Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.542
Filter
1.
BMC Infect Dis ; 24(1): 817, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134941

ABSTRACT

BACKGROUND: In the hospital environment, carbapenemase-producing Pseudomonas aeruginosa (CPPA) may lead to fatal patient infections. However, the transmission routes of CPPA often remain unknown. Therefore, this case study aimed to trace the origin of CPPA ST357, which caused a hospital-acquired pneumonia in a repatriated critically ill patient suffering from Guillain-Barré Syndrome in 2023. METHODS: Antimicrobial susceptibility of the CPPA isolate for 30 single and combination therapies was determined by disk-diffusion, Etest or broth microdilution. Whole-genome sequencing was performed for three case CPPA isolates (one patient and two sinks) and four distinct CPPA ST357 patient isolates received in the Dutch CPPA surveillance program. Furthermore, 193 international P. aeruginosa ST357 assemblies were collected via three genome repositories and analyzed using whole-genome multi-locus sequence typing in combination with antimicrobial resistance gene (ARG) characterization. RESULTS: A Dutch patient who carried NDM-1-producing CPPA was transferred from Kenya to the Netherlands, with subsequent dissemination of CPPA isolates to the local sinks within a month after admission. The CPPA case isolates presented an extensively drug-resistant phenotype, with susceptibility only for colistin and cefiderocol-fosfomycin. Phylogenetic analysis showed considerable variation in allelic distances (mean = 150, max = 527 alleles) among the ST357 isolates from Asia (n = 92), Europe (n = 58), Africa (n = 21), America (n = 16), Oceania (n = 2) and unregistered regions (n = 4). However, the case isolates (n = 3) and additional Dutch patient surveillance program isolates (n = 2) were located in a sub-clade of isolates from Kenya (n = 17; varying 15-49 alleles), the United States (n = 7; 21-115 alleles) and other countries (n = 6; 14-121 alleles). This was consistent with previous hospitalization in Kenya of 2/3 Dutch patients. Additionally, over half of the isolates (20/35) in this sub-clade presented an identical resistome with 9/17 Kenyan, 5/5 Dutch, 4/7 United States and 2/6 other countries, which were characterized by the blaNDM-1, aph(3')-VI, ARR-3 and cmlA1 ARGs. CONCLUSION: This study presents an extensively-drug resistant subclone of NDM-producing P. aeruginosa ST357 with a unique resistome which was introduced to the Netherlands via repatriation of critically ill patients from Kenya. Therefore, the monitoring of repatriated patients for CPPA in conjunction with vigilance for the risk of environmental contamination is advisable to detect and prevent further dissemination.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Whole Genome Sequencing , beta-Lactamases , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/enzymology , Netherlands/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Pseudomonas Infections/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Kenya/epidemiology , Multilocus Sequence Typing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Male
2.
Nat Commun ; 15(1): 6969, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138200

ABSTRACT

Bloodstream infections caused by the opportunistic pathogen Klebsiella pneumoniae are associated with adverse health complications and high mortality rates. Antimicrobial resistance (AMR) limits available treatment options, thus exacerbating its public health and clinical burden. Here, we aim to elucidate the population structure of K. pneumoniae in bloodstream infections from a single medical center and the drivers that facilitate the dissemination of AMR. Analysis of 136 short-read genome sequences complemented with 12 long-read sequences shows the population consisting of 94 sequence types (STs) and 99 clonal groups, including globally distributed multidrug resistant and hypervirulent clones. In vitro antimicrobial susceptibility testing and in silico identification of AMR determinants reveal high concordance (90.44-100%) for aminoglycosides, beta-lactams, carbapenems, cephalosporins, quinolones, and sulfonamides. IncF plasmids mediate the clonal (within the same lineage) and horizontal (between lineages) transmission of the extended-spectrum beta-lactamase gene blaCTX-M-15. Nearly identical plasmids are recovered from isolates over a span of two years indicating long-term persistence. The genetic determinants for hypervirulence are carried on plasmids exhibiting genomic rearrangement, loss, and/or truncation. Our findings highlight the importance of considering both the genetic background of host strains and the routes of plasmid transmission in understanding the spread of AMR in bloodstream infections.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/pathogenicity , Plasmids/genetics , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/transmission , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Bacteremia/microbiology , Bacteremia/transmission , Virulence/genetics , Carbapenems/pharmacology
3.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125939

ABSTRACT

The extended-spectrum ß-lactamases (ESßLs) are bacterial enzymes capable of hydrolyzing penicillins, cephalosporins, and aztreonam. The prevalence of ESßL is increasing among clinically significant microorganisms worldwide, drastically reducing the therapeutic management of infectious diseases. The study aimed to determine the drug susceptibility of ESßL-positive clinical isolates acquired from patients hospitalized in Lodz, central Poland, and analyze the prevalence of specific genes, determining acquired resistance in these bacteria. The samples of ESßL-positive clinical isolates were gathered in 2022 from medical microbiological laboratories in the city of Lodz, central Poland. The strains were subjected to biochemical identification and antimicrobial susceptibility testing following EUCAST guidelines. The presence of studied genes (blaCTX-M, blaSHV, blaTEM, blaPER, blaVEB) was confirmed by PCR. Over 50% of studied isolates were resistant to gentamicin, cefepime, ceftazidime and ciprofloxacin. The most common ESßL gene was blaCTX-M. In most isolates, the resistance genes occurred simultaneously. The blaPER was not detected in any of the tested strains. ESßL-producing strains are largely susceptible to the currently available antibiotics. The observation of the coexistence of different genes in most clinical isolates is alarming.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Poland/epidemiology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Molecular Epidemiology , Male , Female , Adult , Middle Aged , Ciprofloxacin/pharmacology
4.
BMC Infect Dis ; 24(1): 812, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134953

ABSTRACT

BACKGROUND: Infections resulting from multidrug-resistant Enterobacterales (MDR-E) pose a growing global threat, presenting challenges in treatment and contributing significantly to morbidity and mortality rates. The main objective of this study was to characterize phenotypically and genetically extended-spectrum ß-lactamase- and carbapenemase- producing Enterobacterales (ESBLE and CPE respectively) isolated from clinical samples in the West Bank, Palestine. METHODS: A cross sectional study was conducted in October 2023 on clinical bacterial isolates collected from five governmental hospitals in the West Bank, Palestine. The isolates obtained from the microbiology laboratories of the participating hospitals, underwent identification and antibiotic susceptibility testing (AST) using the VITEK® 2 Compact system. ESBL production was determined by the Vitek2 Compact system. A modified carbapenem inactivation method (mCIM) was employed to identify carbapenemase-producing Enterobacterales (CPE). Resistance genes were detected by real-time PCR. RESULTS: Out of the total 1380 collected isolates, we randomly selected 600 isolates for analysis. Our analysis indicated that 287 (47.83%) were extended-spectrum beta-lactamase producers (ESBLE), and 102 (17%) as carbapenem-resistant Enterobacterales (CRE) isolates. A total of 424 isolates (70.67%) were identified as multidrug-resistant Enterobacterales (MDRE). The most prevalent ESBL species were K. pneumoniae (n = 124; 43.2%), E. coli (n = 119; 41.5%) and E. cloacae (n = 31; 10.8%). Among the CRE isolates, 85 (83.33%) were carbapenemase-producing Enterobacterales (CPE). The most frequent CRE species were K. pneumoniae (n = 63; 61.7%), E. coli (n = 25; 24.5%) and E. cloacae (n = 13; 12.8%). Additionally, 47 (7.83%) isolates exhibited resistance to colistin (CT), with 38 (37.62%) being CT-resistant CRE and 9 (3.14%) being CT-resistant ESBLE while sensitive to carbapenems. We noticed that 11 isolates (6 Klebsiella pneumoniae and 5 Enterobacter cloacae complex) demonstrated sensitivity to carbapenems by phenotype but carried silent CPE genes (1 blaOXA48, and 6 blaNDM, 4 blaOXA48, blaNDM). ESBL-producing Enterobacterales strains exhibited varied resistance patterns across different antibiotic classes. E. coli isolates showed notable 48% resistance to trimethoprim/sulfamethoxazole. K. pneumoniae isolates displayed a significant resistance to trimethoprim/sulfamethoxazole, nitrofurantoin, and fosfomycin (54%, 90%, and 70% respectively). E. cloacae isolates showed complete resistance to nitrofurantoin and fosfomycin. P. mirabilis isolates exhibited high resistance against fluoroquinolones (83%), and complete resistance to trimethoprim/sulfamethoxazole, nitrofurantoin and fosfomycin. CONCLUSION: This study showed the high burden of the ESBLE and CRE among the samples collected from the participating hospitals. The most common species were K. pneumoniae and E. coli. There was a high prevalence of blaCTXm. Adopting both conventional and molecular techniques is essential for better surveillance of the emergence and spread of antimicrobial-resistant Enterobacterales infections in Palestine.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Humans , beta-Lactamases/genetics , Cross-Sectional Studies , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Middle East/epidemiology , Female , Adult , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/enzymology , Male , Middle Aged , Phenotype , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Young Adult , Adolescent , Aged , Child , Carbapenems/pharmacology , Child, Preschool
5.
BMC Genomics ; 25(1): 774, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118048

ABSTRACT

BACKGROUND: Pseudomonas juntendi is a newly identified opportunistic pathogen, of which we have limited understanding. P. juntendi strains are often multidrug resistant, which complicates clinical management of infection. METHODS: A strain of Pseudomonas juntendi (strain L4326) isolated from feces was characterized by MALDI-TOF-MS and Average Nucleotide Identity BLAST. This strain was further subject to whole-genome sequencing and Maximum Likelihood phylogenetic analysis. The strain was phenotypically characterized by antimicrobial susceptibility testing and conjugation assays. RESULTS: We have isolated the novel P. juntendi strain L4236, which was multidrug resistant, but retained sensitivity to amikacin. L4236 harbored a megaplasmid that encoded blaOXA-1 and a novel blaIMP-1 resistance gene variant. P. juntendi strain L4236 was phylogenetically related to P. juntendi strain SAMN30525517. CONCLUSION: A rare P. juntendi strain was isolated from human feces in southern China with a megaplasmid coharboring blaIMP-1-like and blaOXA-1. Antimicrobial selection pressures may have driven acquisition of drug-resistance gene mutations and carriage of the megaplasmid.


Subject(s)
Drug Resistance, Multiple, Bacterial , Phylogeny , Plasmids , Pseudomonas , beta-Lactamases , Pseudomonas/genetics , Pseudomonas/isolation & purification , Plasmids/genetics , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , China , Humans , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , Feces/microbiology , Chromosomes, Bacterial/genetics , Genome, Bacterial
6.
Microb Cell Fact ; 23(1): 221, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118086

ABSTRACT

ß-lactam resistance is a significant global public health issue. Outbreaks of bacteria resistant to extended-spectrum ß-lactams and carbapenems are serious health concerns that not only complicate medical care but also impact patient outcomes. The primary objective of this work was to express and purify two soluble recombinant representative serine ß­lactamases using Escherichia coli strain as an expression host and pET101/D as a cloning vector. Furthermore, a second objective was to evaluate the potential, innovative, and safe use of galloylquinic acid (GQA) from Copaifera lucens as a potential ß-lactamase inhibitor.In the present study, blaCTX-M-15 and blaKPC-2 represented genes encoding for serine ß-lactamases that were cloned from parent isolates of E. coli and K. pneumoniae, respectively, and expression as well as purification were performed. Moreover, susceptibility results demonstrated that recombinant cells became resistant to all test carbapenems (MICs; 64-128 µg/mL) and cephalosporins (MICs; 128-512 µg/mL). The MICs of the tested ß-lactam antibiotics were determined in combination with 4 µg/mL of GQA, clavulanic acid, or tazobactam against E. coli strains expressing CTX-M-15 or KPC-2-ß-lactamases. Interestingly, the combination with GQA resulted in an important reduction in the MIC values by 64-512-fold to the susceptible range with comparable results for other reference inhibitors. Additionally, the half-maximal inhibitory concentration of GQA was determined using nitrocefin as a ß-lactamase substrate. Data showed that the test agent was similar to tazobactam as an efficient inhibitors of the test enzymes, recording smaller IC50 values (CTX-M-15; 17.51 for tazobactam, 28.16 µg/mL for GQA however, KPC-2; 20.91 for tazobactam, 24.76 µg/mL for GQA) compared to clavulanic acid. Our work introduces GQA as a novel non-ß-lactam inhibitor, which interacts with the crucial residues involved in ß-lactam recognition and hydrolysis by non-covalent interactions, complementing the enzyme's active site. GQA markedly enhanced the potency of ß-lactams against carbapenemase and extended-spectrum ß-lactamase-producing strains, reducing the MICs of ß-lactams to the susceptible range. The ß-lactamase inhibitory activity of GQA makes it a promising lead molecule for the development of more potent ß-lactamase inhibitors.


Subject(s)
Escherichia coli , Microbial Sensitivity Tests , beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/genetics , beta-Lactamase Inhibitors/pharmacology , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/antagonists & inhibitors , Carbapenems/pharmacology
7.
Environ Sci Technol ; 58(32): 14421-14438, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39101763

ABSTRACT

Escherichia coli, both commensal and pathogenic, can colonize plants and persist in various environments. It indicates fecal contamination in water and food and serves as a marker of antimicrobial resistance. In this context, 61 extended-spectrum ß-lactamase (ESBL)-producing E. coli from irrigation water and fresh produce from previous studies were characterized using whole genome sequencing (Illumina MiSeq). The Center for Genomic Epidemiology and Galaxy platforms were used to determine antimicrobial resistance genes, virulence genes, plasmid typing, mobile genetic elements, multilocus sequence typing (MLST), and pathogenicity prediction. In total, 19 known MLST groups were detected among the 61 isolates. Phylogroup B1 (ST58) and Phylogroup E (ST9583) were the most common sequence types. The six ST10 (serotype O101:H9) isolates carried the most resistance genes, spanning eight antibiotic classes. Overall, 95.1% of the isolates carried resistance genes from three or more classes. The blaCTX-M-1, blaCTX-M-14, and blaCTX-M-15 ESBL genes were associated with mobile genetic elements, and all of the E. coli isolates showed a >90% predicted probability of being a human pathogen. This study provided novel genomic information on environmental multidrug-resistant ESBL-producing E. coli from fresh produce and irrigation water, highlighting the environment as a reservoir for multidrug-resistant strains and emphasizing the need for ongoing pathogen surveillance within a One Health context.


Subject(s)
Escherichia coli , beta-Lactamases , Escherichia coli/genetics , beta-Lactamases/genetics , South Africa , Agricultural Irrigation , Cross-Sectional Studies , Multilocus Sequence Typing , Genomics , Water Microbiology
8.
BMC Microbiol ; 24(1): 240, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961341

ABSTRACT

OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.


Subject(s)
CRISPR-Cas Systems , Conjugation, Genetic , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics , DNA Restriction-Modification Enzymes/genetics , China , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , Humans , Genome, Bacterial/genetics
9.
J Korean Med Sci ; 39(25): e208, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952349

ABSTRACT

A 30-year-old Korean man with myelodysplastic syndrome admitted hospital due to undifferentiated fever and recurrent skin lesions. He received combination therapy with high doses of meropenem, tigecycline and amikacin, yielding carbapenem resistant Klebsiella pneumoniae (CRKP) harboring K. pneumoniae carbapenemase (KPC)-2 from blood cultures on hospital day (HD) 23. Ceftazidime/avibactam was started at HD 37 and CRKP was eradicated from blood cultures after 5 days. However, ceftazidime/avibactam-resistant CRKP carrying KPC-44 emerged after 26 days of ceftazidime/avibactam treatment and then ceftazidime/avibactam-resistant, carbapenem-susceptible K. pneumoniae carrying KPC-135 was isolated on HD 65. The 3-D homology of KPC protein showed that hot spot changes in the omega loop could be attributed to ceftazidime/avibactam resistance and loss of carbapenem resistance. Whole genome sequencing of serial isolates supported that phenotypic variation was due to clonal evolution than clonal replacement. The treatment regimen was changed from CAZ/AVI to meropenem-based therapy (meropenem 1 g iv q 8 hours and amikacin 600 mg iv per day) starting with HD 72. CAZ/AVI-susceptible CRKP was presented again from blood cultures on HD 84, and the patient expired on HD 85. This is the first Korean report on the acquisition of ceftazidime/avibactam resistance through the emergence of blaKPC variants.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacteremia , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Male , Azabicyclo Compounds/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/therapeutic use , Meropenem/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
10.
J Infect Dev Ctries ; 18(6): 900-908, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38990990

ABSTRACT

INTRODUCTION: Vibrio parahaemolyticus is a common pathogen that can cause seafood-borne gastroenteritis in humans. We determined the prevalence and characteristics of V. parahaemolyticus isolated from clinical specimens and oysters in Thailand. METHODOLOGY: Isolates of V. parahaemolyticus from clinical specimens (n = 77) and oysters (n = 224) were identified by biochemical testing, polymerase chain reaction (PCR) assays, and serotyping. The toxin genes, antimicrobial resistance, and ß-lactamase production were determined. RESULTS: A total of 301 isolates were confirmed as V. parahaemolyticus by PCR using specific primers for the toxR gene. The majority of clinical isolates carried the tdh+/trh- genotype (82.1%), and one of each isolate was tdh-/trh+ and tdh+/trh+ genotypes. One isolate from oyster contained the tdh gene and another had the trh gene. Twenty-six serotypes were characterized among these isolates, and O3:K6 was the most common (37.7%), followed by OUT:KUT, and O4:K9. In 2010, most clinical and oyster isolates were susceptible to antibiotics, with the exception of ampicillin. In 2012, clinical isolates were not susceptible to cephalothin (52.4%), streptomycin (95.2%), amikacin (66.6%), kanamycin (61.9%), and erythromycin (95.2%), significantly more frequently than in 2010. More than 95% of isolates that were not susceptible to ampicillin produced ß-lactamase enzymes. CONCLUSIONS: We found toxin genes in two oyster isolates, and the clinical isolates that were initially determined to be resistant to several antibiotics. Toxin genes and antimicrobial susceptibility profiles of V. parahaemolyticus from seafood and environment should be continually monitored to determine the spread of toxin and antimicrobial resistance genes.


Subject(s)
Ostreidae , Vibrio Infections , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/classification , Thailand/epidemiology , Ostreidae/microbiology , Humans , Animals , Vibrio Infections/microbiology , Vibrio Infections/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Serotyping , Polymerase Chain Reaction , Prevalence , Genotype , Drug Resistance, Bacterial/genetics , Bacterial Toxins/genetics , Male , Adult , Female , Middle Aged
11.
J Infect Dev Ctries ; 18(6): 943-949, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38991000

ABSTRACT

INTRODUCTION: Our goal was to investigate the antimicrobial resistance due to beta-lactamase genes and virulent determinants (biofilm-forming ability) expressed by Acinetobacter collected from health settings in Pakistan. A cross-sectional study was conducted for the molecular characterization of carbapenemases and biofilm-producing strains of Acinetobacter spp. METHODOLOGY: Two twenty-three imipenem-resistant Acinetobacter isolates were analyzed from 2020 to 2023.The combination disk test and modified hodge test were performed. Biofilm forming ability was determined by polystyrene tube assay. Multiplex polymerase chain reaction (PCR) for virulent and biofilm-forming genes, and 16S rRNA sequencing were performed. RESULTS: 118 (52.9%) carbapenem-resistant Acinetobacter (CR-AB) were isolated from wounds and pus, 121 (54.2%) from males, and 92 (41.2%) from 26-50-years-olds. More than 80% of strains produced ß-lactamases and carbapenemases. Based on the PCR amplification of the ITS gene, 174 (78.0%) CR-AB strains were identified from CR-Acinetobacter non-baumannii (ANB). Most CR-AB were strong and moderate biofilm producers. Genetic analysis revealed the blaOXA-23, blaTEM, blaCTX-M blaNDM-1 and blaVIM were prevalent in CR-AB with frequencies 91 (94.8%), 68 (70.8%), 19 (19.7%), 53 (55.2%), 2 (2.0%) respectively. Among virulence genes, OmpA was dominant in CR-AB isolates from wound (83, 86.4%), csuE 63 (80.7%) from non-wound specimens and significantly correlated with blaNDM and blaOXA genes. Phylogenetic analysis revealed three different clades for strains based on specimens. CONCLUSIONS: CR-AB was highly prevalent in Pakistan and associated with wound infections. The genes, blaOXA-23, blaTEM, blaCTX-M, and blaNDM-1 were detected in CR-AB. Most CR-AB were strong biofilm producers with virulent genes OmpA and csuE.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Carbapenems , beta-Lactamases , Biofilms/growth & development , beta-Lactamases/genetics , Humans , Pakistan , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Male , Cross-Sectional Studies , Adult , Middle Aged , Female , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Microbial Sensitivity Tests , Young Adult , Bacterial Proteins/genetics , Adolescent
12.
Ann Clin Microbiol Antimicrob ; 23(1): 61, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965586

ABSTRACT

OBJECTIVES: The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of ß-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health. METHODS: One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the ß-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes. RESULTS: Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were ß-lactamase producers with the blaTEM as the most predominant ß-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively). CONCLUSION: The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.


Subject(s)
Anti-Bacterial Agents , Cefepime , Chickens , Colistin , Drug Resistance, Multiple, Bacterial , Levofloxacin , Microbial Sensitivity Tests , Salmonella enterica , Serogroup , Animals , Egypt , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Colistin/pharmacology , Levofloxacin/pharmacology , Cefepime/pharmacology , beta-Lactamases/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Salmonella Infections, Animal/microbiology , Humans
13.
Nat Commun ; 15(1): 5811, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987310

ABSTRACT

Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli Proteins , Extraintestinal Pathogenic Escherichia coli , Phylogeny , Swine Diseases , Animals , Swine , China/epidemiology , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Humans , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Genome, Bacterial/genetics , Whole Genome Sequencing , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , beta-Lactamases/genetics
14.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987681

ABSTRACT

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Virulence Factors , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Egypt , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genome, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics
15.
Front Cell Infect Microbiol ; 14: 1410921, 2024.
Article in English | MEDLINE | ID: mdl-39015336

ABSTRACT

Objective: The emergence of clinical Klebsiella pneumoniae strains harboring acrAB-tolC genes in the chromosome, along with the presence of two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65 genes on a plasmid, has presented a significant clinical challenge. Methods: In order to study the detailed genetic features of K. pneumoniae strain SC35, both the bacterial chromosome and plasmids were sequenced using Illumina and nanopore platforms. Furthermore, bioinformatics methods were employed to analyze the mobile genetic elements associated with antibiotic resistance genes. Results: K. pneumoniae strain SC35 was found to possess a class A beta-lactamase and demonstrated resistance to all tested antibiotics. This resistance was attributed to the presence of efflux pump genes, specifically acrAB-tolC, on the SC35 chromosome. Additionally, the SC35 plasmid p1 carried the two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65, as well as bla TEM-1 with rmtB, which shared overlapping structures with mobile genetic elements as In413, Tn3, and TnAs3. Through plasmid transfer assays, it was determined that the SC35 plasmid p1 could be successfully transferred with an average conjugation frequency of 6.85 × 10-4. Conclusion: The structure of the SC35 plasmid p1 appears to have evolved in correlation with other plasmids such as pKPC2_130119, pDD01754-2, and F4_plasmid pA. The infectious strain SC35 exhibits no susceptibility to tested antibioticst, thus effective measures should be taken to prevent the spread and epidemic of this strain.


Subject(s)
Anti-Bacterial Agents , Chromosomes, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Plasmids , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Plasmids/genetics , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Interspersed Repetitive Sequences/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
16.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1041-1047, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034789

ABSTRACT

To examine the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) and investigate the horizontal transmission of blaKPC and blaNDM genes for the prevention and treatment of CRKP. A total of 49 clinically isolated CRKP strains were retrospectively analyzed from January to December 2022 at The First Hospital of Hunan University of Chinese Medicine. Phenotypic screening was performed using modified carbapenem inactivation assay (mCIM) and EDTA-carbapenem inactivation assay (eCIM). Polymerase chain reaction (PCR) was utilized to identify carbapenem resistance genes, ß-lactamase resistance genes, and virulence genes, while multi-locus sequence analysis (MLST) was employed to assess the homology of CRKP strains. Conjugation experiments were conducted to infer the horizontal transmission mechanism of blaKPC and blaNDM genes. The results showed that the study included 49 CRKP strains, with 44 carrying blaKPC and 8 carrying blaNDM, Three strains were identified as blaKPC+blaNDM-CRKP. In this study, 28 out of 49 CRKP strains (57.2%) were found to carry virulence genes. Additionally, one CRKP strain tested positive in the string test and was found to carry both Aerobactin and rmpA virulence genes. MLST results revealed a total of 5 ST types, with ST11 being predominant (41/49, 83.7%). Successful conjugation was observed in all 3 blaKPC-CRKP strains, while only 1 out of 3 blaNDM-CRKP strains showed successful conjugation. The transconjugant exhibited significantly reduced susceptibility to imipenem and cephalosporin antibiotics. In conclusion, the resistance mechanism of CRKP in this study is primarily attributed to the production of KPC enzymes, along with the presence of multiple ß-lactamase resistance genes. Additionally, there is a local prevalence of hv-CRKP and blaKPC+blaNDM-CRKP. blaKPC and blaNDM can be horizontally transmitted through plasmids, with varying efficiency among different strains.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Molecular Epidemiology , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Carbapenems/pharmacology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , beta-Lactamases/genetics , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , China/epidemiology , Multilocus Sequence Typing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Hospitals
17.
Front Cell Infect Microbiol ; 14: 1410997, 2024.
Article in English | MEDLINE | ID: mdl-39027135

ABSTRACT

Background: Acinetobacter baumannii (AB) has emerged as one of the most challenging pathogens worldwide, causing invasive infections in the critically ill patients due to their ability to rapidly acquire resistance to antibiotics. This study aimed to analyze antibiotic resistance genes harbored in AB and non-baumannii Acinetobacter calcoaceticus-baumannii (NB-ACB) complex causing invasive diseases in Korean children. Methods: ACB complexes isolated from sterile body fluid of children in three referral hospitals were prospectively collected. Colistin susceptibility was additionally tested via broth microdilution. Whole genome sequencing was performed and antibiotic resistance genes were analyzed. Results: During January 2015 to December 2020, a total of 67 ACB complexes were isolated from sterile body fluid of children in three referral hospitals. The median age of the patients was 0.6 (interquartile range, 0.1-7.2) years old. Among all the isolates, 73.1% (n=49) were confirmed as AB and others as NB-ACB complex by whole genome sequencing. Among the AB isolates, only 22.4% susceptible to carbapenem. In particular, all clonal complex (CC) 92 AB (n=33) showed multi-drug resistance, whereas 31.3% in non-CC92 AB (n=16) (P<0.001). NB-ACB showed 100% susceptibility to all classes of antibiotics except 3rd generation cephalosporin (72.2%). The main mechanism of carbapenem resistance in AB was the bla oxa23 gene with ISAba1 insertion sequence upstream. Presence of pmr gene and/or mutation of lpxA/C gene were not correlated with the phenotype of colistin resistance of ACB. All AB and NB-ACB isolates carried the abe and ade multidrug efflux pumps. Conclusions: In conclusion, monitoring and research for resistome in ACB complex is needed to identify and manage drug-resistant AB, particularly CC92 AB carrying the bla oxa23 gene.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Microbial Sensitivity Tests , Whole Genome Sequencing , Humans , Child , Child, Preschool , Infant , Republic of Korea/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/pharmacology , Female , Male , COVID-19/epidemiology , Colistin/pharmacology , Acinetobacter calcoaceticus/genetics , Acinetobacter calcoaceticus/drug effects , Acinetobacter calcoaceticus/isolation & purification , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , Prospective Studies , beta-Lactamases/genetics , beta-Lactamases/metabolism
18.
Front Cell Infect Microbiol ; 14: 1357289, 2024.
Article in English | MEDLINE | ID: mdl-39027138

ABSTRACT

Background/purposes: The continuously increasing carbapenem resistance within Enterobacterales and Pseudomonas poses a threat to public health, nevertheless, the molecular characteristics of which in southern China still remain limited. And carbapenemase identification is a key factor in effective early therapy of carbapenem-resistant bacteria infections. We aimed to determine the molecular characteristics of these pathogens and compare commercial combined disc tests (CDTs) with the modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) in detecting and distinguishing carbapenemases using whole genome sequencing (WGS). Methods: A total of 78 Enterobacterales, 30 Pseudomonas were obtained from two tertiary hospitals in southern China. Susceptibility tests were conducted using an automated VITEK2 compact system with confirmation via the Kirby-Bauer method. The WGS was conducted on all clinical isolates and the molecular characteristics were analyzed by screening the whole genome sequences. CDTs with or without cloxacillin, mCIM, and eCIM, were performed and compared by taking WGS results as the benchmark. Results: A total of 103 carbapenem non-susceptible and 5 carbapenem susceptible bacteria were determined, with Klebsiella pneumoniae (42.7%), Pseudomonas aeruginosa (23.3%) and Escherichia coli (18.4%) being most prevalent. Carbapenemase genes were detected in 58 (56.3%) of the 103 carbapenem-non-susceptible clinical isolates, including 46 NDM, 6 KPC, 3 IMP, 1 IPM+VIM,1NDM+KPC, and 1 OXA-181. Carbapenemase-producing isolates were detected more frequently in Enterobacterales (76.3%). Among K. pneumoniae, the major sequence types were st307 and st11, while among E. coli and P. aeruginosa, the most prevalent ones were st410 and st242 respectively. For carbapenemase detection in Enterobacterales, the mCIM method achieved 100.00% (95% CI, 92.13-100.00%) sensitivity and 94.44% (70.63-99.71%) specificity (kappa, 0.96); for Pseudomonas, detection sensitivity was 100% (5.46-100.00%), and 100% (84.50-100.00%) specificity (kappa, 0.65). Commercial CDT carbapenemase detection sensitivity for Enterobacterales was 96.49% (86.84-99.39%), and 95.24% (74.13-99.75%) specificity (kappa, 0.90); for Pseudomonas, carbapenemase detection sensitivity was 100.00% (5.46-100.00%) and 37.93% (21.30-57.64%) specificity (kappa, 0.04). When cloxacillin testing was added, CDT specificity reached 84.61% (64.27-94.95%). Conclusion: The molecular epidemiology of carbapenem-non-susceptible isolates from pediatric patients in Southern China exhibited distinctive characteristics. Both the mCIM-eCIM combination and CDT methods effectively detected and differentiated carbapenemases among Enterobacterales isolates, and the former performed better than CDT among Pseudomonas.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Microbial Sensitivity Tests , Pseudomonas , Whole Genome Sequencing , beta-Lactamases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Whole Genome Sequencing/methods , beta-Lactamases/genetics , Humans , Pseudomonas/genetics , Pseudomonas/drug effects , Pseudomonas/enzymology , Pseudomonas/isolation & purification , China , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Carbapenems/pharmacology , Genome, Bacterial , Enterobacteriaceae Infections/microbiology , Pseudomonas Infections/microbiology , Phenotype , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification
19.
Mol Biol Rep ; 51(1): 855, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066817

ABSTRACT

BACKGROUND: Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS: We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, ß-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). BlaCTX-M genes were detected in 50% (32/64) of isolates, with blaCTX-M-15 being the most common. BlaTEM-1, blaSHV-1 and blaVIM genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS: This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Integrons , Microbial Sensitivity Tests , Quinolones , Integrons/genetics , Quinolones/pharmacology , Humans , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Middle East/epidemiology , Prevalence , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Plasmids/genetics , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics
20.
Medicina (Kaunas) ; 60(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39064515

ABSTRACT

Background and Objectives: Acinetobacter baumannii (A. baumannii), particularly carbapenem-resistant A. baumannii (CRAB), represents a grave concern in healthcare settings and is associated with high mortality. This study aimed to conduct molecular, mutational, and phylogenetic analyses of specific genes in CRAB and evaluate the synergistic effects of selected antimicrobial combinations. Materials and Methods: Phenotypic characterization was performed on six CRAB strains by using the Modified Hodge Test (MHT) and IMP-EDTA Double-Disc Synergy Test (IMP-EDTA DDST). Carbapenemase- and metallo-beta-lactamase-encoding genes were amplified by using Polymerase Chain Reaction. Phylogenetic analysis using the MEGA 11 tool was used to determine the evolutionary relatedness of these genes. Mutational analysis was performed by using I-Mutant, MUPro, and PHD-SNP bioinformatics tools to predict mutations in the carbapenemase-encoding genes. Microdilution checkerboard titration assessed the synergistic effects of antimicrobial combinations (azithromycin-meropenem, rifampicin-meropenem, meropenem-colistin, and azithromycin-colistin) on these CRAB isolates. Results: The phenotypic characterization of six CRAB isolates revealed positive results for MHT and IMP-EDTA DDST. The molecular characterization revealed that carbapenemase- and MBL-encoding genes were present in all isolates with varying frequencies, including blaOXA-51 (100%) and blaIMP (0%). The sequence analysis revealed high evolutionary relatedness to sequences in the NCBI database. The mutational analysis identified 16 mutations, of which 1 mutation (P116L) in the blaOXA-58 gene predicted a change in the protein product, potentially contributing to carbapenem resistance. The checkerboard titration method did not reveal any synergism among the tested antimicrobial combinations against CRAB. Conclusion: This study's findings underscore the significant challenges posed by CRAB isolates harboring multiple resistant genes in treatment. This highlights the urgent need for novel antimicrobial agents, a crucial step towards reducing mortality rates not only in Pakistan but also globally.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Carbapenems , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Microbial Sensitivity Tests/methods , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/genetics , Acinetobacter Infections/drug therapy , Bacterial Proteins/genetics , Drug Therapy, Combination/methods , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL