Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.205
Filter
1.
J Agric Food Chem ; 72(28): 15624-15632, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38952111

ABSTRACT

Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.


Subject(s)
Cytochrome P-450 Enzyme System , Insect Proteins , Insecticide Resistance , Insecticides , Malpighian Tubules , Spodoptera , Xenobiotics , Animals , Spodoptera/genetics , Spodoptera/drug effects , Spodoptera/enzymology , Insect Proteins/genetics , Insect Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Xenobiotics/metabolism , Insecticides/pharmacology , Malpighian Tubules/metabolism , Malpighian Tubules/enzymology , Malpighian Tubules/drug effects , Insecticide Resistance/genetics , Inactivation, Metabolic/genetics , Larva/growth & development , Larva/genetics , Larva/drug effects
2.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Article in English | MEDLINE | ID: mdl-38960484

ABSTRACT

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Subject(s)
Gastrointestinal Microbiome , Metalloproteins , Reactive Oxygen Species , Xenobiotics , Xenobiotics/metabolism , Humans , Metalloproteins/metabolism , Metalloproteins/chemistry , Metalloproteins/genetics , Reactive Oxygen Species/metabolism
3.
Bull Exp Biol Med ; 176(6): 796-800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38890213

ABSTRACT

The allele and genotype frequencies of the polymorphic loci CYP1A1 (rs1048943), GSTP1 (rs1695 and rs1138272), GSTM1, and GSTT1 genes were studied in 517 men: in 389 accumulated mercury pollution liquidators (207 firefighters of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters and 182 employees of the Federal Environmental Operator) and 128 former workers (82 patients in the delayed period of chronic mercury intoxication and 46 individuals contacted with mercury and had no chronic mercury intoxication). We found differences in the frequencies of AA and AG genotypes in groups of former workers (χ2=6.96, p=0.008) for the polymorphic locus rs1048943, while the AG-CYP1A1 genotype was characterized by a 5.5-fold decrease in the odds ratio for the development of chronic mercury intoxication (OR=0.18, p=0.0041). An unfavorable combination of genotypes of the studied polymorphic loci increases the risk of undesirable health effects.


Subject(s)
Cytochrome P-450 CYP1A1 , Glutathione Transferase , Mercury , Occupational Exposure , Xenobiotics , Humans , Male , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Mercury/toxicity , Occupational Exposure/adverse effects , Adult , Xenobiotics/metabolism , Cytochrome P-450 CYP1A1/genetics , Glutathione S-Transferase pi/genetics , Middle Aged , Mercury Poisoning/genetics , Gene Frequency/genetics , Biotransformation/genetics , Genotype , Polymorphism, Single Nucleotide/genetics , Russia , Firefighters , Alleles
4.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928005

ABSTRACT

The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.


Subject(s)
Marine Toxins , Mytilus , Pregnane X Receptor , Animals , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Mytilus/metabolism , Mytilus/genetics , Humans , Microcystins/metabolism , Microalgae/metabolism , Microalgae/genetics , Xenobiotics/metabolism , Bacterial Toxins/metabolism , Cyanobacteria Toxins
5.
Bioessays ; 46(7): e2400029, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713170

ABSTRACT

Flavin-containing monooxygenases (FMOs), traditionally known for detoxifying xenobiotics, are now recognized for their involvement in endogenous metabolism. We recently discovered that an isoform of FMO, fmo-2 in Caenorhabditis elegans, alters endogenous metabolism to impact longevity and stress tolerance. Increased expression of fmo-2 in C. elegans modifies the flux through the key pathway known as One Carbon Metabolism (OCM). This modified flux results in a decrease in the ratio of S-adenosyl-methionine (SAM) to S-adenosyl-homocysteine (SAH), consequently diminishing methylation capacity. Here we discuss how FMO-2-mediated formate production during tryptophan metabolism may serve as a trigger for changing the flux in OCM. We suggest formate bridges tryptophan and OCM, altering metabolic flux away from methylation during fmo-2 overexpression. Additionally, we highlight how these metabolic results intersect with the mTOR and AMPK pathways, in addition to mitochondrial metabolism. In conclusion, the goal of this essay is to bring attention to the central role of FMO enzymes but lack of understanding of their mechanisms. We justify a call for a deeper understanding of FMO enzyme's role in metabolic rewiring through tryptophan/formate or other yet unidentified substrates. Additionally, we emphasize the identification of novel drugs and microbes to induce FMO activity and extend lifespan.


Subject(s)
Caenorhabditis elegans , Oxygenases , Xenobiotics , Animals , Xenobiotics/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Oxygenases/metabolism , Oxygenases/genetics , Humans , Tryptophan/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Longevity
6.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791410

ABSTRACT

Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of the flavin adenine dinucleotide (FAD) cofactor was estimated to be -0.240 V. Photoreduction using 5-deazaflavin mononucleotide (5-deazaFMN) as a photosensitizer revealed that the difference in the redox potentials between the first and second single-electron transfer steps was 0.024 V. We examined the mechanisms of the reduction of several different groups of non-physiological electron acceptors catalyzed by BsFNR. The reactivity of quinones and aromatic N-oxides toward BsFNR increased when increasing their single-electron reduction midpoint redox potentials. The reactivity of nitroaromatic compounds was lower due to their lower electron self-exchange rate, but it exhibited the same trend. A mixed single- and two-electron reduction reaction was characteristic of quinones, whereas reactions involving nitroaromatics proceeded exclusively via the one-electron reduction reaction. The oxidation of FADH• to FAD is the rate-limiting step during the oxidation of fully reduced FAD. The calculated electron transfer distances in the reaction with nitroaromatics were close to those of other FNRs including the plant-type enzymes, thus demonstrating their similar active site accessibility to low-molecular-weight oxidants despite the fundamental differences in their structures.


Subject(s)
Bacillus subtilis , Ferredoxin-NADP Reductase , Oxidation-Reduction , Ferredoxin-NADP Reductase/metabolism , Ferredoxin-NADP Reductase/chemistry , Bacillus subtilis/enzymology , Xenobiotics/metabolism , Xenobiotics/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Potentiometry , Oxidants/chemistry , Quinones/metabolism , Quinones/chemistry , Electron Transport
7.
Chemosphere ; 361: 142443, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815811

ABSTRACT

Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.


Subject(s)
Crassostrea , Cytochrome P-450 Enzyme System , Receptors, Cytoplasmic and Nuclear , Crassostrea/genetics , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Molecular Docking Simulation , Gene Expression Regulation , Molecular Dynamics Simulation , Xenobiotics/metabolism
8.
Nature ; 629(8013): 824-829, 2024 May.
Article in English | MEDLINE | ID: mdl-38720081

ABSTRACT

Enzymes play an increasingly important role in improving the benignity and efficiency of chemical production, yet the diversity of their applications lags heavily behind chemical catalysts as a result of the relatively narrow range of reaction mechanisms of enzymes. The creation of enzymes containing non-biological functionalities facilitates reaction mechanisms outside nature's canon and paves the way towards fully programmable biocatalysis1-3. Here we present a completely genetically encoded boronic-acid-containing designer enzyme with organocatalytic reactivity not achievable with natural or engineered biocatalysts4,5. This boron enzyme catalyses the kinetic resolution of hydroxyketones by oxime formation, in which crucial interactions with the protein scaffold assist in the catalysis. A directed evolution campaign led to a variant with natural-enzyme-like enantioselectivities for several different substrates. The unique activation mode of the boron enzyme was confirmed using X-ray crystallography, high-resolution mass spectrometry (HRMS) and 11B NMR spectroscopy. Our study demonstrates that genetic-code expansion can be used to create evolvable enantioselective enzymes that rely on xenobiotic catalytic moieties such as boronic acids and access reaction mechanisms not reachable through catalytic promiscuity of natural or engineered enzymes.


Subject(s)
Biocatalysis , Boronic Acids , Enzymes , Protein Engineering , Boronic Acids/chemistry , Boronic Acids/metabolism , Crystallography, X-Ray , Directed Molecular Evolution , Enzymes/chemistry , Enzymes/metabolism , Enzymes/genetics , Ketones/chemistry , Ketones/metabolism , Kinetics , Models, Molecular , Oximes/chemistry , Oximes/metabolism , Substrate Specificity , Nuclear Magnetic Resonance, Biomolecular , Mass Spectrometry , Xenobiotics/chemistry , Xenobiotics/metabolism
9.
J Hazard Mater ; 474: 134683, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820745

ABSTRACT

The microbial community present in our intestines is pivotal for converting indigestible substances into vital nutrients and signaling molecules such as short-chain fatty acids (SCFAs). These compounds have considerable influence over our immune system and the development of diverse human diseases. However, ingested environmental contaminants, known as xenobiotics, can upset the delicate balance of the microbial gut community and enzymatic processes, consequently affecting the host organism. In our study, we employed an in vitro bioreactor model system based on the simplified human microbiome model (SIHUMIx) to investigate the direct effects of specific xenobiotics, such as perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) or bisphenol S (BPS) and bisphenol F (BPF), either individually or in combination, on the microbiota. We observed increased SCFA production, particularly acetate and butyrate, with PFAS exposure. Metaproteomics revealed pathway alterations across treatments, including changes in vitamin synthesis and fatty acid metabolism with BPX. This study underscores the necessity of assessing the combined effects of xenobiotics to better safeguard public health. It emphasizes the significance of considering adverse effects on the microbiome in the risk assessment of environmental chemicals.


Subject(s)
Benzhydryl Compounds , Fatty Acids, Volatile , Fluorocarbons , Gastrointestinal Microbiome , Xenobiotics , Humans , Xenobiotics/toxicity , Xenobiotics/metabolism , Fluorocarbons/toxicity , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Benzhydryl Compounds/toxicity , Phenols/toxicity , Bioreactors , Sulfones/toxicity , Environmental Pollutants/toxicity
10.
J Agric Food Chem ; 72(22): 12696-12706, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775624

ABSTRACT

Nasal xenobiotic metabolizing enzymes (XMEs) are important for the sense of smell because they influence odorant availability and quality. Since the major part of the human nasal cavity is lined by a respiratory mucosa, we hypothesized that this tissue contributed to nasal odorant metabolism through XME activity. Thus, we built human respiratory tissue models and characterized the XME profiles using single-cell RNA sequencing. We focused on the XMEs dicarbonyl and l-xylulose reductase, aldehyde dehydrogenase (ALDH) 1A1, and ALDH3A1, which play a role in food odorant metabolism. We demonstrated protein abundance and localization in the tissue models and showed the metabolic activity of the corresponding enzyme families by exposing the models to the odorants 3,4-hexandione and benzaldehyde. Using gas chromatography coupled with mass spectrometry, we observed, for example, a significantly higher formation of the corresponding metabolites 4-hydroxy-3-hexanone (39.03 ± 1.5%, p = 0.0022), benzyl alcohol (10.05 ± 0.88%, p = 0.0008), and benzoic acid (8.49 ± 0.57%, p = 0.0004) in odorant-treated tissue models compared to untreated controls (0 ± 0, 0.12 ± 0.12, and 0.18 ± 0.18%, respectively). This is the first study that reveals the XME profile of tissue-engineered human respiratory mucosa models and demonstrates their suitability to study nasal odorant metabolism.


Subject(s)
Odorants , Respiratory Mucosa , Humans , Odorants/analysis , Respiratory Mucosa/metabolism , Models, Biological , Gas Chromatography-Mass Spectrometry , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Xenobiotics/metabolism
11.
Nat Commun ; 15(1): 4482, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802370

ABSTRACT

Environmental pollutants from different chemical families may reach the gut microbiome, where they can be metabolized and transformed. However, how our gut symbionts respond to the exposure to environmental pollution is still underexplored. In this observational, cohort study, we aim to investigate the influence of environmental pollution on the gut microbiome composition and potential activity by shotgun metagenomics. We select as a case study a population living in a highly polluted area in Campania region (Southern Italy), proposed as an ideal field for exposomic studies and we compare the fecal microbiome of 359 subjects living in areas with high, medium and low environmental pollution. We highlight changes in gut microbiome composition and functionality that were driven by pollution exposure. Subjects from highly polluted areas show higher blood concentrations of dioxin and heavy metals, as well as an increase in microbial genes related to degradation and/or resistance to these molecules. Here we demonstrate the dramatic effect that environmental xenobiotics have on gut microbial communities, shaping their composition and boosting the selection of strains with degrading capacity. The gut microbiome can be considered as a pivotal player in the environment-health interaction that may contribute to detoxifying toxic compounds and should be taken into account when developing risk assessment models. The study was registered at ClinicalTrials.gov with the identifier NCT05976126.


Subject(s)
Environmental Pollutants , Feces , Gastrointestinal Microbiome , Xenobiotics , Humans , Gastrointestinal Microbiome/drug effects , Xenobiotics/metabolism , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Female , Male , Feces/microbiology , Italy , Adult , Middle Aged , Environmental Exposure/adverse effects , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/drug effects , Bacteria/isolation & purification , Cohort Studies , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Aged , Environmental Pollution/adverse effects , Biodegradation, Environmental
12.
Water Res ; 256: 121593, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631239

ABSTRACT

Organic contaminants enter aquatic ecosystems from various sources, including wastewater treatment plant effluent. Freshwater biofilms play a major role in the removal of organic contaminants from receiving water bodies, but knowledge of the molecular mechanisms driving contaminant biotransformations in complex stream biofilm (periphyton) communities remains limited. Previously, we demonstrated that biofilms in experimental flume systems grown at higher ratios of treated wastewater (WW) to stream water displayed an increased biotransformation potential for a number of organic contaminants. We identified a positive correlation between WW percentage and biofilm biotransformation rates for the widely-used insect repellent, N,N-diethyl-meta-toluamide (DEET) and a number of other wastewater-borne contaminants with hydrolyzable moieties. Here, we conducted deep shotgun sequencing of flume biofilms and identified a positive correlation between WW percentage and metagenomic read abundances of DEET hydrolase (DH) homologs. To test the causality of this association, we constructed a targeted metagenomic library of DH homologs from flume biofilms. We screened our complete metagenomic library for activity with four different substrates, including DEET, and a subset thereof with 183 WW-related organic compounds. The majority of active hydrolases in the metagenomic library preferred aliphatic and aromatic ester substrates while, remarkably, only a single reference enzyme was capable of DEET hydrolysis. Of the 626 total enzyme-substrate combinations tested, approximately 5% were active enzyme-substrate pairs. Metagenomic DH family homologs revealed a broad substrate promiscuity spanning 22 different compounds when summed across all enzymes tested. We biochemically characterized the most promiscuous and active enzymes identified based on metagenomic analysis from uncultivated Rhodospirillaceae and Planctomycetaceae. In addition to characterizing new DH family enzymes, we exemplified a framework for linking metagenome-guided hypothesis generation with experimental validation. Overall, this study expands the scope of known enzymatic contaminant biotransformations for metagenomic hydrolases from WW-receiving stream biofilm communities.


Subject(s)
Biofilms , Hydrolases , Wastewater , Xenobiotics , Wastewater/chemistry , Xenobiotics/metabolism , Hydrolases/metabolism , Hydrolases/genetics , Water Pollutants, Chemical/metabolism , Rivers , Biotransformation
13.
J Hazard Mater ; 471: 134377, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663298

ABSTRACT

The Ganga is the largest river in India, serves as a lifeline for agriculture, drinking water, and religious rites. However, it became highly polluted due to the influx of industrial wastes and untreated sewages, leading to the decline of aquatic biodiversity. This study investigated the microbial diversity and plastic-xenobiotic degrading enzymes of six sediment metagenomes of river Ganga at Prayagraj (RDG, TSG, SDG) and Devprayag (KRG, BNG, BRG). The water quality parameters, higher values of BOD (1.8-3.7 ppm), COD (23-29.2 ppm) and organic carbon (0.18-0.51%) were recorded at Prayagraj. Comparative analysis of microbial community structure between Prayagraj and Devprayag revealed significant differences between Bacteroidetes and Firmicutes, which emerging as the predominant bacterial phyla across six sediment samples. Notably, their prevalence was highest in the BRG samples. Furthermore, 25 OTUs at genus level were consistent across all six samples. Alpha diversity exhibited minimal variation among samples, while beta diversity indicated an inverse relationship between species richness and diversity. Co-occurrence network analysis established that genera from the same and different groups of phyla show positive co-relations with each other. Thirteen plastic degrading enzymes, including Laccase, Alkane-1 monooxygenase and Alkane monooxygenase, were identified from six sediment metagenomes of river Ganga, which can degrade non-biodegradable plastic viz. Polyethylene, Polystyrene and Low-density Polyethelene. Further, 18 xenobiotic degradation enzymes were identified for the degradation of Bisphenol, Xylene, Toluene, Polycyclic aromatic hydrocarbon, Styrene, Atrazene and Dioxin etc. This is the first report on the identification of non-biodegradable plastic degrading enzymes from sediment metagenomes of river Ganga, India. The findings of this study would help in pollution abatement and sustainable management of riverine ecosystem.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Rivers , Geologic Sediments/microbiology , Rivers/microbiology , Rivers/chemistry , Bacteria/genetics , Bacteria/enzymology , Biodiversity , Xenobiotics/metabolism , Water Pollutants, Chemical/analysis , India , Plastics , Metagenome , Metagenomics , Benzhydryl Compounds
14.
Mol Biol Rep ; 51(1): 556, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642177

ABSTRACT

BACKGROUND: The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS: In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS: The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , Lamins , Nuclear Lamina , Xenobiotics , Animals , Chromatin/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Heterochromatin/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lamins/genetics , Lamins/chemistry , Lamins/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Xenobiotics/metabolism , Cell Nucleus/metabolism , Nuclear Lamina/metabolism
15.
Anal Chem ; 96(18): 7022-7029, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38669590

ABSTRACT

The utility of two novel laser-based methods, laser ablation electrospray ionization (LAESI) and laser desorption ionization (LDI) from silicon nanopost array (NAPA), is explored via local analysis and mass spectrometry imaging (MSI) of hard tissues (tooth and hair) for the detection and mapping of organic components. Complex mass spectra are recorded in local analysis mode from tooth dentin and scalp hair samples. Nicotine and its metabolites (cotinine, hydroxycotinine, norcotinine, and nicotine) are detected by LAESI-MS in the teeth of rats exposed to tobacco smoke. The intensities of the detected metabolite peaks are proportional to the degree of exposure. Incorporating ion mobility separation in the LAESI-MS analysis of scalp hair enables the detection of cotinine in smoker hair along with other common molecular species, including endogenous steroid hormones and some lipids. Single hair strands are imaged by MALDI-MSI and NAPA-LDI-MSI to explore longitudinal variations in the level of small molecules. Comparing spectra integrated from NAPA-LDI-MSI and MALDI-MSI images reveals that the two techniques provide complementary information. There were 105 and 82 sample-related peaks for MALDI and NAPA, respectively, with an overlap of only 16 peaks, indicating a high degree of complementarity. Enhanced molecular coverage and spatial resolution offered by LAESI-MS and NAPA-LDI-MSI can reveal the distributions of known and potential biomarkers in hard tissues, facilitating exposome research.


Subject(s)
Hair , Lasers , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Xenobiotics , Animals , Hair/chemistry , Rats , Xenobiotics/analysis , Xenobiotics/metabolism , Spectrometry, Mass, Electrospray Ionization , Tooth/chemistry , Tooth/metabolism , Nicotine/analysis , Nicotine/metabolism , Male
16.
Methods Enzymol ; 696: 251-285, 2024.
Article in English | MEDLINE | ID: mdl-38658083

ABSTRACT

Some species of the genus Cunninghamella (C. elegans, C. echinulata and C. blaskesleeana) produce the same phase I and phase II metabolites when incubated with xenobiotics as mammals, and thus are considered microbial models of mammalian metabolism. This had made these fungi attractive for metabolism studies with drugs, pesticides and environmental pollutants. As a substantial proportion of pharmaceuticals and agrochemicals are fluorinated, their biotransformation has been studied in Cunninghamella fungi and C. elegans in particular. This article details the methods employed for cultivating the fungi in planktonic and biofilm cultures, and extraction and analysis of fluorinated metabolites. Furthermore, protocols for the heterologous expression of Cunninghamella cytochromes P450 (CYPs), which are the enzymes associated with phase I metabolism, are described.


Subject(s)
Biotransformation , Cunninghamella , Cytochrome P-450 Enzyme System , Xenobiotics , Cunninghamella/metabolism , Xenobiotics/metabolism , Cytochrome P-450 Enzyme System/metabolism , Halogenation , Biofilms , Pharmaceutical Preparations/metabolism , Animals
17.
Toxicol Lett ; 396: 94-102, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38685289

ABSTRACT

There is a clear need to develop new approach methodologies (NAMs) that combine in vitro and in silico testing to reduce and replace animal use in chemical risk assessment. Physiologically based kinetic (PBK) models are gaining popularity as NAMs in toxico/pharmacokinetics, but their coverage of complex metabolic pathways occurring in the gut are incomplete. Chemical modification of xenobiotics by the gut microbiome plays a critical role in the host response, for example, by prolonging exposure to harmful metabolites, but there is not a comprehensive approach to quantify this impact on human health. There are examples of PBK models that have implemented gut microbial biotransformation of xenobiotics with the gut as a dedicated metabolic compartment. However, the integration of microbial metabolism and parameterization of PBK models is not standardized and has only been applied to a few chemical transformations. A challenge in this area is the measurement of microbial metabolic kinetics, for which different fermentation approaches are used. Without a standardized method to measure gut microbial metabolism ex vivo/in vitro, the kinetic constants obtained will lead to conflicting conclusions drawn from model predictions. Nevertheless, there are specific cases where PBK models accurately predict systemic concentrations of gut microbial metabolites, offering potential solutions to the challenges outlined above. This review focuses on models that integrate gut microbial bioconversions and use ex vivo/in vitro methods to quantify metabolic constants that accurately represent in vivo conditions.


Subject(s)
Gastrointestinal Microbiome , Models, Biological , Xenobiotics , Gastrointestinal Microbiome/physiology , Humans , Xenobiotics/metabolism , Xenobiotics/pharmacokinetics , Animals , Kinetics , Biotransformation , Computer Simulation
18.
Exp Parasitol ; 261: 108751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604302

ABSTRACT

Anisakiasis is a parasitic disease transmitted through the consumption of raw or undercooked fish and cephalopods that are infected with larvae of Anisakis simplex (sensu stricto) or Anisakis pegreffii. The purpose of this study was to investigate how A. simplex (s. s.) responds to the influence of anthelmintics such as ivermectin (IVM) and pyrantel (PYR). In vitro experiments were conducted using larvae at two developmental stages of A. simplex (s. s.) (L3 and L4) obtained from Baltic herring (Clupea harengus membras). Larvae were cultured with different concentrations of IVM or PYR (1.56, 3.125, and 6.25 µg/mL) for various durations (3, 6, 9, and 12 h) under anaerobic conditions (37 °C, 5% CO2). The gene expression of actin, ABC transporter, antioxidant enzymes, γ-aminobutyric acid receptors, and nicotinic acetylcholine receptors, as well as the oxidative status were analyzed. The results showed that A. simplex (s. s.) L3 stage had lower mobility when cultured with PYR compared to IVM. The analysis of relative gene expression revealed significant differences in the mRNA level of ABC transporters after treatment with IVM and PYR, compared to the control group. Similar patterns were observed in the gene expression of antioxidant enzymes in response to both drugs. Furthermore, the total antioxidant capacity (TAC) and glutathione S-transferase (GST) activity were higher in the treatment groups than in the control group. These findings suggest a relationship between the expression of the studied genes, including those related to oxidative metabolism, and the effectiveness of the tested drugs.


Subject(s)
Anisakis , Anthelmintics , Ivermectin , Larva , Pyrantel , Animals , Anisakis/drug effects , Anisakis/genetics , Anisakis/growth & development , Ivermectin/pharmacology , Larva/drug effects , Larva/genetics , Anthelmintics/pharmacology , Pyrantel/pharmacology , Actins/metabolism , Actins/genetics , Actins/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/drug effects , Xenobiotics/pharmacology , Xenobiotics/metabolism , Gene Expression/drug effects , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Anisakiasis/parasitology , Anisakiasis/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/drug effects , Catalase/genetics , Catalase/metabolism , Catalase/drug effects , Fishes/parasitology , Fish Diseases/parasitology
19.
Chem Res Toxicol ; 37(5): 685-697, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38598715

ABSTRACT

Xenobiotic metabolism is a key consideration in evaluating the hazards and risks posed by environmental chemicals. A number of software tools exist that are capable of simulating metabolites, but each reports its predictions in a different format and with varying levels of detail. This makes comparing the performance and coverage of the tools a practical challenge. To address this shortcoming, we developed a metabolic simulation framework called MetSim, which comprises three main components. A graph-based schema was developed to allow metabolism information to be harmonized. The schema was implemented in MongoDB to store and retrieve metabolic graphs for subsequent analysis. MetSim currently includes an application programming interface for four metabolic simulators: BioTransformer, the OECD Toolbox, EPA's chemical transformation simulator (CTS), and tissue metabolism simulator (TIMES). Lastly, MetSim provides functions to help evaluate simulator performance for specific data sets. In this study, a set of 112 drugs with 432 reported metabolites were compiled, and predictions were made using the 4 simulators. Fifty-nine of the 112 drugs were taken from the Small Molecule Pathway Database, with the remainder sourced from the literature. The human models within BioTransformer and CTS (Phase I only) and the rat models within TIMES and the OECD Toolbox (Phase I only) were used to make predictions for the chemicals in the data set. The recall and precision (recall, precision) ranked in order of highest recall for each individual tool were CTS (0.54, 0.017), BioTransformer (0.50, 0.008), Toolbox in vitro (0.40, 0.144), TIMES in vivo (0.40, 0.133), Toolbox in vivo (0.40, 0.118), and TIMES in vitro (0.39, 0.128). Combining all of the model predictions together increased the overall recall (0.73, 0.008). MetSim enabled insights into the performance and coverage of in silico metabolic simulators to be more efficiently derived, which in turn should aid future efforts to evaluate other data sets.


Subject(s)
Computer Simulation , Software , Xenobiotics , Xenobiotics/metabolism , Humans , Animals
20.
Chem Biol Interact ; 392: 110942, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38458309

ABSTRACT

Drug metabolism is an essential process that chemically alters xenobiotic substrates to activate or terminate drug activity. Myeloperoxidase (MPO) is a neutrophil-derived haem-containing enzyme that is involved in killing invading pathogens, although consequentially, this same oxidative activity can produce metabolites that damage host tissue and play a role in various human pathologies. Cytochrome P450s (CYPs) are a superfamily of haem-containing enzymes that are significantly involved in the metabolism of drugs by functioning as monooxygenases and can be induced or inhibited, resulting in significant drug-drug interactions that lead to unanticipated adverse drug reactions. In this review, the functions of drug metabolism of MPO and CYPs are explored, along with their involvement and association for common enzymatic pathways by certain xenobiotics. MPO and CYPs metabolize numerous xenobiotics, although few reported studies have made a direct comparison between both enzymes. Additionally, we employed molecular docking to compare the active site and haem prosthetic group of MPO and CYPs, supporting their similar catalytic activities. Furthermore, we performed LCMS analysis and observed a shared hydroxylated mefenamic acid metabolite produced in both enzymatic systems. A proper understanding of the enzymology and mechanisms of action of MPO and CYPs is of significant importance when enhancing the beneficial functions of drugs in health and diminishing their damaging effects on diseases. Therefore, awareness of drugs and xenobiotic substrates involved in MPO and CYPs metabolism pathways will add to the knowledge base to foresee and prevent potential drug interactions and adverse events.


Subject(s)
Neutrophils , Xenobiotics , Humans , Cytochrome P-450 Enzyme System/metabolism , Heme/metabolism , Molecular Docking Simulation , Neutrophils/metabolism , Oxidative Stress , Peroxidase/metabolism , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL