Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 967
Filter
1.
PLoS One ; 19(9): e0308308, 2024.
Article in English | MEDLINE | ID: mdl-39241083

ABSTRACT

BACKGROUND: The increasing prevalence of diabetes and the side effects associated with current medications necessitate the development of novel candidate drugs targeting alpha-glucosidase as a potential treatment option. METHODS: This study employed computer-aided drug design techniques to identify potential alpha-glucosidase inhibitors from the PubChem database. Molecular docking was used to evaluate 81,197 compounds, narrowing the set for further analysis and providing insights into ligand-target interactions. An ADMET study assessed the pharmacokinetic properties of these compounds, including absorption, distribution, metabolism, excretion, and toxicity. Molecular dynamics simulations validated the docking results. RESULTS: 9 compounds were identified as potential candidate drugs based on their ability to form stable complexes with alpha-glucosidase and their favorable pharmacokinetic profiles, three of these compounds were subjected to the molecular dynamics, which showed stability throughout the entire 100 ns simulation. CONCLUSION: These findings suggest promising new alpha-glucosidase inhibitors for diabetes treatment. Further validation through in vitro and in vivo studies is recommended to confirm their efficacy and safety.


Subject(s)
Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Triazoles , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Triazoles/chemistry , Triazoles/pharmacology , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Humans , Computer Simulation , Drug Design
2.
J Agric Food Chem ; 72(32): 17938-17952, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092914

ABSTRACT

Fifteen stilbenoid derivatives, including five previously undescribed ones (albaphenols A-E, 1-5) with diverse scaffolds, were obtained from the well-known agricultural economic tree Morus alba. Their structures, including absolute stereochemistries, were fully characterized by detailed interpretation of spectroscopic data and quantum chemical computational analyses of nuclear magnetic resonance (NMR) and electric circular dichroism (ECD). Albaphenol A (1) features an unprecedented rearranged carbon skeleton incorporating a novel 2-oxaspiro[bicyclo[3.2.1]octane-6,3'-furan] motif; albaphenol C (3) is likely derived from a cometabolite through an interesting intramolecular transesterification reaction; and albaphenol E (5) bears a cleavage-reconnection scaffold via a dioxane ring. All of the compounds exhibited significant inhibition against the diabetic target α-glucosidase, with low to submicromole IC50 values (0.70-8.27 µM), and the binding modes of selected molecules with the enzyme were further investigated by fluorescence quenching, kinetics, and molecular docking experiments. The antidiabetic effect of the most active and abundant mulberrofuran G (6) was further assessed in vivo in diabetic mice, revealing potent antihyperglycemic activity and comparable antidiabetic efficacy to the clinical drug acarbose.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Morus , Plant Extracts , Stilbenes , alpha-Glucosidases , Animals , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Mice , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Stilbenes/chemistry , Stilbenes/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Male , Morus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship , Kinetics
3.
Molecules ; 29(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124856

ABSTRACT

A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 6-12, were obtained from Streptomyces sp. PH9030. The structure of 5 was identified by comprehensive examination of its HRESIMS, 1D NMR, 2D NMR and ECD data. The inhibitory activities of all the compounds toward α-glucosidase and their antibacterial properties were investigated. The α-glucosidase inhibitory activities of 5, 6, 7 and 9 were reported for the first time, with IC50 values ranging from 66.4 ± 6.7 to 185.9 ± 0.2 µM, as compared with acarbose (IC50 = 671.5 ± 0.2 µM). The molecular docking and molecular dynamics analysis of 5 with α-glucosidase further indicated that it may have a good binding ability with α-glucosidase. Both 9 and 12 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration (MIC) values of 16 µg/mL. These results indicate that 5, together with the naphthoquinone scaffold, has the potential to be further developed as a possible inhibitor of α-glucosidase.


Subject(s)
Anti-Bacterial Agents , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Naphthoquinones , Phenazines , Streptomyces , alpha-Glucosidases , Streptomyces/chemistry , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Naphthoquinones/isolation & purification , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Phenazines/chemistry , Phenazines/pharmacology , Phenazines/isolation & purification , Microbial Sensitivity Tests , Endophytes/chemistry , Molecular Structure , Molecular Dynamics Simulation , Methicillin-Resistant Staphylococcus aureus/drug effects
4.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3796-3803, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099353

ABSTRACT

Pomegranate peel-derived extracellular nanovesicles(PPENs) were isolated and purified by ultra-high speed centrifugation and sucrose density gradient centrifugation. Their morphology and structure were characterized. In vitro α-glucosidase inhibition assay and model test of insulin resistance(IR) in HepG2 cells showed that PPENs had good anti-diabetic activity. The IC_(50) value of α-glucosidase inhibition was(35.3±1.1) µg·mL~(-1), significantly better than the positive drug acarbose. At a concentration of 100 µg·mL~(-1), PPENs could increase the glucose absorption of IR cells significantly. Lipidome, proteome, and metabolite analysis of PPENs were performed using chromatography-mass spectrometry. MicroRNA(miRNA) sequences were identified, and target genes of miRNA were predicted. The analysis results indicated that PPENs contained abundant lipids and transport proteins, providing a material basis for the transportation and distribution of PPENs in tissue. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis suggested that lipids and miRNAs may be the key components of PPENs to exert anti-diabetic activity.


Subject(s)
Hypoglycemic Agents , Pomegranate , Pomegranate/chemistry , Humans , Hep G2 Cells , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , MicroRNAs/genetics , alpha-Glucosidases/genetics , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Fruit/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Nanoparticles/chemistry
5.
Molecules ; 29(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39202972

ABSTRACT

Hypericum perforatum transformed shoot lines (TSL) regenerated from corresponding hairy roots and non-transformed shoots (NTS) were comparatively evaluated for their phenolic compound contents and in vitro inhibitory capacity against target enzymes (monoamine oxidase-A, cholinesterases, tyrosinase, α-amylase, α-glucosidase, lipase, and cholesterol esterase). Molecular docking was conducted to assess the contribution of dominant phenolic compounds to the enzyme-inhibitory properties of TSL samples. The TSL extracts represent a rich source of chlorogenic acid, epicatechin and procyanidins, quercetin aglycone and glycosides, anthocyanins, naphthodianthrones, acyl-phloroglucinols, and xanthones. Concerning in vitro bioactivity assays, TSL displayed significantly higher acetylcholinesterase, tyrosinase, α-amylase, pancreatic lipase, and cholesterol esterase inhibitory properties compared to NTS, implying their neuroprotective, antidiabetic, and antiobesity potential. The docking data revealed that pseudohypericin, hyperforin, cadensin G, epicatechin, and chlorogenic acid are superior inhibitors of selected enzymes, exhibiting the lowest binding energy of ligand-receptor complexes. Present data indicate that H. perforatum transformed shoots might be recognized as an excellent biotechnological system for producing phenolic compounds with multiple health benefits.


Subject(s)
Agrobacterium , Hypericum , Molecular Docking Simulation , Phenols , Phytochemicals , Plant Shoots , Hypericum/chemistry , Hypericum/metabolism , Phenols/chemistry , Phenols/pharmacology , Phenols/metabolism , Plant Shoots/chemistry , Plant Shoots/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plants, Genetically Modified , alpha-Amylases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry
6.
Food Chem ; 460(Pt 3): 140760, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39137574

ABSTRACT

Cheesemaking with camel milk (CM) presents unique challenges and additional health benefits. This study involved preparing low-fat Cheddar cheese (LFCC) by blending bovine milk (BM) with varying levels of CM. Control cheese was made exclusively with BM. After 180 days of ripening, LFCC samples underwent in vitro digestion to determine antioxidant capacities, α-amylase and α-glucosidase inhibition, and angiotensin-converting enzyme inhibition. The peptide profile of LFCC treatments was analyzed using liquid chromatography-quadrupole-time of flight-mass spectrometry. Antioxidant and biological activities were influenced by BM-CM blends and digestion. At days 120 and 180, the number of αs1-casein-derived peptides increased in all samples except for LFCC made with 15% CM. Generally, 88 peptides exhibited ACE inhibition activity after 120 days of ripening, increasing to 114 by day 180. These findings suggest that ripening time positively affects the health-promoting aspects of functional cheese products.


Subject(s)
Camelus , Cheese , Digestion , Milk , Peptides , alpha-Amylases , Animals , Cheese/analysis , Cattle , Milk/chemistry , Milk/metabolism , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Peptides/chemistry , Peptides/metabolism , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Food Handling , Computer Simulation , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry
7.
Sci Rep ; 14(1): 18693, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134641

ABSTRACT

In this work, we have reported the design, synthesis, in vitro, and in silico enzymatic evaluation of new bis-4-hydroxycoumarin-based phenoxy-1,2,3-triazole-N-phenylacetamide derivatives 5a-m as potent α-glucosidase inhibitors. All the synthesized analogues showed high inhibition effects against α-glucosidase (IC50 values ranging between 6.0 ± 0.2 and 85.4 ± 2.3 µM) as compared to the positive control acarbose (IC50 = 750.0 ± 0.6 µM). Among the newly synthesized compounds 5a-m, 2,4-dichloro-N-phenylacetamide derivative 5i with inhibition effect around 125-folds more than the acarbose was identified as the most potent entry. A structure-activity relationship (SAR) study about the title compounds 5a-m demonstrated that the inhibition effects of these compounds depend on the pattern of substitution on the N-phenylacetamide ring. The interaction modes and binding energies in the active site of enzyme of the important analogues (in term of SAR study) were evaluated through molecular docking study. Molecular dynamics and prediction of pharmacokinetic properties and toxicity of the most potent compound 5i also evaluated and the obtained data was compared with the acarbose.


Subject(s)
4-Hydroxycoumarins , Drug Design , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Structure-Activity Relationship , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , 4-Hydroxycoumarins/chemistry , 4-Hydroxycoumarins/pharmacology , 4-Hydroxycoumarins/chemical synthesis , Computer Simulation , Catalytic Domain , Molecular Dynamics Simulation
8.
Food Chem ; 460(Pt 3): 140724, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39121769

ABSTRACT

This study explored the impact of complexing comselogoside (COM) with ß-cyclodextrin (ß-CD) on antioxidant capacity and investigated its in vitro inhibitory effects against α-glucosidase and angiotensin I-converting enzyme (ACE). The COM: ß-CD complex in three molar ratios (1:2, 1:1, and 2:1) showed significantly higher antioxidant activity compared to free COM, assessed by DPPH and ferric reducing power assays. COM exhibited weak to moderate α-glucosidase inhibition (IC50 1221 µM) and notable ACE inhibition (IC50 119.4 µM). Encapsulation improved ACE inhibition notably for the 1:2 and 2:1 M ratios. The cleavage of secoiridoid moiety of COM by ß-glucosidase further enhanced ACE inhibition from IC50 of 63.91 to 41.75 µg/mL in the hydrolysed mixture. In vitro gastrointestinal digestion revealed 34-40% bioaccessibility of COM and its ß-CD complex. This study demonstrates the potential of encapsulated COM as a functional food or supplement for preventing and treating diabetes, hypertension, and oxidative stress-related diseases.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antioxidants , Digestion , Glycoside Hydrolase Inhibitors , alpha-Glucosidases , beta-Cyclodextrins , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , beta-Cyclodextrins/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Humans , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Gastrointestinal Tract/metabolism , Models, Biological
9.
Food Chem ; 460(Pt 3): 140670, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39106747

ABSTRACT

Anthocyanins are natural flavonoids with a high antioxidant power and many associated health benefits, but most rice produce little amounts of these compounds. In this study, 141 MYB transcription factors in 15 chromosomes, including the nucleus-localised ZlMYB1 (Zla03G003370) and ZlMYB2 (Zla15G015220), were discovered in Zizania latifolia. Overexpression of ZlMYB1 or ZlMYB2 in rice seeds induced black pericarps, and flavonoid content, antioxidant capacity, and α-glucosidase and tyrosinase inhibition effects significantly increased compared to those in the control seeds. ZlMYB1 and ZlMYB2 overexpression induced the upregulation of 764 and 279 genes, respectively, and the upregulation of 162 and 157 flavonoids, respectively, linked to a black pericarp phenotype. The expression of flavonoid 3'-hydroxylase and UDP-glycose flavonoid glycosyltransferase, as well as the activities of these enzymes, increased significantly in response to ZlMYB1 or ZlMYB2 overexpression. This study systematically confirmed that the overexpression of ZlMYB1 and ZlMYB2 promotes flavonoid biosynthesis (especially of anthocyanins) in rice.


Subject(s)
Antioxidants , Flavonoids , Monophenol Monooxygenase , Oryza , Plant Proteins , Seeds , alpha-Glucosidases , Seeds/chemistry , Seeds/genetics , Seeds/metabolism , Seeds/enzymology , Oryza/genetics , Oryza/chemistry , Oryza/metabolism , Oryza/enzymology , Flavonoids/metabolism , Flavonoids/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/chemistry , Gene Expression Regulation, Plant , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/enzymology
10.
J Agric Food Chem ; 72(29): 16263-16275, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38953591

ABSTRACT

Six new phenylpropanoid glycosides (1-6), two new phenylethanol glycosides (7 and 8), one new phenylmethanol glycoside (9), three new phenylpropanoid dimers (10-12), two new phenylpropanoid-flavan-3-ol heterodimers (13 and 14), and six known relevant compounds (15-20) were isolated and identified from the well-liked edible and medicinal substance (the bark of Cinnamomum cassia (L.) J.Presl). The structures of these isolates were determined by using spectroscopic analyses, chemical methods, and quantum chemical calculations. Notably, compounds 4-9 were rare apiuronyl-containing glycosides, and compounds 13 and 14 were heterodimers of phenylpropanoids and flavan-3-ols linked through C-9″-C-8 bonds. The antioxidant and α-glucosidase inhibitory activities of all isolates were evaluated. Compounds 10 and 12 exhibited DPPH radical scavenging capacities with IC50 values of 20.1 and 13.0 µM, respectively (vitamin C IC50 value of 14.3 µM). In the ORAC experiment, all these compounds exhibited different levels of capacity for scavenging free radicals, and compound 10 displayed extraordinary free radical scavenging capacity with the ORAC value of 6.42 ± 0.01 µM TE/µM (EGCG ORAC value of 1.54 ± 0.02 µM TE/µM). Compound 12 also showed significant α-glucosidase inhibitory activity with an IC50 of 56.3 µM (acarbose IC50 of 519.4 µM).


Subject(s)
Antioxidants , Cinnamomum aromaticum , Glycoside Hydrolase Inhibitors , Glycosides , Plant Bark , Plant Extracts , Plant Bark/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Cinnamomum aromaticum/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Dimerization
11.
Anal Chim Acta ; 1317: 342911, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030011

ABSTRACT

Natural products-based screening of active ingredients and their interactions with target proteins is an important ways to discover new drugs. Assessing the binding capacity of target proteins, particularly when multiple components are involved, presents a significant challenge for sensors. As far as we know, there is currently no sensor that can accomplish high-throughput quantitative analysis of natural product-target protein binding capacity based on Raman spectroscopy. In this study, a novel sensor model has been developed for the quantitative analysis of binding capacity based on Surface-Enhanced Raman Spectroscopy (SERS) and Photocrosslinked Molecular Probe (PCMP) technology. This sensor, named SERS-PCMP, leverages the high throughput of molecular probe technology to investigate the active ingredients in natural products, along with the application of SERS labelling technology for target proteins. Thus it significantly improves the efficiency and accuracy of target protein identification. Based on the novel strategy, quantitative analysis of the binding capacity of 20 components from Shenqi Jiangtang Granules (SJG) to α-Glucosidase were completed. Ultimately, the binding capacity of these active ingredients was ranked based on the detected Raman Intensity. The compounds with higher binding capacity were Astragaloside IV (Intensity, 138.17), Ginsenoside Rh2 (Intensity, 87.46), Ginsenoside Rg3 (Intensity, 73.92) and Ginsenoside Rh1 (Intensity, 64.37), which all exceeded the binding capacity of the positive drug Acarbose (Intensity, 28.75). Furthermore, this strategy also performed a high detection sensitivity. The limit of detection for the enzyme using 0.1 mg of molecular probe magnetic nanoparticles (MP MNPs) was determined to be no less than 0.375 µg/mL. SERS-PCMP sensor integrating SERS labeling and photocrosslinked molecular probes which offers a fresh perspective for future drug discovery studies. Such as high-throughput drug screening and the exploration of small molecule-target protein interactions in vitro.


Subject(s)
Biological Products , Molecular Probes , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Biological Products/chemistry , Biological Products/analysis , Molecular Probes/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Protein Binding , Photochemical Processes , Cross-Linking Reagents/chemistry , Silver/chemistry
12.
J Agric Food Chem ; 72(28): 15704-15714, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38976778

ABSTRACT

Pueraria lobata (Willd.) Ohwi, known as kudzu and used as a "longevity powder" in China, is an edible plant which is rich in flavonoids and believed to be useful for regulating blood sugar and treating diabetes, although the modes of action are unknown. Here, a total of 53 flavonoids including 6 novel compounds were isolated from kudzu using multidimensional preparative liquid chromatography. The flavonoid components were found to lower blood sugar levels, promote urine sugar levels in mice, and reduce the urine volume. Molecular docking and in vitro assays suggested that the antidiabetic effect of kudzu was attributed to at least three targets: sodium-dependent glucose transporter 2 (SGLT2), protein tyrosine phosphatase-1B (PTP1B), and alpha-glucosidase (AG). This study suggests a possible mechanism for the antidiabetic effect that may involve the synergistic action of multiple active compounds from kudzu.


Subject(s)
Flavonoids , Hypoglycemic Agents , Plant Extracts , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Pueraria , Pueraria/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Flavonoids/chemistry , Animals , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Docking Simulation , Male , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Blood Glucose/metabolism , Plants, Edible/chemistry
13.
J Biosci Bioeng ; 138(3): 218-224, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997871

ABSTRACT

Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 µM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 µM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.


Subject(s)
Agrobacterium tumefaciens , Anti-Inflammatory Agents , Catechols , Fatty Alcohols , Glucosides , alpha-Glucosidases , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Fatty Alcohols/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Catechols/chemistry , Catechols/pharmacology , Catechols/metabolism , Glucosides/chemistry , Glucosides/pharmacology , Glucosides/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Solubility , Zingiber officinale/chemistry
14.
Int J Biol Macromol ; 276(Pt 1): 133489, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964679

ABSTRACT

Indole-based bis-acylhydrazone compounds can inhibit the activity of α-glucosidase and control the concentration of blood glucose. In this paper, the characteristics of three indole-based bis-acylhydrazone compounds with different inhibitory activities of α-glucosidase as well as the interaction with α-glucosidase were studied by experiments and computational simulation techniques. Enzyme kinetic and spectral experiments showed that the indole-based bis-acylhydrazone compounds were able to inhibit enzyme activity through mixed inhibition dominated by competitive inhibition, and during the binding reaction, indole-based bis-acylhydrazone compounds can quench the intrinsic fluorescence of α-glucosidase through static quenching and an aggregation of the indole-based bis-acylhydrazone with α-glucosidase produces a stable complex with a molar ratio of 1:1, and the combination of indole-based bis-acylhydrazone compounds could lead to slight change in the conformation of α-glucosidase. The theoretical simulation demonstrated that the stability of the complex systems was positively correlated with the inhibitory activity of indole-based bis-acylhydrazone compounds, and the indole-based bis-acylhydrazone compounds occupied the active site in the multi-ligand system, resulting in a significant decrease in the binding ability of starch to active amino acids. These results suggested that indole-based bis-acylhydrazone compound was expected to be a new type of α-glucosidase inhibitor.


Subject(s)
Glycoside Hydrolase Inhibitors , Hydrazones , Indoles , alpha-Glucosidases , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Indoles/chemistry , Indoles/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Kinetics , Molecular Docking Simulation , Spectrum Analysis
15.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999038

ABSTRACT

This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.


Subject(s)
Benzoxazines , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Benzoxazines/chemistry , Benzoxazines/pharmacology , Benzoxazines/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Pancreatic alpha-Amylases/antagonists & inhibitors , Pancreatic alpha-Amylases/metabolism , Cycloaddition Reaction , Molecular Structure , Computer Simulation , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Humans , Structure-Activity Relationship , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Intestines/enzymology
16.
J Sep Sci ; 47(14): e2400342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031453

ABSTRACT

In this study, a ligand fishing method for the screening of α-glucosidase inhibitors from Ginkgo biloba leaf was established for the first time using α-glucosidase immobilized on the magnetic metal-organic framework. The immobilized α-glucosidase exhibited enhanced resistance to temperature and pH, as well as good thermal stability and reusability. Two ligands, namely quercitrin and quercetin, were screened from Ginkgo biloba leaf and identified by ultra-high performance liquid chromatography-tandem mass spectrometry. The half-maximal inhibitory concentration values for quercitrin and quercetin were determined to be 105.69 ± 0.39 and 83.49 ± 0.79 µM, respectively. Molecular docking further confirmed the strong inhibitory effect of these two ligands. The proposed approach in this study demonstrates exceptional efficiency in the screening of α-glucosidase inhibitors from complex natural medicinal plants, thus exhibiting significant potential for the discovery of antidiabetic compounds.


Subject(s)
Enzymes, Immobilized , Ginkgo biloba , Glycoside Hydrolase Inhibitors , Metal-Organic Frameworks , Plant Leaves , alpha-Glucosidases , Ginkgo biloba/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Metal-Organic Frameworks/chemistry , Plant Leaves/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/antagonists & inhibitors , Enzymes, Immobilized/metabolism , Molecular Docking Simulation , Drug Evaluation, Preclinical , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quercetin/chemistry , Quercetin/analysis , Quercetin/pharmacology , Quercetin/analogs & derivatives , Chromatography, High Pressure Liquid
17.
Sci Rep ; 14(1): 17338, 2024 07 28.
Article in English | MEDLINE | ID: mdl-39069559

ABSTRACT

Α-glucosidase inhibition can be useful in the management of carbohydrate-related diseases, especially type 2 diabetes mellitus. Therefore, in this study, a new series of 6-chloro-2-methoxyacridine bearing different aryl triazole derivatives were designed, synthesized, and evaluated as potent α-glucosidase inhibitors. The most potent derivative in this group was 7h bearing para-fluorine with IC50 values of 98.0 ± 0.3 µM compared with standard drug acarbose (IC50 value = 750.0 ± 10.5 µM). A kinetic study of compound 7h revealed that it is a competitive inhibitor against α-glucosidase. Molecular dynamic simulations of the most potent derivative were also executed and indicated suitable interactions with residues of the enzyme which rationalized the in vitro results.


Subject(s)
Acridines , Glycoside Hydrolase Inhibitors , Molecular Dynamics Simulation , Triazoles , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Acridines/chemistry , Acridines/pharmacology , Acridines/chemical synthesis , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship , Humans
18.
Food Chem ; 460(Pt 1): 140489, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39047474

ABSTRACT

Kafirin in sorghum inhibits starch digestion and exhibits antioxidant properties, however its potential in food industry remains unexplored. Therefore, the study was aimed to explore and improve the potential of kafirin as natural carbohydrate blocker using papain (6 NFU/mL) and/or infrared treatment (220 °C/3 min). Results indicated that the combined treatment, PIR (infrared + papain) is the most efficient treatment to modify kafirin. PIR generated a new ∼37 kDa high molecular weight moiety in kafirin with a crystal size of 157.44 Å. All samples showed superior antioxidant activity post-treatments, with PIR exhibiting highest scavenging activity from 31.09 to 82.97%, 15.09 to 42.82%, and 25.92 to 38.58% for DPPH, FRAP, and ABTS, respectively. PIR-modified kafirin limited malondialdehyde production, and increased α-amylase and α-glucosidase inhibition. Incorporation of 7.5% kafirin in corn starch increased resistant starch from 5.09 to 21.04% after cooking, which suggests potential of kafirin in development of diabetic-friendly food formulations.


Subject(s)
Antioxidants , alpha-Amylases , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Antioxidants/chemistry , Sorghum/chemistry , Starch/chemistry , Starch/metabolism , Papain/chemistry , Papain/metabolism , Hot Temperature , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Plant Proteins/chemistry , Cooking , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology
19.
Food Chem ; 460(Pt 1): 140406, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39047480

ABSTRACT

Protein hydrolysates with antioxidant potential have been reported to act as adjuvants in preventing and treating type-2 diabetes (T2D). This work investigated the biochemical, antidiabetic, antioxidant potential, and physicochemical properties of chia meal protein hydrolysate (CMPH). Bands smaller than 14 kDa were observed in the electrophoretic profile. The predominant amino acids were hydrophobic and aromatic. CMPH had the potential to inhibit α-amylase (IC50: 1.76 ± 0.13 mg/mL), α-glucosidase (IC50: 0.42 ± 0.13 mg/mL), and DPP-IV (IC50: 0.46 ± 0.14 mg/mL). Antioxidant activity for ABTS (IC50: 0.236 mg/mL), DPPH (8.83 ± 0.52%), and ORAC (IC25: 0.115 mg/mL). Against chia meal protein isolate (CMPI), CMPH has a broad solubility (pH 2-12.46). Particle size (624.5 ± 247.3 nm), low PDI (0.22 ± 0.06), ζ-potential (-31.1 ± 2.5 mV), and surface hydrophobicity (11,183.33 ± 2024.11) and the intrinsic fluorescence peak of CMPH was lower than that of CMPI. CMPH represents an alternative to add value to the agri-food co-product of the chia seed oil industry, generating food ingredients with outstanding antidiabetic and antioxidant potential.


Subject(s)
Antioxidants , Hypoglycemic Agents , Protein Hydrolysates , Salvia hispanica , alpha-Amylases , Hypoglycemic Agents/chemistry , Antioxidants/chemistry , Protein Hydrolysates/chemistry , alpha-Amylases/chemistry , Salvia hispanica/chemistry , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Humans , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Plant Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Salvia/chemistry
20.
Food Chem ; 460(Pt 1): 140471, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39059326

ABSTRACT

Turanose, an isomer of sucrose, naturally exists in honey. Previous study indicated that turanose content increased gradually in acacia honey as honeybees brewed honey in the hive. However, it is unclear how turanose is generated in honey. We hypothesised that turanose was produced by enzymes from honeybees and performed a series of simulation experiments to prove this hypothesis. We found turanose in honey was produced by honeybees processing sucrose. Furthermore, we determined that sugar composition of simulated nectar influenced the turanose concentration in honey: when sucrose concentration was below 5%, turanose was difficult to form, whereas high concentration of fructose and limited glucose were beneficial in producing turanose. Using 13C-labelled sucrose tests combined with proteomics analysis, we identified that α-glucosidase converted sucrose to turanose through an intermolecular isomerisation process. This study reveals the formation mechanism of turanose in honey and assists in the scientific control and improvement of honey quality.


Subject(s)
Honey , Isotope Labeling , Mass Spectrometry , Sucrose , Honey/analysis , Bees , Sucrose/analysis , Sucrose/chemistry , Sucrose/metabolism , Animals , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL