Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.678
Filter
1.
Stress ; 27(1): 2375588, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38975711

ABSTRACT

Ingestion of L-theanine and L-tyrosine has been shown to reduce salivary stress biomarkers and improve aspects of cognitive performance in response to stress. However, there have been no studies to concurrently examine the impact of both L-theanine and L-tyrosine ingestion during a mental stress challenge (MSC) involving a brief cognitive challenge and a virtual reality based active shooter training drill. Thus, the purpose of this study was to determine the impact of ingestion of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality active shooter drill and cognitive challenge. The cognitive challenge involved a Stroop challenge and mental arithmetic. Eighty subjects (age = 21 ± 2.6 yrs; male = 46; female = 34) were randomly assigned L-tyrosine (n = 28; 2000 mg), L-theanine (n = 25; 200 mg), or placebo (n = 27) prior to MSC exposure. Saliva samples, state-anxiety inventory (SAI) scales, and heart rate (HR) were collected before and after exposure to the MSC. Saliva was analyzed for stress markers α-amylase (sAA) and secretory immunoglobulin A (SIgA). The MSC resulted in significant increases in sAA, SIgA, HR, and SAI. Ingestion of L-theanine and L-tyrosine did not impact markers of stress. However, the L-tyrosine treatment demonstrated significantly lower missed responses compared to the placebo treatment group during the Stroop challenge. These data demonstrate that ingestion of L-theanine or L-tyrosine does not impact markers of stress in response to a MSC but may impact cognitive performance. This study was pre-registered as a clinical trial ("Impact of supplements on stress markers": NCT05592561).


Subject(s)
Biomarkers , Cognition , Glutamates , Saliva , Stress, Psychological , Tyrosine , Virtual Reality , Humans , Male , Female , Cognition/drug effects , Young Adult , Saliva/chemistry , Adult , Heart Rate/drug effects , alpha-Amylases/metabolism , alpha-Amylases/analysis , Immunoglobulin A, Secretory/metabolism
2.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999038

ABSTRACT

This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.


Subject(s)
Benzoxazines , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Benzoxazines/chemistry , Benzoxazines/pharmacology , Benzoxazines/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Pancreatic alpha-Amylases/antagonists & inhibitors , Pancreatic alpha-Amylases/metabolism , Cycloaddition Reaction , Molecular Structure , Computer Simulation , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Humans , Structure-Activity Relationship , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Intestines/enzymology
3.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000067

ABSTRACT

Achieving commercially significant yields of recombinant proteins in Bacillus subtilis requires the optimization of its protein production pathway, including transcription, translation, folding, and secretion. Therefore, in this study, our aim was to maximize the secretion of a reporter α-amylase by overcoming potential bottlenecks within the secretion process one by one, using a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system. The strength of single and tandem promoters was evaluated by measuring the relative α-amylase activity of AmyQ integrated into the B. subtilis chromosome. Once a suitable promoter was selected, the expression levels of amyQ were upregulated through the iterative integration of up to six gene copies, thus boosting the α-amylase activity 20.9-fold in comparison with the strain harboring a single amyQ gene copy. Next, α-amylase secretion was further improved to a 26.4-fold increase through the overexpression of the extracellular chaperone PrsA and the signal peptide peptidase SppA. When the final expression strain was cultivated in a 3 L fermentor for 90 h, the AmyQ production was enhanced 57.9-fold. The proposed strategy allows for the development of robust marker-free plasmid-less super-secreting B. subtilis strains with industrial relevance.


Subject(s)
Bacillus subtilis , Bacterial Proteins , CRISPR-Cas Systems , alpha-Amylases , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , alpha-Amylases/genetics , alpha-Amylases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Secretory Pathway/genetics , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Gene Expression Regulation, Bacterial , Lipoproteins , Membrane Proteins
4.
Appl Microbiol Biotechnol ; 108(1): 415, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990377

ABSTRACT

Currently, the main α-amylase family GH13 has been divided into 47 subfamilies in CAZy, with new subfamilies regularly emerging. The present in silico study was performed to highlight the groups, represented by the maltogenic amylase from Thermotoga neapolitana and the α-amylase from Haloarcula japonica, which are worth of creating their own new GH13 subfamilies. This enlarges functional annotation and thus allows more precise prediction of the function of putative proteins. Interestingly, those two share certain sequence features, e.g. the highly conserved cysteine in the second conserved sequence region (CSR-II) directly preceding the catalytic nucleophile, or the well-preserved GQ character of the end of CSR-VII. On the other hand, the two groups bear also specific and highly conserved positions that distinguish them not only from each other but also from representatives of remaining GH13 subfamilies established so far. For the T. neapolitana maltogenic amylase group, it is the stretch of residues at the end of CSR-V highly conserved as L-[DN]. The H. japonica α-amylase group can be characterized by a highly conserved [WY]-[GA] sequence at the end of CSR-II. Other specific sequence features include an almost fully conserved aspartic acid located directly preceding the general acid/base in CSR-III or well-preserved glutamic acid in CSR-IV. The assumption that these two groups represent two mutually related, but simultaneously independent GH13 subfamilies has been supported by phylogenetic analysis as well as by comparison of tertiary structures. The main α-amylase family GH13 has thus been expanded by two novel subfamilies GH13_48 and GH13_49. KEY POINTS: • In silico analysis of two groups of family GH13 members with characterized representatives • Identification of certain common, but also some specific sequence features in seven CSRs • Creation of two novel subfamilies-GH13_48 and GH13_49 within the CAZy database.


Subject(s)
Phylogeny , alpha-Amylases , alpha-Amylases/genetics , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Amino Acid Sequence , Conserved Sequence , Sequence Alignment
5.
Future Med Chem ; 16(12): 1255-1266, 2024.
Article in English | MEDLINE | ID: mdl-38989987

ABSTRACT

Aim: To synthesize novel more potent anti-diabetic agents. Methodology: A simple cost effective Hantzsch's synthetic strategy was used to synthesize 2-(2-arylidenehydrazinyl)thiazol-4(5H)-ones. Results: Fifteen new 2-(2-arylidenehydrazinyl)thiazol-4(5H)-ones were established to check their anti-diabetic potential. From alpha(α)-amylase inhibition, anti-glycation and anti-oxidant activities it is revealed that most of the compounds possess good anti-diabetic potential. All tested compounds were found to be more potent anti-diabetic agents via anti-glycation mode. The results of α-amylase and anti-oxidant inhibition revealed that compounds are less active against α-amylase and anti-oxidant assays. Conclusion: This study concludes that introduction of various electron withdrawing groups at the aryl ring and substitution of different functionalities around thiazolone nucleus could help to find out better anti-diabetic drug.


Diabetes is a most spreading chronicle disease effecting millions of peoples across the globe every year and this number increases day by day. To cure the human population from this dilemma, we had synthesized, characterized and evaluated the anti-diabetic behavior of our synthesized compounds. α-Amylase, in vitro anti-glycation and anti-oxidant assays were performed to find out good lead for Diabetes Mellitus. All tested compounds were found to be excellent anti-glycating agents with IC50 values far better than standard amino-guanidine (IC50 = 3.582 ± 0.002 µM). Compound 4m was most efficient glycation inhibitor (IC50 = 1.095 ± 0.002 µM). Cytotoxicity of all compounds was determined with in vitro hemolytic assay and found all compounds safe and bio-compatible to humans at all tested concentrations. The inhibition potential was also examined with theoretical docking studies to support our experimental results against human pancreatic alpha-amylase (HPA) and human serum albumin (HSA) proteins. All compounds showed excellent binding affinity with HSA active pockets however, only compound 4h and 4k binding affinity was good with HPA.


Subject(s)
Hypoglycemic Agents , Molecular Docking Simulation , Thiazoles , alpha-Amylases , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Humans , Structure-Activity Relationship , Molecular Structure
6.
PeerJ ; 12: e17681, 2024.
Article in English | MEDLINE | ID: mdl-39011385

ABSTRACT

Background: This research aims to explore the phenolics identification, phenolics quantification, antioxidant and potential biofunctional properties of lesser-known Thai fruits and their potency to treat type 2 diabetes mellitus (T2DM). Including, Antidesma puncticulatum, Dillenia indica, Diospyros decandra, Elaeagnus latifolia, Flacourtia indica, Garcinia dulcis, Lepisanthes fruticose, Mimusops elengi, Muntingia calabura, Phyllanthus reticulatus, Streblus asper, Syzygium cumini, Syzygium malaccense, Willughbeia edulis and Schleichera oleosa were analyzed by their phenolic and flavonoid content. These fruits have received limited scientific attention, prompting an investigation into their health benefits, particularly their relevance to diabetes management. Methods: The study utilized methanolic crude extracts to measure phenolic and flavonoid levels. Additionally, UHPLC-DAD was utilized to identify and quantify phenolics. The methanolic extracts were assessed for antioxidant and antidiabetic abilities, including α-glucosidase and α-amylase inhibition. Results and Conclusion: The study highlighted S. cumini as a rich source of phenolic (980.42 ± 0.89 mg GAE/g and flavonoid (3.55 ± 0.02 mg QE/g) compounds with strong antioxidant activity (IC50 by DPPH; 3.00 ± 0.01 µg/ml, IC50 by ABTS; 40 ± 0.01 µg/ml, FRAP; 898.63 ± 0.02 mg TE/ml). Additionally, S. cumini exhibited promising antidiabetic effects (S. cumini IC50; 0.13 ± 0.01 mg/ml for α-glucosidase inhibition, 3.91 ± 0.05 mg/ml for α-amylase inhibition), compared to Acarbose (IC50; 0.86 ± 0.01 mg/ml for α-glucosidase inhibition, 0.39 ± 0.05 mg/ml for α-amylase inhibition). Remarkably, compounds like catechins, gallic acid, kaempferol, and ellagic acid were identified in various quantities.This study suggests that these fruits, packed with phenolics, hold the potential to be included in an anti-diabetic diet and even pharmaceutical applications due to their health-promoting properties.


Subject(s)
Antioxidants , Fruit , Hypoglycemic Agents , Phenols , Plant Extracts , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Fruit/chemistry , Thailand , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phenols/analysis , Phenols/pharmacology , Flavonoids/analysis , Flavonoids/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/analysis , Diabetes Mellitus, Type 2/drug therapy , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Southeast Asian People
7.
Food Res Int ; 188: 114504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823880

ABSTRACT

(Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.


Subject(s)
Pancreatic alpha-Amylases , Polyphenols , Salivary alpha-Amylases , Humans , Structure-Activity Relationship , Polyphenols/pharmacology , Polyphenols/chemistry , Salivary alpha-Amylases/metabolism , Salivary alpha-Amylases/antagonists & inhibitors , Pancreatic alpha-Amylases/antagonists & inhibitors , Pancreatic alpha-Amylases/metabolism , Anthocyanins/chemistry , Anthocyanins/pharmacology , Anthocyanins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Saliva/enzymology , Saliva/chemistry
8.
Drug Dev Res ; 85(4): e22216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831547

ABSTRACT

A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.


Subject(s)
Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Quinoxalines , Sulfonamides , alpha-Amylases , alpha-Glucosidases , Quinoxalines/chemistry , Quinoxalines/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Structure-Activity Relationship , Acetylcholinesterase/metabolism , Models, Molecular , Pharmacophore
9.
Sci Rep ; 14(1): 12685, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830962

ABSTRACT

White kidney bean (Phaseolus vulgaris L.) extracts can aid weight management by reducing calorie intake from complex carbohydrates through alpha-amylase inhibition. We examined the impact of a proprietary aqueous extract from whole dried white kidney beans standardized by its alpha-amylase inhibitor activity (Phase 2 white kidney bean extract (WKBE)) on weight management in subjects with overweight and moderate obesity. In a randomized, double-blind, placebo-controlled fashion, 81 participants completed the study and ingested either a high dose of Phase 2 (1000 mg, WKBE HIGH), a low dose (700 mg, WKBE LOW), or a matching placebo (microcrystalline cellulose, PLA) three times a day, 30 min before meals, for 12 weeks during a calorie restricted diet. In a dose-dependent manner, Phase 2 significantly reduced body weight, fat mass, BMI, waist, hip and in the WKBE HIGH group thigh circumference. Phase 2 is an effective and safe supplement aiding weight and fat loss. ClinicalTrials.gov identifier NCT02930668.


Subject(s)
Phaseolus , Plant Extracts , Humans , Male , Female , Double-Blind Method , Phaseolus/chemistry , Middle Aged , Adult , Plant Extracts/chemistry , Plant Extracts/pharmacology , Weight Loss/drug effects , Obesity/drug therapy , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Overweight/drug therapy , Plant Lectins
10.
Sci Rep ; 14(1): 12682, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830978

ABSTRACT

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Subject(s)
Anoxybacillus , Detergents , Whey , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Whey/metabolism , Whey/chemistry , Anoxybacillus/enzymology , Anoxybacillus/genetics , Detergents/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Starch/metabolism , Starch/chemistry , Temperature
11.
Int J Biol Macromol ; 273(Pt 2): 133079, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942664

ABSTRACT

Proteins impact starch digestion, but the specific mechanism under heat-moisture treatment remains unclear. This study examined how proteins from various sources-white kidney bean, soybean, casein, whey-altered corn starch's structure, physicochemical properties, and digestibility during heat-moisture treatment (HMT). HMT and protein addition could significantly reduce starch's digestibility. The kidney bean protein-starch complex under HMT had the highest resistant starch at 19.74 %. Most proteins effectively inhibit α-amylase, with kidney bean being the most significantly (IC50 = 1.712 ± 0.085 mg/mL). HMT makes starch obtain a more rigid structure, limits its swelling ability, and reduces paste viscosity and amylose leaching. At the same time, proteins also improve starch's short-range order, acting as a physical barrier to digestion. Rheological and low-field NMR analyses revealed that protein enhanced the complexes' shear stability and water-binding capacity. These findings enrich the understanding of how proteins from different sources affect starch digestion under HMT, aiding the creation of nutritious, hypoglycemic foods.


Subject(s)
Digestion , Hot Temperature , Starch , Zea mays , alpha-Amylases , Starch/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Zea mays/chemistry , Viscosity , Chemical Phenomena , Water/chemistry , Plant Proteins/chemistry , Amylose/chemistry , Rheology , Whey Proteins/chemistry
12.
Eur J Med Chem ; 275: 116623, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38943875

ABSTRACT

A new series of thiazolidine-2,4-dione tethered 1,2,3-triazole derivatives were designed, synthesized and screened for their α-amylase inhibitory potential employing in vitro and in silico approaches. The target compounds were synthesized with the help of Cu (I) catalyzed [3 + 2] cycloaddition of terminal alkyne with numerous azides, followed by unambiguously characterizing the structure by employing various spectroscopic approaches. The synthesized derivatives were assessed for their in vitro α-amylase inhibition and it was found that thiazolidine-2,4-dione derivatives 6e, 6j, 6o, 6u and 6x exhibited comparable inhibition with the standard drug acarbose. The compound 6e with a 7-chloroquinolinyl substituent on the triazole ring exhibited significant inhibition potential with IC50 value of 0.040 µmol mL-1 whereas compound 6c (IC50 = 0.099 µmol mL-1) and 6h (IC50 = 0.098 µmol mL-1) were poor inhibitors. QSAR studies revealed the positively correlating descriptors that aid in the design of novel compounds. Molecular docking was performed to investigate the binding interactions with the active site of the biological receptor and the stability of the complex over a period of 100 ns was examined using molecular dynamics studies. The physiochemical properties and drug-likeliness behavior of the potent derivatives were investigated by carrying out the ADMET studies.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Thiazolidinediones , Triazoles , alpha-Amylases , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Thiazolidinediones/chemistry , Thiazolidinediones/chemical synthesis , Thiazolidinediones/pharmacology , Molecular Structure , Dose-Response Relationship, Drug , Humans
13.
Dalton Trans ; 53(27): 11354-11367, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38919040

ABSTRACT

In this study, 2(3),9(10),16(17),23(24)-tetrakis-[(N-methyl-(1-benzylpiperidin-4-yl)oxy)phthalocyaninato]zinc(II) iodide (ZnPc-2) was synthesized and characterized using spectral methods (FT-IR, 1H-NMR, UV-Vis and mass spectroscopy). The interaction of ZnPc-2 with DNA was investigated by using the UV/Vis titrimetric method, thermal denaturation profile, agarose gel electrophoresis and molecular docking studies. Additionally, the antidiabetic activity of ZnPc-2 was revealed spectroscopically by studying α-amylase and α-glucosidase inhibition activities. The spectroscopic results indicated that ZnPc-2 effectively binds to calf thymus-DNA (CT-DNA) with a Kb value of 7.5 × 104 M-1 and interacts with CT-DNA via noncovalent binding mode. Gel electrophoresis results also show that ZnPc-2 binds strongly to DNA molecules and exhibits effective nuclease activity even at low concentrations. Furthermore, docking studies suggest that ZnPc-2 exhibits a stronger binding tendency with DNA than the control compounds ethidium bromide and cisplatin. Consequently, due to its strong DNA binding and nuclease activity, ZnPc-2 may be suitable for antimicrobial and anticancer applications after further toxicological tests. Additionally, antidiabetic studies showed that ZnPc-2 had both α-amylase and α-glucosidase inhibition activity. Moreover, the α-glucosidase inhibitory effect of ZnPc-2 was approximately 3500 times higher than that of the standard inhibitor, acarbose. Considering these results, it can be said that ZnPc-2 is a moderate α-amylase and a highly effective α-glucosidase inhibitor. This suggests that ZnPc-2 may have the potential to be used as a therapeutic agent for the treatment of type 2 diabetes.


Subject(s)
DNA , Glycoside Hydrolase Inhibitors , Indoles , Isoindoles , Molecular Docking Simulation , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , alpha-Glucosidases/metabolism , DNA/metabolism , DNA/chemistry , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Water/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Organometallic Compounds/chemical synthesis , Solubility , Animals , Cattle , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Zinc Compounds
14.
Food Chem ; 455: 139703, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823132

ABSTRACT

The effect of hawthorn berries ripeness on the physicochemical, structural and functional properties of hawthorn pectin (HP) and its potential in sweet cherry preservation were investigated. With the advanced ripeness of hawthorn berries, the galacturonic acid (GalA) content decreased from 59.70 mol% to 52.16 mol%, the molecular weight (Mw) reduced from 368.6 kDa to 284.3 kDa, the microstructure exhibited variable appearance from thick lamella towards porous cross-linked fragment, emulsifying activity and emulsions stability, antioxidant activities, α-amylase and pancreatic lipid inhibitory capacities significantly increased. The heated emulsion stored for 30 d presented higher creaming index and more ordered oil droplets compared to the unheated emulsion. With the extended berries ripeness, the firmness of HP gels remarkably decreased from 225.69 g to 73.39 g, while the springiness increased from 0.78 to 1.16, HP exhibited a superior inhibitory effect in water loss, browning, softening, and bacterial infection in sweet cherries preservation.


Subject(s)
Crataegus , Fruit , Pectins , Crataegus/chemistry , Crataegus/growth & development , Pectins/chemistry , Fruit/chemistry , Fruit/growth & development , Food Preservation , Antioxidants/chemistry , Molecular Weight , Emulsions/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Plant Extracts/chemistry
15.
Food Chem ; 455: 139952, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850968

ABSTRACT

Dendrobium officinale Kimura & Migo (D. officinale) has been widely used as Chinese medicine and functional food. In present study, the structural characteristics of anthocyanins in D. officinale were investigated by ultra-performance liquid chromatography with diode array detector (UPLC-DAD) and ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS/MS). Totally, 14 anthocyanins were detected and identified, and 13 of them were first reported in D. officinale. Results showed that the vast majority of anthocyanins had multi-glycosylated cyanidin core, with variable acylation pattern mainly comprising phenolic acids. The composition and content of anthocyanins in D. officinale stems with different cultivation modes and years have been compared. The anthocyanins showed potent antioxidant activity in terms of radicals scavenging capacity and reducing power, as well as superior α-amylase and α-glucosidase inhibitory activity. The results provided a complete profile of anthocyanins in D. officinale and laid a foundation for further utilizing them as functional foods.


Subject(s)
Anthocyanins , Antioxidants , Dendrobium , Hypoglycemic Agents , Plant Extracts , Antioxidants/chemistry , Antioxidants/pharmacology , Dendrobium/chemistry , Anthocyanins/chemistry , Anthocyanins/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Chromatography, High Pressure Liquid , Acylation , alpha-Amylases/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Tandem Mass Spectrometry , Molecular Structure , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Humans , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology
16.
J Proteome Res ; 23(7): 2641-2650, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38906844

ABSTRACT

To investigate the mechanisms underlying the differences in the freezability of boar semen, Yorkshire boars with freezing-tolerant semen (YT, n = 3), Yorkshire boars with freezing-sensitive semen (YS, n = 3), Landrace boars with freezing-tolerant semen (LT, n = 3), and Landrace boars with freezing-sensitive semen (LS, n = 3) were selected for this study. Their sperm was subjected to protein extraction, followed by data-independent acquisition proteomics and functional bioinformatics analysis. A total of 3042 proteins were identified, of which 2810 were quantified. Some key KEGG pathways were enriched, such as starch and sucrose metabolism, carbohydrate digestion and absorption, mineral absorption, the HIF-1 signaling pathway, and the necroptosis pathways. Through PRM verification, we found that several proteins, such as α-amylase and epididymal sperm-binding protein 1, can be used as molecular markers of the freezing resistance of boar semen. Furthermore, we found that the addition of α-amylase to cryoprotective extender could significantly improve the post-thaw motility and quality of boar semen. In summary, this study revealed some molecular markers and potential molecular pathways contributing to the high or low freezability of boar sperm, identifying α-amylase as a key protein. This study is valuable for optimizing boar semen cryopreservation technology.


Subject(s)
Cryopreservation , Proteomics , Semen Preservation , Sperm Motility , Spermatozoa , alpha-Amylases , Animals , Male , Spermatozoa/metabolism , Proteomics/methods , Swine , Semen Preservation/veterinary , Semen Preservation/methods , Cryopreservation/veterinary , alpha-Amylases/metabolism , Freezing , Cryoprotective Agents/pharmacology , Semen Analysis/methods , Semen Analysis/veterinary , Proteome/metabolism , Proteome/analysis
17.
Future Med Chem ; 16(10): 999-1027, 2024.
Article in English | MEDLINE | ID: mdl-38910576

ABSTRACT

Aim: The objective of the present investigation was to design and synthesize new heterocyclic hybrids comprising benzothiazole and indenopyrazolone pharmacophoric units in a single molecular framework targeting α-amylase and α-glucosidase enzymatic inhibition. Materials & methods: 20 new benzothiazole-appended indenopyrazoles, 3a-t, were synthesized in good yields under environment-friendly conditions via cycloaddition reaction, and assessed for antidiabetic activity against α-amylase and α-glucosidase, using acarbose as the standard reference. Results: Among all the hydroxypyrazolones, 3p and 3r showed the best inhibition against α-amylase and α-glucosidase, which finds support from molecular docking and dynamic studies. Conclusion: Compounds 3p and 3r have been identified as promising antidiabetic agents against α-amylase and α-glucosidase and could be considered valuable leads for further optimization of antidiabetic agents.


[Box: see text].


Subject(s)
Benzothiazoles , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , alpha-Amylases , alpha-Glucosidases , alpha-Glucosidases/metabolism , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis
18.
J Enzyme Inhib Med Chem ; 39(1): 2367128, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38913598

ABSTRACT

Inhibition of α-glucosidase and α-amylase are key tactics for managing blood glucose levels. Currently, stronger, and more accessible inhibitors are needed to treat diabetes. Indeno[1,2-b] quinoxalines-carrying thiazole hybrids 1-17 were created and described using NMR. All analogues were tested for hypoglycaemic effect against STZ-induced diabetes in mice. Compounds 4, 6, 8, and 16 were the most potent among the synthesised analogues. These hybrids were examined for their effects on plasma insulin, urea, creatinine, GSH, MDA, ALT, AST, and total cholesterol. Moreover, these compounds were tested against α-glucosidase and α-amylase enzymes in vitro. The four hybrids 4, 6, 8, and 16 represented moderate to potent activity with IC50 values 0.982 ± 0.04, to 10.19 ± 0.21 for α-glucosidase inhibition and 17.58 ± 0.74 to 121.6 ± 5.14 µM for α-amylase inhibition when compared to the standard medication acarbose with IC50=0.316 ± 0.02 µM for α-glucosidase inhibition and 31.56 ± 1.33 µM for α-amylase inhibition. Docking studies as well as in silico ADMT were done.


Subject(s)
Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Quinoxalines , Thiazoles , alpha-Amylases , alpha-Glucosidases , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Animals , Mice , Structure-Activity Relationship , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Diabetes Mellitus, Experimental/drug therapy , Streptozocin , Halogenation , Male , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
19.
Eur J Med Chem ; 275: 116589, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38878516

ABSTRACT

Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 µg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 µM compared to Acarbose IC50 = 0.43 ± 0.009 µM, followed by compound 10 (IC50 = 1.55 ± 0.022 µM) and compound 9 (IC50 = 1.59 ± 0.023 µM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 µM relative to Acarbose IC50 = 1.24 ± 0.029 µM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 µM) > 11 (IC50 = 5.13 ± 0.082 µM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.


Subject(s)
Acetaminophen , Drug Design , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Acetaminophen/pharmacology , Structure-Activity Relationship , Molecular Structure , Humans , Dose-Response Relationship, Drug , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
20.
Eur J Med Chem ; 275: 116600, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38889608

ABSTRACT

To find novel inhibitors of α-glucosidase and α-amylase, a series of new carbazole-oxadiazole derivatives (6a-6n) were prepared, and screened for their anti-α-glucosidase and anti-α-amylase effects. Most of the tested derivatives showed different degrees of α-glucosidase and α-amylase inhibitory activity (IC50: 21.39 ± 0.69-92.05 ± 1.54 µM, 45.53 ± 1.50-126.14 ± 6.33 µM, respectively) compared to the standard acarbose (IC50: 427.00 ± 9.56 µM, 24.68 ± 1.10 µM, respectively). Thereinto, 6c (IC50 = 21.39 ± 0.69 µM) displayed the most effective anti-α-glucosidase activity and 6e presented the best anti-α-amylase activity with an IC50 value of 45.53 ± 1.50 µM. Lineweaver-Burk plot analysis suggested that 6c and 6e behaved as mixed α-glucosidase inhibitor and mixed α-amylase inhibitor, respectively. The results of circular dichroism, atomic force microscope, and molecular docking simulation exposed interaction mechanisms between two preferred compounds (6c and 6e) and their corresponding enzymes. Combined with the possible properties of reducing the elevation in postprandial blood glucose, oral activity, positive bioavailability, and low cytotoxicity of 6c and 6e, it could be concluded that the target derivatives may be able to act as lead molecules for the development of new hypoglycemic agents.


Subject(s)
Carbazoles , Drug Design , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Oxadiazoles , alpha-Amylases , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Carbazoles/chemistry , Carbazoles/pharmacology , Carbazoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Humans , Animals , Dose-Response Relationship, Drug , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Rats , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...