Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.619
1.
Dev Biol ; 512: 26-34, 2024 Aug.
Article En | MEDLINE | ID: mdl-38705558

The signals that regulate peripheral blood vessel formation during development are still under investigation. The hormone leptin promotes blood vessel formation, adipose tissue establishment and expansion, tumor growth, and wound healing, but the underlying mechanisms for these actions are currently unknown. We investigated whether leptin promotes angiogenesis in the developing tail fin using embryonic transgenic xflk-1:GFP Xenopus laevis, which express a green fluorescent protein on vascular endothelial cells to mark blood vessels. We found that leptin protein is expressed in endothelial cells of developing blood vessels and that leptin treatment via injection increased phosphorylated STAT3 signaling, which is indicative of leptin activation of its receptor, in blood vessels of the larval tail fin. Leptin administration via media increased vessel length, branching, and reconnection with the cardinal vein, while decreased leptin signaling via immunoneutralization had an opposing effect on vessel development. We also observed disorganization of major vessels and microvessels of the tail fin and muscle when leptin signaling was decreased. Reduced leptin signaling lowered mRNA expression of cenpk, gpx1, and mmp9, markers for cell proliferation, antioxidation, and extracellular matrix remodeling/cell migration, respectively, in the developing tail, providing insight into three possible mechanisms underlying leptin's promotion of angiogenesis. Together these results illustrate that leptin levels are correlated with embryonic angiogenesis and that leptin coordinates multiple aspects of blood vessel growth and development, showing that leptin is an important morphogen during embryonic development.


Larva , Leptin , Neovascularization, Physiologic , Signal Transduction , Tail , Xenopus laevis , Animals , Leptin/metabolism , Tail/blood supply , Tail/embryology , Xenopus laevis/embryology , Xenopus laevis/metabolism , Larva/metabolism , Blood Vessels/embryology , Blood Vessels/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Animals, Genetically Modified , STAT3 Transcription Factor/metabolism , Embryo, Nonmammalian/metabolism , Green Fluorescent Proteins/metabolism , Gene Expression Regulation, Developmental
2.
Sci Rep ; 14(1): 8922, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637565

The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.


Mitogen-Activated Protein Kinases , Signal Transduction , Animals , Mitogen-Activated Protein Kinases/metabolism , Nervous System/metabolism , Phosphorylation , Smad1 Protein/genetics , Smad1 Protein/metabolism , Xenopus laevis/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
3.
Dev Biol ; 511: 63-75, 2024 Jul.
Article En | MEDLINE | ID: mdl-38621649

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Dyrk Kinases , Gene Expression Regulation, Developmental , Neural Crest , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Xenopus Proteins , Xenopus laevis , Animals , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Xenopus laevis/embryology , Xenopus laevis/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Neural Crest/embryology , Neural Crest/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Signal Transduction , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/embryology , Craniofacial Abnormalities/metabolism , Branchial Region/embryology , Branchial Region/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology
4.
Elife ; 122024 Apr 18.
Article En | MEDLINE | ID: mdl-38634469

We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism.SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.


High-Temperature Requirement A Serine Peptidase 1 , Neural Crest , Serpin E2 , Animals , Cell Movement/genetics , Fibroblast Growth Factors/metabolism , High-Temperature Requirement A Serine Peptidase 1/metabolism , Neural Crest/embryology , Neural Crest/metabolism , Serpin E2/metabolism , Signal Transduction , Xenopus laevis/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
5.
Nat Commun ; 15(1): 3340, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649703

During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.


Extremities , Gene Expression Regulation, Developmental , Homeodomain Proteins , Regeneration , Xenopus Proteins , Xenopus laevis , Animals , Cell Proliferation/genetics , Extremities/physiology , Gene Editing , Gene Expression Profiling , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Larva/growth & development , Larva/genetics , Regeneration/genetics , Regeneration/physiology , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Male , Female
6.
EMBO J ; 43(10): 2062-2085, 2024 May.
Article En | MEDLINE | ID: mdl-38600243

The γ-tubulin ring complex (γ-TuRC) is a structural template for de novo microtubule assembly from α/ß-tubulin units. The isolated vertebrate γ-TuRC assumes an asymmetric, open structure deviating from microtubule geometry, suggesting that γ-TuRC closure may underlie regulation of microtubule nucleation. Here, we isolate native γ-TuRC-capped microtubules from Xenopus laevis egg extract nucleated through the RanGTP-induced pathway for spindle assembly and determine their cryo-EM structure. Intriguingly, the microtubule minus end-bound γ-TuRC is only partially closed and consequently, the emanating microtubule is locally misaligned with the γ-TuRC and asymmetric. In the partially closed conformation of the γ-TuRC, the actin-containing lumenal bridge is locally destabilised, suggesting lumenal bridge modulation in microtubule nucleation. The microtubule-binding protein CAMSAP2 specifically binds the minus end of γ-TuRC-capped microtubules, indicating that the asymmetric minus end structure may underlie recruitment of microtubule-modulating factors for γ-TuRC release. Collectively, we reveal a surprisingly asymmetric microtubule minus end protofilament organisation diverging from the regular microtubule structure, with direct implications for the kinetics and regulation of nucleation and subsequent modulation of microtubules during spindle assembly.


Microtubule-Associated Proteins , Microtubules , Tubulin , Xenopus Proteins , Xenopus laevis , ran GTP-Binding Protein , Microtubules/metabolism , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , ran GTP-Binding Protein/metabolism , ran GTP-Binding Protein/genetics , Tubulin/metabolism , Tubulin/chemistry , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Cryoelectron Microscopy , Spindle Apparatus/metabolism
7.
Mol Cells ; 47(4): 100058, 2024 Apr.
Article En | MEDLINE | ID: mdl-38522664

A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.


Gastrula , Homeodomain Proteins , Promoter Regions, Genetic , Xenopus Proteins , Xenopus laevis , Animals , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Gastrula/metabolism , Gene Expression Regulation, Developmental , Goosecoid Protein/genetics , Goosecoid Protein/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic , Xenopus laevis/genetics , Xenopus laevis/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
8.
Dis Model Mech ; 17(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38501224

De novo truncating variants in fibrosin-like 1 (FBRSL1), a member of the AUTS2 gene family, cause a disability syndrome, including organ malformations such as heart defects. Here, we use Xenopus laevis to investigate whether Fbrsl1 plays a role in heart development. Xenopus laevis fbrsl1 is expressed in tissues relevant for heart development, and morpholino-mediated knockdown of Fbrsl1 results in severely hypoplastic hearts. Our data suggest that Fbrsl1 is required for the development of the first heart field, which contributes to the ventricle and the atria, but not for the second heart field, which gives rise to the outflow tract. The morphant heart phenotype could be rescued using a human N-terminal FBRSL1 isoform that contains an alternative exon, but lacks the AUTS2 domain. N-terminal isoforms carrying patient variants failed to rescue. Interestingly, a long human FBRSL1 isoform, harboring the AUTS2 domain, also did not rescue the morphant heart defects. Thus, our data suggest that different FBRSL1 isoforms may have distinct functions and that only the short N-terminal isoform, appears to be critical for heart development.


Heart Defects, Congenital , Heart , Protein Isoforms , Xenopus Proteins , Xenopus laevis , Animals , Xenopus laevis/embryology , Humans , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Heart/embryology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Protein Isoforms/metabolism , Protein Isoforms/genetics , Phenotype , Gene Knockdown Techniques , Gene Expression Regulation, Developmental
9.
Dev Growth Differ ; 66(3): 248-255, 2024 Apr.
Article En | MEDLINE | ID: mdl-38326088

Wnt is a family of secreted signaling proteins involved in the regulation of cellular processes, including maintenance of stem cells, carcinogenesis, and cell differentiation. In the context of early vertebrate embryogenesis, graded distribution of Wnt proteins has been thought to regulate positional information along the antero-posterior axis. However, understanding of the molecular basis for Wnt spatial distribution remains poor. Modified states of heparan sulfate (HS) proteoglycans are essential for Wnt8 localization, because depletion of N-deacetylase/N-sulfotransferase 1 (NDST1), a modification enzyme of HS chains, decreases Wnt8 levels and NDST1 overexpression increases Wnt8 levels on the cell surface. Since overexpression of NDST1 increases both deacetylation and N-sulfation of HS chains, it is not clear which function of NDST1 is actually involved in Wnt8 localization. In the present study, we generated an NDST1 mutant that specifically increases deacetylation, but not N-sulfation, of HS chains in Xenopus embryos. Unlike wild-type NDST1, this mutant did not increase Wnt8 accumulation on the cell surface, but it reduced canonical Wnt signaling, as determined with the TOP-Flash reporter assay. These results suggest that N-sulfation of HS chains is responsible for localization of Wnt8 and Wnt8 signaling, whereas deacetylation has an inhibitory effect on canonical Wnt signaling. Consistently, overexpression of wild-type NDST1, but not the mutant, resulted in small eyes in Xenopus embryos. Thus, our NDST1 mutant enables us to dissect the regulation of Wnt8 localization and signaling by HS proteoglycans by specifically manipulating the enzymatic activities of NDST1.


Heparitin Sulfate , Wnt Proteins , Wnt Signaling Pathway , Animals , Heparitin Sulfate/metabolism , Proteoglycans , Sulfotransferases/genetics , Sulfotransferases/metabolism , Xenopus laevis/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Wnt Proteins/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
10.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38349040

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Ataxia Telangiectasia Mutated Proteins , DNA Breaks, Double-Stranded , DNA Repair Enzymes , Xenopus Proteins , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA/genetics , DNA/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Xenopus laevis/genetics , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Enzyme Activation/genetics , Phosphorylation/genetics
11.
Nat Commun ; 15(1): 1003, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38307837

Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.


Body Patterning , Intercellular Signaling Peptides and Proteins , Signal Transduction , Xenopus Proteins , Animals , Body Patterning/genetics , Cilia/metabolism , Xenopus laevis/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
12.
J Biol Chem ; 300(4): 106792, 2024 Apr.
Article En | MEDLINE | ID: mdl-38403249

First described in the milkweed bug Oncopeltus fasciatus, planar cell polarity (PCP) is a developmental process essential for embryogenesis and development of polarized structures in Metazoans. This signaling pathway involves a set of evolutionarily conserved genes encoding transmembrane (Vangl, Frizzled, Celsr) and cytoplasmic (Prickle, Dishevelled) molecules. Vangl2 is of major importance in embryonic development as illustrated by its pivotal role during neural tube closure in human, mouse, Xenopus, and zebrafish embryos. Here, we report on the molecular and functional characterization of a Vangl2 isoform, Vangl2-Long, containing an N-terminal extension of about 50 aa, which arises from an alternative near-cognate AUA translation initiation site, lying upstream of the conventional start codon. While missing in Vangl1 paralogs and in all invertebrates, including Drosophila, this N-terminal extension is conserved in all vertebrate Vangl2 sequences. We show that Vangl2-Long belongs to a multimeric complex with Vangl1 and Vangl2. Using morpholino oligonucleotides to specifically knockdown Vangl2-Long in Xenopus, we found that this isoform is functional and required for embryo extension and neural tube closure. Furthermore, both Vangl2 and Vangl2-Long must be correctly expressed for the polarized distribution of the PCP molecules Pk2 and Dvl1 and for centriole rotational polarity in ciliated epidermal cells. Altogether, our study suggests that Vangl2-Long significantly contributes to the pool of Vangl2 molecules present at the plasma membrane to maintain PCP in vertebrate tissues.


Cell Polarity , Dishevelled Proteins , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Animals , Humans , Mice , Carrier Proteins , Dishevelled Proteins/metabolism , Dishevelled Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Protein Biosynthesis , Protein Isoforms/metabolism , Protein Isoforms/genetics , Xenopus laevis , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Zebrafish/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
13.
Gen Comp Endocrinol ; 350: 114472, 2024 05 01.
Article En | MEDLINE | ID: mdl-38373462

Heart development is a delicate and complex process regulated by coordination of various signaling pathways. In this study, we investigated the role of sox18 in heart development by modulating Wnt/ß-Catenin signaling pathways. Our spatiotemporal expression analysis revealed that sox18 is mainly expressed in the heart, branchial arch, pharyngeal arch, spinal cord, and intersegmental vessels at the tailbud stage of Xenopus tropicalis embryo. Overexpression of sox18 in the X. tropicalis embryos causes heart edema, while loss-of-function of sox18 can change the signal of developmental heart marker gata4 at different stages, suggesting that sox18 plays an essential role in the development of the heart. Knockdown of SOX18 in human umbilical vein endothelial cells suggests a link between Sox18 and ß-CATENIN, a key regulator of the Wnt signaling pathway. Sox18 negatively regulates islet1 and tbx3, the downstream factors of Wnt/ß-Catenin signaling, during the linear heart tube formation and the heart looping stage. Taken together, our findings highlight the crucial role of Sox18 in the development of the heart via inhibiting Wnt/ß-Catenin signaling.


SOXF Transcription Factors , Xenopus Proteins , beta Catenin , Animals , Humans , beta Catenin/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Wnt Signaling Pathway , Xenopus/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
14.
EMBO Rep ; 25(2): 646-671, 2024 Feb.
Article En | MEDLINE | ID: mdl-38177922

The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.


Bone Morphogenetic Proteins , Carrier Proteins , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Organizers, Embryonic/metabolism , Xenopus laevis/metabolism , Body Patterning/physiology , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Gene Expression Regulation, Developmental
15.
Dev Growth Differ ; 66(1): 66-74, 2024 Jan.
Article En | MEDLINE | ID: mdl-37945353

We previously identified Xenopus tudor domain containing 6/Xenopus tudor repeat (Xtdrd6/Xtr), which was exclusively expressed in the germ cells of adult Xenopus laevis. Western blot analysis showed that the XTdrd6/Xtr protein was translated in St. I/II oocytes and persisted as a maternal factor until the tailbud stage. XTdrd6/Xtr has been reported to be essential for the translation of maternal mRNA involved in oocyte meiosis. In the present study, we examined the distribution of the XTdrd6/Xtr protein during oogenesis and early development, to predict the time point of its action during development. First, we showed that XTdrd6/Xtr is localized to germinal granules in the germplasm by electron microscopy. XTdrd6/Xtr was found to be localized to the origin of the germplasm, the mitochondrial cloud of St. I oocytes, during oogenesis. Notably, XTdrd6/Xtr was also found to be localized around the nuclear membrane of St. I oocytes. This suggests that XTdrd6/Xtr may immediately interact with some mRNAs that emerge from the nucleus and translocate to the mitochondrial cloud. XTdrd6/Xtr was also detected in primordial germ cells and germ cells throughout development. Using transgenic Xenopus expressing XTdrd6/Xtr with a C-terminal FLAG tag produced by homology-directed repair, we found that the zygotic translation of the XTdrd6/Xtr protein began at St. 47/48. As germ cells are surrounded by gonadal somatic cells and are considered to enter a new differentiation stage at this phase, the newly synthesized XTdrd6/Xtr protein may regulate the translation of mRNAs involved in the new steps of germ cell differentiation.


Germ Cells , Gonads , Mesoderm , Xenopus Proteins , Animals , Germ Cells/metabolism , Gonads/embryology , Oocytes , Oogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Xenopus laevis/genetics , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
16.
J Exp Zool B Mol Dev Evol ; 342(4): 350-367, 2024 Jun.
Article En | MEDLINE | ID: mdl-38155515

In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.


Gene Expression Regulation, Developmental , Xenopus Proteins , Xenopus laevis , Animals , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Spine/metabolism , Biological Evolution , Somites/metabolism
17.
Sci Rep ; 13(1): 16671, 2023 10 04.
Article En | MEDLINE | ID: mdl-37794075

The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.


Gene Expression Regulation, Developmental , Pronephros , Animals , Xenopus laevis/metabolism , LIM-Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Kidney/metabolism , Embryonic Development/genetics , Morphogenesis/genetics , Pronephros/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Mammals/metabolism
18.
Gene Expr Patterns ; 50: 119345, 2023 Dec.
Article En | MEDLINE | ID: mdl-37844856

Peroxidase genes (Prdx) encode a family of antioxidant proteins, which can protect cells from oxidative damage by reducing various cellular peroxides. This study investigated the spatiotemporal expression patterns of gene members in this family during the early development of Xenopus tropicalis. Real-time quantitative PCR showed that all members of this gene family have a distinct temporal expression pattern during the early development of X. tropicalis embryos. Additionally, whole mount in situ hybridization revealed that individual prdx genes display differential expression patterns, with overlapping expression in lymphatic vessels, pronephros, proximal tubule, and branchial arches. This study provides a basis for further study of the function of the prdx gene family.


Embryonic Development , Xenopus Proteins , Animals , Xenopus , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Real-Time Polymerase Chain Reaction , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Xenopus laevis/genetics
19.
J Cell Physiol ; 238(8): 1850-1866, 2023 08.
Article En | MEDLINE | ID: mdl-37435758

The vertebrate organizer is a specified embryonic tissue that regulates dorsoventral patterning and axis formation. Although numerous cellular signaling pathways have been identified as regulators of the organizer's dynamic functions, the process remains incompletely understood, and as-yet unknown pathways remain to be explored for sophisticated mechanistic understanding of the vertebrate organizer. To identify new potential key factors of the organizer, we performed complementary DNA (cDNA) microarray screening using organizer-mimicking Xenopus laevis tissue. This analysis yielded a list of prospective organizer genes, and we determined the role of six-transmembrane domain containing transmembrane protein 150b (Tmem150b) in organizer function. Tmem150b was expressed in the organizer region and induced by Activin/Nodal signaling. In X. laevis, Tmem150b knockdown resulted in head defects and a shortened body axis. Moreover, Tmem150b negatively regulated bone morphogenetic protein (BMP) signaling, likely via physical interaction with activin receptor-like kinase 2 (ALK2). These findings demonstrated that Tmem150b functions as a novel membrane regulatory factor of BMP signaling with antagonistic effects, contributing to the understanding of regulatory molecular mechanisms of organizer axis function. Investigation of additional candidate genes identified in the cDNA microarray analysis could further delineate the genetic networks of the organizer during vertebrate embryogenesis.


Signal Transduction , Xenopus Proteins , Animals , Xenopus laevis/genetics , Xenopus laevis/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , DNA, Complementary/metabolism , Prospective Studies , Body Patterning/genetics , Gene Expression Regulation, Developmental/genetics
20.
Sci Rep ; 13(1): 10240, 2023 06 23.
Article En | MEDLINE | ID: mdl-37353511

Protein Phosphatase 4 Catalytic Subunit (PPP4C) is an evolutionarily conserved protein involved in multiple biological and pathological events, including embryogenesis, organogenesis, cellular homeostasis, and oncogenesis. However, the detailed mechanisms underlying these processes remain largely unknown. Thus, we investigated the potential correlation between PPP4C and biological processes (BPs) and canonical Wnt signaling using pan-cancer analysis and Xenopus laevis (X. laevis) embryo model. Our results indicate that PPP4C is a potential biomarker for specific cancer types due to its high diagnostic accuracy and significant prognostic correlation. Furthermore, in multiple cancer types, PPP4C-related differentially expressed genes (DEGs) were significantly enriched in pattern specification, morphogenesis, and canonical Wnt activation. Consistently, perturbation of Ppp4c in X. laevis embryos interfered with normal embryogenesis and canonical Wnt responses. Moreover, biochemical analysis of X. laevis embryos demonstrated that both endogenous and exogenous Ppp4c negatively regulated AXIN1 (Wnt inhibitor) abundance. This study provides novel insights into PPP4C roles in pattern specification and Wnt activation. The similarities in BPs and Wnt signaling regulation regarding PPP4C support the intrinsic link between tumorigenesis and early embryogenesis.


Neoplasms , Wnt Proteins , Animals , Humans , Xenopus laevis/genetics , Xenopus laevis/metabolism , Wnt Proteins/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Catalytic Domain , Embryonic Development/genetics , Neoplasms/genetics , Gene Expression Regulation, Developmental
...