection of WNV-NS1-IgG antibodies. All four tests were compared to an in-house NT to determine both the sensitivity and specificity of the four test systems. None of the assays could match the specificity of the NT, although the two NS1-IgG based ELISAs were very close to the specificity of the NT at 97.3% and 94.6%. The in-house WNV-NS1-IgG ELISA had the best performance regarding sensitivity and specificity. The specificities of the ELISA assays and the indirect immunofluorescence assays could not meet the necessary specificity and/or sensitivity.


Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , West Nile Fever , West Nile virus , West Nile virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , West Nile Fever/diagnosis , West Nile Fever/immunology , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Fluorescent Antibody Technique, Indirect/methods , Cross Reactions/immunology , Animals
5.
Viruses ; 16(5)2024 05 20.
Article En | MEDLINE | ID: mdl-38793693

Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.


Neurons , RNA, Viral , Virus Replication , West Nile virus , West Nile virus/genetics , West Nile virus/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Neurons/virology , Neurons/metabolism , Animals , Cell Line , Genome, Viral , West Nile Fever/virology , Humans , Mice , Gene Expression Regulation, Viral
6.
Infect Dis Poverty ; 13(1): 38, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790027

BACKGROUND: West Nile virus (WNV), the most widely distributed flavivirus causing encephalitis globally, is a vector-borne pathogen of global importance. The changing climate is poised to reshape the landscape of various infectious diseases, particularly vector-borne ones like WNV. Understanding the anticipated geographical and range shifts in disease transmission due to climate change, alongside effective adaptation strategies, is critical for mitigating future public health impacts. This scoping review aims to consolidate evidence on the impact of climate change on WNV and to identify a spectrum of applicable adaptation strategies. MAIN BODY: We systematically analyzed research articles from PubMed, Web of Science, Scopus, and EBSCOhost. Our criteria included English-language research articles published between 2007 and 2023, focusing on the impacts of climate change on WNV and related adaptation strategies. We extracted data concerning study objectives, populations, geographical focus, and specific findings. Literature was categorized into two primary themes: 1) climate-WNV associations, and 2) climate change impacts on WNV transmission, providing a clear understanding. Out of 2168 articles reviewed, 120 met our criteria. Most evidence originated from North America (59.2%) and Europe (28.3%), with a primary focus on human cases (31.7%). Studies on climate-WNV correlations (n = 83) highlighted temperature (67.5%) as a pivotal climate factor. In the analysis of climate change impacts on WNV (n = 37), most evidence suggested that climate change may affect the transmission and distribution of WNV, with the extent of the impact depending on local and regional conditions. Although few studies directly addressed the implementation of adaptation strategies for climate-induced disease transmission, the proposed strategies (n = 49) fell into six categories: 1) surveillance and monitoring (38.8%), 2) predictive modeling (18.4%), 3) cross-disciplinary collaboration (16.3%), 4) environmental management (12.2%), 5) public education (8.2%), and 6) health system readiness (6.1%). Additionally, we developed an accessible online platform to summarize the evidence on climate change impacts on WNV transmission ( https://2xzl2o-neaop.shinyapps.io/WNVScopingReview/ ). CONCLUSIONS: This review reveals that climate change may affect the transmission and distribution of WNV, but the literature reflects only a small share of the global WNV dynamics. There is an urgent need for adaptive responses to anticipate and respond to the climate-driven spread of WNV. Nevertheless, studies focusing on these adaptation responses are sparse compared to those examining the impacts of climate change. Further research on the impacts of climate change and adaptation strategies for vector-borne diseases, along with more comprehensive evidence synthesis, is needed to inform effective policy responses tailored to local contexts.


Climate Change , West Nile Fever , West Nile virus , West Nile virus/physiology , West Nile Fever/transmission , West Nile Fever/epidemiology , Humans , Animals , Adaptation, Physiological
7.
Front Immunol ; 15: 1395870, 2024.
Article En | MEDLINE | ID: mdl-38799422

Emerging infectious diseases represent a significant threat to global health, with West Nile virus (WNV) being a prominent example due to its potential to cause severe neurological disorders alongside mild feverish conditions. Particularly prevalent in the continental United States, WNV has emerged as a global concern, with outbreaks indicating the urgent need for effective prophylactic measures. The current problem is that the absence of a commercial vaccine against WNV highlights a critical gap in preventive strategies against WNV. This study aims to address this gap by proposing a novel, multivalent vaccine designed using immunoinformatics approaches to elicit comprehensive humoral and cellular immune responses against WNV. The objective of the study is to provide a theoretical framework for experimental scientists to formulate of vaccine against WNV and tackle the current problem by generating an immune response inside the host. The research employs reverse vaccinology and subtractive proteomics methodologies to identify NP_041724.2 polyprotein and YP_009164950.1 truncated flavivirus polyprotein NS1 as the prime antigens. The selection process for epitopes focused on B and T-cell reactivity, antigenicity, water solubility, and non-allergenic properties, prioritizing candidates with the potential for broad immunogenicity and safety. The designed vaccine construct integrates these epitopes, connected via GPGPG linkers, and supplemented with an adjuvant with the help of another linker EAAAK, to enhance immunogenicity. Preliminary computational analyses suggest that the proposed vaccine could achieve near-universal coverage, effectively targeting approximately 99.74% of the global population, with perfect coverage in specific regions such as Sweden and Finland. Molecular docking and immune simulation studies further validate the potential efficacy of the vaccine, indicating strong binding affinity with toll-like receptor 3 (TLR-3) and promising immune response profiles, including significant antibody-mediated and cellular responses. These findings present the vaccine construct as a viable candidate for further development and testing. While the theoretical and computational results are promising, advancing from in-silico predictions to a tangible vaccine requires comprehensive laboratory validation. This next step is essential to confirm the vaccine's efficacy and safety in eliciting an immune response against WNV. Through this study, we propose a novel approach to vaccine development against WNV and contribute to the broader field of immunoinformatics, showcasing the potential to accelerate the design of effective vaccines against emerging viral threats. The journey from hypothesis to practical solution embodies the interdisciplinary collaboration essential for modern infectious disease management and prevention strategies.


Computational Biology , Immunodominant Epitopes , Proteome , Vaccines, Subunit , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile virus/immunology , Immunodominant Epitopes/immunology , Humans , Proteome/immunology , West Nile Fever/prevention & control , West Nile Fever/immunology , West Nile Fever/virology , Computational Biology/methods , West Nile Virus Vaccines/immunology , Vaccines, Subunit/immunology , Vaccine Development , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Proteomics/methods , Immunoinformatics , Protein Subunit Vaccines
9.
PLoS Negl Trop Dis ; 18(5): e0012162, 2024 May.
Article En | MEDLINE | ID: mdl-38709836

West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.


Mosquito Vectors , Seasons , Temperature , West Nile Fever , West Nile virus , West Nile Fever/transmission , West Nile Fever/epidemiology , West Nile Fever/virology , Animals , West Nile virus/physiology , West Nile virus/isolation & purification , Europe/epidemiology , Humans , Mosquito Vectors/virology , Mosquito Vectors/physiology , Birds/virology , Netherlands/epidemiology , Models, Theoretical , Culicidae/virology , Culicidae/physiology
10.
BMC Ophthalmol ; 24(1): 160, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600458

BACKGROUND: To describe a case of bilateral multifocal chorioretinitis as the only presentation of acute West Nile virus (WNV) infection in the absence of neurological involvement. CASE PRESENTATION: A 78-year-old Italian woman was admitted to our emergency department because she noticed blurry vision in both eyes. She did not report fever, fatigue, or neurological symptoms in the last few days. Multimodal imaging showed the presence of bilateral hyperfluorescent lesions with a linear distribution, that corresponded to hypocyanescent spots on indocyanine green angiography. Antibody serology showed the presence of IgM antibodies, IgG antibodies, and ribonucleic acid (RNA) for WNV. Magnetic resonance imaging (MRI) of the brain ruled out central nervous system involvement. Three months later, the patient reported spontaneous resolution of her symptoms and remission of the chorioretinal infiltrates. CONCLUSIONS: In endemic areas, it is important to think of acute WNV infection as an explanatory etiology in cases of multifocal chorioretinitis, even without neurological involvement.


Chorioretinitis , Eye Infections, Viral , West Nile Fever , West Nile virus , Humans , Female , Aged , West Nile Fever/complications , West Nile Fever/diagnosis , West Nile Fever/epidemiology , Eye Infections, Viral/diagnosis , Chorioretinitis/etiology , Vitreous Body/pathology , Antibodies, Viral
11.
Emerg Microbes Infect ; 13(1): 2348510, 2024 Dec.
Article En | MEDLINE | ID: mdl-38686545

West Nile virus (WNV) is the most widely distributed mosquito-borne flavivirus in the world. This flavivirus can infect humans causing in some cases a fatal neurological disease and birds are the main reservoir hosts. WNV is endemic in Spain, and human cases have been reported since 2004. Although different studies analyse how climatic conditions can affect the dynamics of WNV infection, very few use long-term datasets. Between 2003 and 2020 a total of 2,724 serum samples from 1,707 common coots (Fulica atra) were analysed for the presence of WNV-specific antibodies. Mean (SD) annual seroprevalence was 24.67% (0.28) but showed high year-to-year variations ranging from 5.06% (0.17) to 68.89% (0.29). Significant positive correlations (p < 0.01) were observed between seroprevalence and maximum winter temperature and mean spring temperature. The unprecedented WNV outbreak in humans in the south of Spain in 2020 was preceded by a prolonged period of escalating WNV local circulation. Given current global and local climatic trends, WNV circulation is expected to increase in the next decades. This underscores the necessity of implementing One Health approaches to reduce the risk of future WNV outbreaks in humans. Our results suggest that higher winter and spring temperatures may be used as an early warning signal of more intense WNV circulation among wildlife in Spain, and consequently highlight the need of more intense vector control and surveillance in human inhabited areas.


Antibodies, Viral , Seasons , West Nile Fever , West Nile virus , Spain/epidemiology , West Nile virus/immunology , West Nile virus/isolation & purification , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/veterinary , Animals , Seroepidemiologic Studies , Humans , Antibodies, Viral/blood , Disease Outbreaks , Temperature
13.
Viruses ; 16(4)2024 04 12.
Article En | MEDLINE | ID: mdl-38675940

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Birds , Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Europe/epidemiology , West Nile virus/genetics , West Nile virus/physiology , West Nile virus/isolation & purification , Animals , Humans , Flavivirus/classification , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus/isolation & purification , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Flavivirus Infections/transmission , Flavivirus Infections/veterinary , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile Fever/transmission , Birds/virology , Culicidae/virology , Mosquito Vectors/virology , Disease Outbreaks
14.
Microbiol Spectr ; 12(6): e0075824, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38687079

Human immunoglobulin preparations contain a diverse range of polyclonal antibodies that reflect past immune responses against pathogens encountered by the blood donor population. In this study, we examined a panel of intravenous immunoglobulins (IGIVs) manufactured over the past two decades (1998-2020) for their capacity to neutralize or enhance Zika virus (ZIKV) infection in vitro. These IGIVs were selected specifically based on their production dates in relation to the occurrences of two flavivirus outbreaks in the U.S.: the West Nile virus (WNV) outbreak in 1999 and the ZIKV outbreak in 2015. As demonstrated by enzyme-linked immunosorbent assay (ELISA) experiments, IGIVs made before the ZIKV outbreak already harbored antibodies that bind to various peptides across the envelope protein of ZIKV because of the WNV outbreak. Using phage display, the most dominant binding site was mapped precisely to the P2 peptide between residues 211 and 230 within domain II, where BF1176-56, an anti-ZIKV monoclonal antibody, also binds. When tested in permissive Vero E6 cells for ZIKV neutralization, the IGIVs, even after undergoing rigorous enrichment for P2 binding specificity, failed, as did BF1176-56. Meanwhile, BF1176-56 enhanced ZIKV infection in both FcγRII-expressing K562 cells and human peripheral blood mononuclear cells. However, for enhancement by the IGIVs to be detected in these cells, a substantial increase in their P2 binding specificity was required, thus linking the P2 site with ZIKV enhancement in vitro. Our findings warrant further study of the significance of elevated levels of anti-WNV antibodies in IGIVs, considering that various mechanisms operating in vivo may modulate ZIKV infection outcomes.IMPORTANCEWe investigated the capacity of intravenous immunoglobulins manufactured previously over two decades (1998-2020) to neutralize or enhance Zika virus infection in vitro. West Nile virus antibodies in IGIVs could not neutralize Zika virus initially; however, once the IGIVs were concentrated further, they enhanced its infection. These findings lay the groundwork for exploring how preexisting WNV antibodies in IGIVs could impact Zika infection, both in vitro and in vivo. Our observations are historically significant, since we tested a panel of IGIV lots that were carefully selected based on their production dates which covered two major flavivirus outbreaks in the U.S.: the WNV outbreak in 1999 and the ZIKV outbreak in 2015. These findings will facilitate our understanding of the interplay among closely related viral pathogens, particularly from a historical perspective regarding large blood donor populations. They should remain relevant for future outbreaks of emerging flaviviruses that may potentially affect vulnerable populations.


Antibodies, Neutralizing , Antibodies, Viral , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , West Nile virus/immunology , Antibodies, Viral/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Animals , Chlorocebus aethiops , Vero Cells , West Nile Fever/immunology , West Nile Fever/virology , Antibodies, Neutralizing/immunology , Binding Sites , Immunoglobulins, Intravenous/immunology , Viral Envelope Proteins/immunology , Enzyme-Linked Immunosorbent Assay
15.
Parasit Vectors ; 17(1): 156, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532512

BACKGROUND: Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS: We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS: Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS: Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.


Culex , Culicidae , West Nile Fever , West Nile virus , Animals , Microclimate , Birds , Mosquito Vectors
16.
J Infect Public Health ; 17(5): 868-880, 2024 May.
Article En | MEDLINE | ID: mdl-38555655

BACKGROUND: West Nile virus (WNV) is a mosquito-borne flavivirus. In humans, 80% of infections are asymptomatic, while approximately 20% experience influenza-like symptoms. Fewer than 1% develop the neuroinvasive form which can lead to encephalitis, meningitis, acute flaccid paralysis, and even death. The global spread of the virus to areas where it was not previously present has become a growing concern. Since the 2000 s, there have been numerous outbreaks affecting local and travelling populations worldwide. Given the lack of a vaccine, preventative measures are primarily focused on surveillance, vector control, and the use of personal protective behaviours (PPBs). The importance of PPBs is central to public health recommendations. However, translating these messages into coherent action by the public can prove challenging, as the uptake of such measures is inevitably influenced by socio-economic factors, awareness, knowledge, and risk perception. METHODS: A PRISMA-based systematic research was conducted on EMBASE, PubMed/MEDLINE, and Web of Science databases. PROSPERO registration number CRD42023459714. Quality of studies included in the final stage was evaluated using the Critical Appraisal Checklist for Cross-Sectional Study (CEBMa). RESULTS: 2963 articles were screened, and 17 studies were included in the final round. Out of these, six were deemed of high quality, ten were of medium quality, and one was of low quality. In almost all studies considered, both awareness and knowledge of WNV transmission were above 90%, while concern about WNV ranged from 50% to 80%. Concern about the safety of repellents, either with or without DEET, ranged from 27% to 70%. The percentage of people actually using repellents ranged from 30% to 75%, with the lowest usage reported among individuals over 60 years old (29%) and pregnant women (33%), and the highest among students aged 9-11 (75%). Concern for West Nile Virus (WNV) was consistently linked to an increase in taking preventative measures, including the use of repellents, by two to four times across studies. The school-based intervention was effective in increasing the practice of removing standing water (AOR=4.6; 2.7-8.0) and wearing long clothing (AOR=2.4; 95%CI: 1.3-4.3), but did not have a significant impact on the use of repellents. CONCLUSIONS: The present systematic review provides an overview of the knowledge, attitudes, and practices (KAP) of WNV and their determinants. While concern about West Nile Virus (WNV) and its effects can be a significant motivator, it is important to promote evidence-based personal protective behaviours (PPBs) to counter unwarranted fears. For example, the use of repellents among the most vulnerable age groups. Given the geographical expansion of WNV, it is necessary to target the entire population preventively, including those who are difficult to reach and areas not yet endemic. The findings of this investigation could have significant implications for public health and support well-informed and effective communication strategies and interventions.


West Nile Fever , West Nile virus , Animals , Humans , Female , Pregnancy , Middle Aged , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Fever/diagnosis , Health Knowledge, Attitudes, Practice , Cross-Sectional Studies , Mosquito Vectors
17.
JAMA Netw Open ; 7(3): e244294, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38546642

Importance: West Nile virus (WNV) is the leading cause of human arboviral disease in the US, peaking during summer. The incidence of WNV, including its neuroinvasive form (NWNV), is increasing, largely due to the expanding distribution of its vector, the Culex mosquito, and climatic changes causing heavy monsoon rains. However, the distinct characteristics and outcomes of NWNV in individuals who are immunosuppressed (IS) and individuals who are not IS remain underexplored. Objective: To describe and compare clinical and radiographic features, treatment responses, and outcomes of NWNV infection in individuals who are IS and those who are not IS. Design, Setting, and Participants: This retrospective cohort study used data from the Mayo Clinic Hospital system collected from July 2006 to December 2021. Participants were adult patients (age ≥18 years) with established diagnosis of NWNV infection. Data were analyzed from May 12, 2020, to July 20, 2023. Exposure: Immunosuppresion. Main Outcomes and Measures: Outcomes of interest were clinical and radiographic features and 90-day mortality among patients with and without IS. Results: Of 115 participants with NWNV infection (mean [SD] age, 64 [16] years; 75 [66%] male) enrolled, 72 (63%) were not IS and 43 (37%) were IS. Neurologic manifestations were meningoencephalitis (98 patients [85%]), encephalitis (10 patients [9%]), and myeloradiculitis (7 patients [6%]). Patients without IS, compared with those with IS, more frequently reported headache (45 patients [63%] vs 18 patients [42%]) and myalgias (32 patients [44%] vs 9 patients [21%]). In contrast, patients with IS, compared with those without, had higher rates of altered mental status (33 patients [77%] vs 41 patients [57%]) and myoclonus (8 patients [19%] vs 8 patients [4%]). Magnetic resonance imaging revealed more frequent thalamic T2 fluid-attenuated inversion recovery hyperintensities in individuals with IS than those without (4 patients [11%] vs 0 patients). Individuals with IS had more severe disease requiring higher rates of intensive care unit admission (26 patients [61%] vs 24 patients [33%]) and mechanical ventilation (24 patients [56%] vs 22 patients [31%]). The 90-day all-cause mortality rate was higher in the patients with IS compared with patients without IS (12 patients [28%] vs 5 patients [7%]), and this difference in mortality persisted after adjusting for Glasgow Coma Scale score (adjusted hazard ratio, 2.22; 95% CI, 1.07-4.27; P = .03). Individuals with IS were more likely to receive intravenous immunoglobulin than individuals without IS (12 individuals [17%] vs 24 individuals [56%]), but its use was not associated with survival (hazard ratio, 1.24; 95% CI, 0.50-3.09; P = .64). Conclusions and Relevance: In this cohort study of individuals with NWNV infection, individuals with IS had a higher risk of disease complications and poor outcomes than individuals without IS, highlighting the need for innovative and effective therapies to improve outcomes in this high-risk population.


West Nile Fever , West Nile virus , Adult , Animals , Humans , Male , Middle Aged , Adolescent , Female , West Nile Fever/complications , West Nile Fever/epidemiology , Cohort Studies , Retrospective Studies , Mosquito Vectors
19.
Proc Biol Sci ; 291(2018): 20232432, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38471554

Mathematical models within the Ross-Macdonald framework increasingly play a role in our understanding of vector-borne disease dynamics and as tools for assessing scenarios to respond to emerging threats. These threats are typically characterized by a high degree of heterogeneity, introducing a range of possible complexities in models and challenges to maintain the link with empirical evidence. We systematically identified and analysed a total of 77 published papers presenting compartmental West Nile virus (WNV) models that use parameter values derived from empirical studies. Using a set of 15 criteria, we measured the dissimilarity compared with the Ross-Macdonald framework. We also retrieved the purpose and type of models and traced the empirical sources of their parameters. Our review highlights the increasing refinements in WNV models. Models for prediction included the highest number of refinements. We found uneven distributions of refinements and of evidence for parameter values. We identified several challenges in parametrizing such increasingly complex models. For parameters common to most models, we also synthesize the empirical evidence for their values and ranges. The study highlights the potential to improve the quality of WNV models and their applicability for policy by establishing closer collaboration between mathematical modelling and empirical work.


West Nile Fever , West Nile virus , Humans , Models, Theoretical , West Nile Fever/transmission
20.
Vet Res ; 55(1): 32, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493182

Outbreaks of West Nile virus (WNV) occur periodically, affecting both human and equine populations. There are no vaccines for humans, and those commercialised for horses do not have sufficient coverage. Specific antiviral treatments do not exist. Many drug discovery studies have been conducted, but since rodent or primate cell lines are normally used, results cannot always be transposed to horses. There is thus a need to develop relevant equine cellular models. Here, we used induced pluripotent stem cells to develop a new in vitro model of WNV-infected equine brain cells suitable for microplate assay, and assessed the cytotoxicity and antiviral activity of forty-one chemical compounds. We found that one nucleoside analog, 2'C-methylcytidine, blocked WNV infection in equine brain cells, whereas other compounds were either toxic or ineffective, despite some displaying anti-viral activity in human cell lines. We also revealed an unexpected proviral effect of statins in WNV-infected equine brain cells. Our results thus identify a potential lead for future drug development and underscore the importance of using a tissue- and species-relevant cellular model for assessing the activity of antiviral compounds.


Horse Diseases , Induced Pluripotent Stem Cells , West Nile Fever , West Nile virus , Animals , Horses , Humans , West Nile Fever/veterinary , West Nile Fever/epidemiology , Brain , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Horse Diseases/drug therapy
...