Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.081
Filter
1.
J Med Chem ; 67(16): 14200-14209, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39137365

ABSTRACT

Both innate and adaptive immunity are important components of the human defense system against various diseases including cancer. Human beta defensin-1 (hBD-1) is one such immunomodulatory peptide which is lost in malignant cancers, while high levels of expression are maintained in benign cells, making it a potential biomarker for the onset and metastasis of the disease. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer for which no targeted therapy has been approved so far. That makes chemotherapy a first line of treatment despite high side effects. A priori Activation of Apoptosis Pathways of Tumor often referred to as AAAPT technology is a novel targeted tumor sensitizing technology that sensitizes low responsive and resistant tumor cells to evoke a better response from the current treatments for TNBC. Here, we show that hBD-1 is a targeted tumor sensitizer.


Subject(s)
Antineoplastic Agents , beta-Defensins , Humans , beta-Defensins/metabolism , beta-Defensins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Apoptosis/drug effects , Animals
2.
Turk J Gastroenterol ; 35(3): 223-231, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39128051

ABSTRACT

BACKGROUND/AIMS:  It was aimed to investigate the biochemical and histopathological effects of resveratrol and melatonin, via histone H4 and ß-defensin 1, in diabetic rats. MATERIALS AND METHODS:  Twenty-four Sprague-Dawley male rats were categorized into 4 groups, with 6 rats in each group (control, diabetes mellitus, melatonin - diabetes mellitus, and resveratrol+diabetes mellitus). Diabetes was formed by giving streptozotocin to all groups except the control group. Melatonin, 5 mg/kg/day, was given to the melatonin - diabetes mellitus group, and resveratrol, 5 mg/kg/day, was given to the resveratrol+diabetes mellitus group via intraperitoneally for 3 weeks. Interleukin-1 beta, tumor necrosis factor alpha, histone H4, and ß-defensin 1 levels were measured in the blood of all rats. The lung, liver, and kidney tissue of all rats were performed as histopathological examinations. RESULTS:  Whereas there was no difference between the other groups (P >.05), interleukin-1 beta levels of the diabetes mellitus group were found to be significantly higher compared with the control group (5.02 ± 2.15 vs. 2.38 ± 0.72 ng/mL; P < .05). Whereas histone H4 levels of the diabetes mellitus group were higher compared with the control and resveratrol+diabetes mellitus groups (7.53 ± 3.30 vs. 2.97 ± 1.57 and 3.06 ± 1.57 ng/mL; P <.05), the ß-defensin 1 levels of the diabetes mellitus group were lower compared with control and resveratrol+diabetes mellitus groups (7.6 ± 2.8 vs. 21.6 ± 5.5 and 18.8 ± 7.4 ng/mL; P <.05). ß-Defensin 1 levels were moderately inversely correlated with interleukin-1 beta and histone H4 levels (rs > -0.50, P < .01). Histopathological changes found in favor of target cell damage in the diabetes mellitus group were not observed in resveratrol+diabetes mellitus group. CONCLUSION:  Resveratrol may be used as a biotherapeutic agent, which significantly reduces diabetes-induced histone H4 and interleukin-1 beta-mediated liver and other target organ damage.


Subject(s)
Diabetes Mellitus, Experimental , Histones , Interleukin-1beta , Liver , Resveratrol , beta-Defensins , Animals , Male , Rats , beta-Defensins/metabolism , Diabetes Mellitus, Experimental/drug therapy , Histones/metabolism , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Rats, Sprague-Dawley , Resveratrol/pharmacology , Tumor Necrosis Factor-alpha/blood
3.
BMC Vet Res ; 20(1): 357, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127630

ABSTRACT

BACKGROUND: Porcine beta defensin 2 (pBD2) is one of the porcine beta defensins that has antibacterial activity, and plays an important role in the immunomodulatory activity that protects cells from pathogens. It has been reported that pBD2 plays their immunomodulatory functions related to the TLR4-NF-κB signal pathways. However, it is not completely clear how pBD2 reduces the inflammatory response caused by pathogens. RESULTS: In this study, the effect of pBD2 on the expression of genes in the TLRs signaling pathway was investigated after IPEC-J2 cells were challenged with E. coli. The results showed that pBD2 decreased the expression of IL-8 induced by E. coli (P < 0.05), and pBD2 significantly decreased the expression of TLR4, TLR5 and TLR7 (P < 0.05), as well as the key downstream genes p38 and JNK which activated by E. coli (P < 0.05). In addition, pBD2 inhibited the p-p65, p-p38 and p-JNK which were up-regulated by E. coli. CONCLUSIONS: pBD2 could reduce the inflammatory response induced by E. coli perhaps by inhibiting the TLRs-TAK1-NF-κB/MAPK signaling pathway which was activated by E. coli in IPEC-J2 cells. Our study further reveals the immunomodulatory activity of recombinant pBD2 against E. coli, and provides insights into the molecular mechanisms that protect cells from E. coli infection.


Subject(s)
Escherichia coli , NF-kappa B , Toll-Like Receptors , beta-Defensins , Animals , beta-Defensins/metabolism , beta-Defensins/genetics , Swine , NF-kappa B/metabolism , Cell Line , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , MAP Kinase Signaling System/drug effects , Inflammation , Signal Transduction
4.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125034

ABSTRACT

Ellagic acid (EA) is a phenolic phytochemical found in many plants and their fruits. Vaginal epithelial cells are the first line of defense against pathogen invasion in the female reproductive tract and express antimicrobial peptides, including hBD2 and SLPI. This study investigated the in vitro effects of EA (1) on vaginal innate immunity using human vaginal epithelial cells, and (2) on HPV16 pseudovirus infection. Vaginal cells were cultured in the presence or absence of EA, and the expression of hBD2 and SLPI was determined at both transcriptional and translational levels. In addition, secretion of various cytokines and chemokines was measured. Cytotoxicity of EA was determined by CellTiter-blue and MTT assays. To investigate the ability of EA to inhibit HPV16 infection, EA was used to treat HEK-293FT cells in pre-attachment and adsorption steps. We found significant increases in both hBD2 mRNA (mean 2.9-fold at 12.5 µM EA, p < 0.001) and protein (mean 7.1-fold at 12.5 µM EA, p = 0.002) in response to EA. SLPI mRNA also increased significantly (mean 1.4-fold at 25 µM EA, p = 0.01), but SLPI protein did not. Secretion of IL-2 but not of other cytokines/chemokines was induced by EA in a dose-dependent manner. EA was not cytotoxic. At the pre-attachment step, EA at CC20 and CC50 showed a slight trend towards inhibiting HPV16 pseudovirus, but this was not significant. In summary, vaginal epithelial cells can respond to EA by producing innate immune factors, and at tested concentrations, EA is not cytotoxic. Thus, plant-derived EA could be useful as an immunomodulatory agent to improve vaginal health.


Subject(s)
Ellagic Acid , Human papillomavirus 16 , Immunity, Innate , Papillomavirus Infections , Vagina , Humans , Female , Ellagic Acid/pharmacology , Immunity, Innate/drug effects , Vagina/virology , Vagina/immunology , Vagina/drug effects , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Infections/drug therapy , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/immunology , beta-Defensins/metabolism , HEK293 Cells
5.
Mediators Inflamm ; 2024: 5821996, 2024.
Article in English | MEDLINE | ID: mdl-39045230

ABSTRACT

Background: Psoriasis is a noncontagious auto-inflammatory chronic skin disease. So far, some of the inflammatory genes were upregulated in mouse model of psoriasis. This study examined changes in skin mRNA expression of L-kynureninase (Kynu), cathelicidin antimicrobial peptide (Camp), beta-defensin 2 (Defb2), and proenkephalin (Penk) in a mouse model of imiquimod-induced psoriasis. Materials and Methods: Tree groups of C57BL/6 female mice were allocated. The imiquimod (IMQ) cream was administered to the mice dorsal skin of the two groups to induce psoriatic inflammation. In the treatment group, IMQ was administered 10 min after hydrogel-containing M7 anti-IL-17A aptamer treatment. Vaseline (Vas) was administered to the negative control group. The psoriatic skin lesions were evaluated based on the psoriasis area severity index (PASI) score, histopathology, and mRNA expression levels of Kynu, Camp, Defb2, and Penk using real-time PCR. In order to assess the systemic response, the spleen and lymph node indexes were also evaluated. Results: The PASI and epidermal thickness scores were 6.01 and 1.96, respectively, in the IMQ group, and they significantly decreased after aptamer administration to 1.15 and 0.90, respectively (P < 0.05). Spleen and lymph node indexes showed an increase in the IMQ group, followed by a slight decrease after aptamer treatment (P > 0.05). Additionally, the mRNA expression levels of Kynu, Defb2, Camp, and Penk genes in the IMQ-treated region showed a significant 2.70, 4.56, 3.29, and 2.61-fold increase relative to the Vas mice, respectively (P < 0.05). The aptamer-treated region exhibited a significant decrease in these gene expression levels (P < 0.05). A positive correlation was found between Kynu, Penk, and Camp expression levels and erythema, as well as Camp expression with PASI, scaling, and thickness (P < 0.05). Conclusion: According to our results, it seems that Kynu, Camp, and Penk can be considered appropriate markers for the evaluation of psoriasis in IMQ-induced psoriasis. Also, the anti-IL-17 aptamer downregulated these important genes in this mouse model.


Subject(s)
Cathelicidins , Disease Models, Animal , Enkephalins , Imiquimod , Mice, Inbred C57BL , Protein Precursors , Psoriasis , beta-Defensins , Psoriasis/chemically induced , Psoriasis/metabolism , Animals , Mice , Female , beta-Defensins/metabolism , beta-Defensins/genetics , Protein Precursors/metabolism , Protein Precursors/genetics , Enkephalins/metabolism , Enkephalins/genetics , Antimicrobial Cationic Peptides/metabolism , Skin/metabolism , Skin/pathology , Skin/drug effects , Biomarkers/metabolism
6.
Sci Rep ; 14(1): 15442, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965312

ABSTRACT

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Subject(s)
Epithelial Cells , Intestinal Mucosa , beta-Defensins , Humans , beta-Defensins/metabolism , beta-Defensins/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Signal Transduction , Gene Expression Regulation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , RNA Interference
7.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000442

ABSTRACT

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Subject(s)
Cell Membrane , Proton-Translocating ATPases , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/antagonists & inhibitors , Cell Membrane Permeability/drug effects , Anti-Infective Agents/pharmacology , Defensins/pharmacology , Defensins/metabolism , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/metabolism , beta-Defensins/metabolism , beta-Defensins/pharmacology , Lactoferrin/pharmacology , Lactoferrin/metabolism , Potassium/metabolism , Microbial Sensitivity Tests , Candida albicans/drug effects
8.
Mar Biotechnol (NY) ; 26(4): 696-715, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922559

ABSTRACT

Antimicrobial peptides (AMPs), including beta-defensin from fish, are a crucial class of peptide medicines. The focus of the current study is the molecular and functional attributes of CmDef, a 63-amino acid beta-defensin AMP from Malabar trevally, Carangoides malabaricus. This peptide demonstrated typical characteristics of AMPs, including hydrophobicity, amphipathic nature, and +2.8 net charge. The CmDef was recombinantly expressed and the recombinant peptide, rCmDef displayed a strong antimicrobial activity against bacterial fish pathogens with an MIC of 8 µM for V. proteolyticus and 32 µM for A. hydrophila. The E. tarda and V. harveyi showed an inhibition of 94% and 54%, respectively, at 32 µM concentration. No activity was observed against V. fluvialis and V. alginolyticus. The rCmDef has a multimode of action that exerts an antibacterial effect by membrane depolarization followed by membrane permeabilization and ROS production. rCmDef also exhibited anti-cancer activities in silico without causing hemolysis. The peptide demonstrated stability under various conditions, including different pH levels, temperatures, salts, and metal ions (KCl and CaCl2), and remained stable in the presence of proteases such as trypsin and proteinase K at concentrations up to 0.2 µg/100 µl. The strong antibacterial efficacy and non-cytotoxic nature suggest that rCmDef is a single-edged sword that can contribute significantly to aquaculture disease management.


Subject(s)
Recombinant Proteins , beta-Defensins , Animals , beta-Defensins/pharmacology , beta-Defensins/genetics , beta-Defensins/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/chemistry , Fish Proteins/pharmacology , Microbial Sensitivity Tests , Vibrio/drug effects , Amino Acid Sequence , Humans , Fish Diseases/microbiology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Hemolysis/drug effects
9.
PLoS Pathog ; 20(6): e1012316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905308

ABSTRACT

Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of ß-defensin-1, ß-defensin-3, and ß-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce ß-defensin expression.


Subject(s)
Citrobacter rodentium , Colon , Enterobacteriaceae Infections , Interleukin-17 , Jumonji Domain-Containing Histone Demethylases , Mice, Knockout , Up-Regulation , beta-Defensins , Animals , Mice , beta-Defensins/metabolism , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Interleukin-17/metabolism , Colon/metabolism , Colon/microbiology , Colon/pathology , Mice, Inbred C57BL , Colitis/metabolism , Colitis/microbiology , STAT3 Transcription Factor/metabolism
10.
Dev Comp Immunol ; 158: 105207, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38797458

ABSTRACT

Defensins are antimicrobial peptides involved in innate immunity, and gene number differs amongst eutherian mammals. Few studies have investigated defensins in marsupials, despite their potential involvement in immunological protection of altricial young. Here we use recently sequenced marsupial genomes and transcriptomes to annotate defensins in nine species across the marsupial family tree. We characterised 35 alpha and 286 beta defensins; gene number differed between species, although Dasyuromorphs had the largest repertoire. Defensins were encoded in three gene clusters within the genome, syntenic to eutherians, and were expressed in the pouch and mammary gland. Marsupial beta defensins were closely related to eutherians, however marsupial alpha defensins were more divergent. We identified marsupial orthologs of human DEFB3 and 6, and several marsupial-specific beta defensin lineages which may have novel functions. Marsupial predicted mature peptides were highly variable in length and sequence composition. We propose candidate peptides for future testing to elucidate the function of marsupial defensins.


Subject(s)
Marsupialia , Phylogeny , beta-Defensins , Animals , Marsupialia/genetics , Marsupialia/immunology , beta-Defensins/genetics , beta-Defensins/metabolism , Humans , Multigene Family , Immunity, Innate/genetics , Defensins/genetics , Defensins/metabolism , Transcriptome , Genome , alpha-Defensins/genetics , alpha-Defensins/metabolism , Amino Acid Sequence , Evolution, Molecular
11.
Microb Pathog ; 192: 106691, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759933

ABSTRACT

Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1ß, IL-6, IL-8, iNOS, and LITAF and avian ß-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.


Subject(s)
Animal Feed , Chickens , Clostridium Infections , Clostridium perfringens , Cytokines , Dietary Supplements , Enteritis , Poultry Diseases , Selenium , Animals , Enteritis/prevention & control , Enteritis/veterinary , Enteritis/immunology , Enteritis/microbiology , Selenium/pharmacology , Selenium/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Clostridium perfringens/immunology , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium Infections/immunology , Cytokines/metabolism , Bacterial Toxins/immunology , Necrosis , beta-Defensins/metabolism , Jejunum/drug effects , Jejunum/immunology , Jejunum/microbiology , Jejunum/pathology , Spleen/immunology , Yeasts , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Interleukin-1beta/metabolism , Antibodies, Bacterial/blood
12.
Cell Commun Signal ; 22(1): 267, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745232

ABSTRACT

Low sperm motility is a significant contributor to male infertility. beta-defensins have been implicated in host defence and the acquisition of sperm motility; however, the regulatory mechanisms governing their gene expression patterns and functions remain poorly understood. In this study, we performed single-cell RNA and spatial transcriptome sequencing to investigate the cellular composition of testicular and epididymal tissues and examined their gene expression characteristics. In the epididymis, we found that epididymal epithelial cells display a region specificity of gene expression in different epididymal segments, including the beta-defensin family genes. In particular, Defb15, Defb18, Defb20, Defb25 and Defb48 are specific to the caput; Defb22, Defb23 and Defb26 to the corpus; Defb2 and Defb9 to the cauda of the epididymis. To confirm this, we performed mRNA fluorescence in situ hybridisation (FISH) targeting certain exon region of beta-defensin genes, and found some of their expression matched the sequencing results and displayed a close connection with epididimosome marker gene Cd63. In addition, we paid attention to the Sertoli cells and Leydig cells in the testis, along with fibroblasts and smooth muscle cells in the epididymis, by demonstrating their gene expression profile and spatial information. Our study provides a single-cell and spatial landscape for analysing the gene expression characteristics of testicular and epididymal environments and has important implications for the study of spermatogenesis and sperm maturation.


Subject(s)
Epididymis , Single-Cell Analysis , Sperm Maturation , Transcriptome , beta-Defensins , Male , Animals , beta-Defensins/genetics , beta-Defensins/metabolism , Mice , Transcriptome/genetics , Sperm Maturation/genetics , Epididymis/metabolism , Spermatozoa/metabolism , Multigene Family , Mice, Inbred C57BL , Testis/metabolism
13.
Int J Mol Sci ; 25(8)2024 04 22.
Article in English | MEDLINE | ID: mdl-38674148

ABSTRACT

It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic.


Subject(s)
Anti-Bacterial Agents , Microbiota , Urinary Bladder Neoplasms , beta-Defensins , Humans , beta-Defensins/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Microbiota/drug effects , Male , Female , Middle Aged , Aged , Fosfomycin/therapeutic use , Fosfomycin/pharmacology , Fluoroquinolones/therapeutic use , Fluoroquinolones/pharmacology , beta-Lactams/therapeutic use , beta-Lactams/pharmacology
14.
Reprod Biol ; 24(2): 100887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688100

ABSTRACT

Human ß-defensins and interleukins may be auxiliary in sperm maturation. This cross-sectional study aimed to evaluate the expression of Human ß-defensins 1 and 2, interleukins (ILs)- 10 and -18 genes in sperm, as well as seminal plasma levels of these two cytokines in subfertile men with different types of sperm abnormalities compared to those with normozoospermic men. Participants were separated into two experimental groups: the control group (n = 25) and the group with sperm abnormalities (SA) (n = 45). SA participants were further subdivided into the following groups with n = 15 individuals each: Teratozoospermia (T), Asthenoteratozoospermia (AT), and Oligoasthenoteratozoospermia (OAT) groups. The quantitative real-time polymerase chain reaction was used to quantify the mRNA levels of hBDs 1 and 2, IL-10, and IL-18 in sperm. The seminal plasma concentrations of IL-10 and IL-18 were measured by using the enzyme-linked immunosorbent assay technique. The mRNA expression of hBD-1 and IL-10 showed a significant decrease in the OAT compared to the controls (P < 0.0001 and P = 0.02, respectively). The lowest seminal plasma concentration of IL-10 belonged to the OAT (P = 0.04). ROC curve analysis showed a sensitivity, specificity, and cutoff value of 82.35%, 86.67%, and 0.63 for hBD-1 levels, respectively. A positive and significant correlation was found between hBD-1 expression and sperm motility and IL-10 expression rate and normal sperm morphology.Therefore, hBD-1 could be considered as the alternative biomaterial to pre-treatments of infertile men with abnormal sperm parameters, specifically OAT men, which led to improving the assisted reproduction success rate.


Subject(s)
Infertility, Male , Sperm Motility , Spermatozoa , beta-Defensins , Humans , Male , beta-Defensins/metabolism , beta-Defensins/genetics , Infertility, Male/metabolism , Adult , Spermatozoa/metabolism , Cross-Sectional Studies , Semen/metabolism , Interleukin-10/metabolism
15.
J Nutr Biochem ; 129: 109637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574828

ABSTRACT

Adequate dietary L-tryptophan (Trp) governs intestinal homeostasis in piglets. However, the defensive role of Trp in the diet against enterotoxigenic Escherichia coli F4 (K88) in pigs is still poorly understood. Here, sixty (6.15 ± 1.52 kg, 24-day-old, Duroc × Landrace × Yorkshire) weaned piglets were used for an E. coli F4 attack test in a 2 × 2 factorial design. The growth (ADG, ADFI, GH), immune factors (IL-10, IgA, IgG, IgM), Trp metabolite 5-HT, intestinal morphology (jejunal and colonic VH), mRNA expression of ß-defensins (jejunal BD-127, BD-119, ileal BD-1, BD-127), and abundance of beneficial microorganisms in the colon (Prevotella 9, Lactobacillus, Phascolarctobacterium, Faecalibacterium) were higher in the piglets in the HT (High Trp) and HTK (High Trp, K88) groups than in the LT (Low Trp) and LTK (Low Trp, K88) groups (P<.05), while FCR, diarrhea rate, diarrhea index, serum Trp, Kyn, IDO, D-LA, ET, and abundance of harmful microorganisms in the colon (Spirochaetes, Fusobacteria, Prevotella, Christensenellaceae R7) were lower in the HT and HTK groups than in the LT and LTK groups (P<.05). High Trp reduced the expression of virulence genes (K88 and LT) after E. coli F4 attack (P<.05). The IL-6, TNF-α was lower in the HTK group than in the LT, LTK group (P<.05). In short, a diet containing 0.35% Trp protected piglets from enterotoxigenic E. coli F4 (K88) via Trp metabolism promoting BD expression in the intestinal mucosa, which improved growth and intestinal health.


Subject(s)
Enterotoxigenic Escherichia coli , Tryptophan , Weaning , beta-Defensins , Animals , Tryptophan/metabolism , Swine , beta-Defensins/metabolism , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Intestines/microbiology , Animal Feed , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Diet/veterinary
16.
Equine Vet J ; 56(4): 670-677, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38430069

ABSTRACT

BACKGROUND: Endometritis is a major cause of subfertility in mares. Multiparous old mares are more susceptible to developing endometritis given that ageing is associated with an altered immune response and with inadequate physiological uterine clearance after breeding, which can lead to degenerative changes in the endometrium. Molecules such as antimicrobial peptides (AMPs) have been proposed as endometritis markers in the equine species. STUDY DESIGN: Cross-sectional. OBJECTIVES: To investigate the endometrial expression of defensin-beta 4B (DEFB4B), lysozyme (LYZ) and secretory leukocyte peptidase inhibitor (SLPI) genes in mares either affected or not by subclinical endometritis, due to the role of these AMPs in the immune response to bacteria and inflammatory reactions. METHODS: Endometrial biopsy for histopathological and gene expression examinations was performed on 26 mares. The inclusion criteria for the normal mare group (NM, N = 7) were 2-4 years of age, maiden status, no clinical signs of endometritis and a uterine biopsy score of I, while for mares affected by subclinical endometritis (EM, N = 19) the inclusion criteria were 10-22 years of age, barren status for 1-3 years, no clinical signs of endometritis and a uterine biopsy score between IIA and III. RESULTS: A significantly higher expression of LYZ (NM: 0.76 [1.84-0.37] vs. EM: 2.78 [5.53-1.44], p = 0.0255) and DEFB4B (NM: 0.06 [0.11-0.01] vs. EM: 0.15 [0.99-0.08], p = 0.0457) genes was found in endometritis mares versus normal mares. Statistically significant moderate positive correlations were found between the level of expression of LYZ gene and both the age (r = 0.4071, p = 0.039) and the biopsy grade (r = 0.4831, p = 0.0124) of the mares. MAIN LIMITATIONS: The study investigated a limited number of genes and mares, and the presence/location of the proteins coded by these genes was not confirmed within the endometrium by IHC. CONCLUSIONS: If the results of this study are confirmed, LYZ and DEFB4B genes can be used as markers to identify mares that are affected by subclinical endometritis.


Subject(s)
Antimicrobial Peptides , Biomarkers , Endometritis , Endometrium , Gene Expression Regulation , Horse Diseases , Animals , Female , Horses , Horse Diseases/metabolism , Endometritis/veterinary , Endometritis/metabolism , Endometritis/pathology , Endometrium/metabolism , Endometrium/pathology , Biomarkers/metabolism , Antimicrobial Peptides/genetics , Cross-Sectional Studies , beta-Defensins/genetics , beta-Defensins/metabolism
17.
Cell Rep Med ; 5(3): 101447, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38442713

ABSTRACT

There is an unmet clinical need for a non-invasive and cost-effective test for oral squamous cell carcinoma (OSCC) that informs clinicians when a biopsy is warranted. Human beta-defensin 3 (hBD-3), an epithelial cell-derived anti-microbial peptide, is pro-tumorigenic and overexpressed in early-stage OSCC compared to hBD-2. We validate this expression dichotomy in carcinoma in situ and OSCC lesions using immunofluorescence microscopy and flow cytometry. The proportion of hBD-3/hBD-2 levels in non-invasively collected lesional cells compared to contralateral normal cells, obtained by ELISA, generates the beta-defensin index (BDI). Proof-of-principle and blinded discovery studies demonstrate that BDI discriminates OSCC from benign lesions. A multi-center validation study shows sensitivity and specificity values of 98.2% (95% confidence interval [CI] 90.3-99.9) and 82.6% (95% CI 68.6-92.2), respectively. A proof-of-principle study shows that BDI is adaptable to a point-of-care assay using microfluidics. We propose that BDI may fulfill a major unmet need in low-socioeconomic countries where pathology services are lacking.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , beta-Defensins , Humans , Mouth Neoplasms/diagnosis , Mouth Neoplasms/pathology , beta-Defensins/analysis , beta-Defensins/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Biomarkers , Squamous Cell Carcinoma of Head and Neck
18.
BMC Pediatr ; 24(1): 183, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491401

ABSTRACT

BACKGROUND: This study aimed to assess the diagnostic potential of serum intestinal fatty acid-binding protein (I-FABP), fecal calprotectin (FC), and fecal human ß-defensin 2 (hBD2) in predicting necrotizing enterocolitis (NEC) in preterm infants. METHODS: A prospective cohort of neonates with a gestational age < 32 weeks, suspected of NEC, was enrolled between June 2021 and December 2022. Serum I-FABP, FC, and fecal hBD2 levels were measured upon NEC suspicion, and diagnosis was confirmed through radiological examination or surgical intervention. Diagnostic precision of serum I-FABP, FC, and fecal hBD2 was assessed using a logistic regression model with multiple variables. RESULTS: The study included 70 neonates (45 males, 25 females), with 30 developing NEC (40% Stage III, n = 12; 60% Stage II, n = 18) and 40 in the control group. NEC patients exhibited significantly higher serum I-FABP and FC levels (4.76 ng/mL and 521.56 µg/g feces, respectively) than those with other diagnoses (1.38 ng/mL and 213.34 µg/g feces, respectively; p ˂ 0.05 for both biomarkers). Stage II NEC neonates showed elevated fecal hBD2 levels (376.44 ng/g feces) than Stage III NEC neonates and controls (336.87 ng/g and 339.86 ng/g feces, respectively; p ˂ 0.05). No such increase was observed in infants progressing to Stage III NEC. Using a serum I-FABP threshold of > 2.54 ng/mL yielded 76.7% sensitivity, 87.5% specificity, 82.1% positive predictive value (PPV), and 83.3% negative predictive value (NPV). For FC (cutoff > 428.99 µg/g feces), corresponding values were 76.7% sensitivity, 67.5% specificity, 63.9% PPV, and 79.4% NPV. CONCLUSION: Serum I-FABP and FC levels are valuable for early NEC detection and provide insights into disease severity. Low fecal hBD2 levels suggest an inadequate response to luminal bacteria, potentially rendering these infants more susceptible to NEC development or exacerbation.


Subject(s)
Enterocolitis, Necrotizing , Infant, Newborn, Diseases , beta-Defensins , Male , Infant , Female , Infant, Newborn , Humans , Infant, Premature , Enterocolitis, Necrotizing/metabolism , Leukocyte L1 Antigen Complex/metabolism , beta-Defensins/metabolism , Prospective Studies , Fatty Acid-Binding Proteins , Feces , Biomarkers/metabolism
19.
Physiol Rep ; 12(3): e15945, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328863

ABSTRACT

Antimicrobial peptides (AMPs) constitute a complex network of 10-100 amino acid sequence molecules widely distributed in nature. While over 300 AMPs have been described in mammals, cathelicidins and defensins remain the most extensively studied. Some publications have explored the role of AMPs in COVID-19, but these findings are preliminary, and in vivo studies are still lacking. In this study, we report the plasma levels of five AMPs (LL-37, α-defensin 1, α-defensin 3, ß-defensin 1, and ß-defensin 3), using the ELISA technique (MyBioSource, San Diego, CA, United States, kits MBS2601339 (beta-defensin 1), MBS2602513 (beta-defensin 3), MBS703879 (alpha-defensin 1), MBS706289 (alpha-defensin 3), MBS7234921 (LL37)), and the measurement of six cytokines (tumor necrosis factor-α, interleukin-1ß, interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1), through the magnetic bead immunoassay Milliplex® and the MAGPIX® System (MilliporeSigma, Darmstadt, Germany, kit HCYTOMAG-60 K (cytokines)), in 15 healthy volunteers, 36 COVID-19 patients without Acute Kidney Injury (AKI) and 17 COVID-19 patients with AKI. We found increased levels of α-defensin 1, α-defensin 3 and ß-defensin 3, in our COVID-19 population, when compared to healthy controls, along with higher levels of interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1. These findings suggest that these AMPs and cytokines may play a crucial role in the systemic inflammatory response and tissue damage characterizing severe COVID-19. The levels of α-defensin 1 and α-defensin 3 were significantly higher in COVID-19 AKI group in comparison to the non-AKI group. Furthermore, IL-10 and the product IL-10 × IL-1B showed excellent performance in discriminating AKI, with AUCs of 0.86 and 0.88, respectively. Among patients with COVID-19, AMPs may play a key role in the inflammation process and disease progression. Additionally, α-defensin 1 and α-defensin 3 may mediate the AKI process in these patients, representing an opportunity for further research and potential therapeutic alternatives in the future.


Subject(s)
Acute Kidney Injury , COVID-19 , alpha-Defensins , beta-Defensins , Animals , Humans , beta-Defensins/metabolism , Interleukin-10 , Antimicrobial Cationic Peptides/metabolism , Chemokine CCL2 , SARS-CoV-2/metabolism , Antimicrobial Peptides , Interleukin-6 , Interferon-gamma , Critical Illness , Cytokines/metabolism , Biomarkers , Acute Kidney Injury/diagnosis , Mammals/metabolism
20.
J Immunol Res ; 2024: 6622950, 2024.
Article in English | MEDLINE | ID: mdl-38314088

ABSTRACT

Our research addresses the critical environmental issue of a fine particulate matter (PM2.5), focusing on its association with the increased infection risks. We explored the influence of PM2.5 on human beta-defensin 1 (HBD1), an essential peptide in mucosal immunity found in the airway epithelium. Using C57BL/6J mice and human bronchial epithelial cells (HBE), we examined the effects of PM2.5 exposure followed by Pseudomonas aeruginosa (P. aeruginosa) infection on HBD1 expression at both mRNA and protein levels. The study revealed that PM2.5's toxicity to epithelial cells and animals varies with time and concentration. Notably, HBE cells exposed to PM2.5 and P. aeruginosa showed increased bacterial invasion and decreased HBD1 expression compared to the cells exposed to P. aeruginosa alone. Similarly, mice studies indicated that combined exposure to PM2.5 and P. aeruginosa significantly reduced survival rates and increased bacterial invasion. These harmful effects, however, were alleviated by administering exogenous HBD1. Furthermore, our findings highlight the activation of MAPK and NF-κB pathways following PM2.5 exposure. Inhibiting these pathways effectively increased HBD1 expression and diminished bacterial invasion. In summary, our study establishes that PM2.5 exposure intensifies P. aeruginosa invasion in both HBE cells and mouse models, primarily by suppressing HBD1 expression. This effect can be counteracted with exogenous HBD1, with the downregulation mechanism involving the MAPK and NF-κB pathways. Our study endeavors to elucidate the pathogenesis of lung infections associated with PM2.5 exposure, providing a novel theoretical basis for the development of prevention and treatment strategies, with substantial clinical significance.


Subject(s)
NF-kappa B , beta-Defensins , Humans , Mice , Animals , NF-kappa B/metabolism , beta-Defensins/genetics , beta-Defensins/metabolism , Mice, Inbred C57BL , Lung/pathology , Particulate Matter/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL