Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.299
Filter
1.
FASEB J ; 38(13): e23780, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38948938

ABSTRACT

Aerobic training (AT), an effective form of cardiac rehabilitation, has been shown to be beneficial for cardiac repair and remodeling after myocardial infarction (MI). The p300/CBP-associated factor (PCAF) is one of the most important lysine acetyltransferases and is involved in various biological processes. However, the role of PCAF in AT and AT-mediated cardiac remodeling post-MI has not been determined. Here, we found that the PCAF protein level was significantly increased after MI, while AT blocked the increase in PCAF. AT markedly improved cardiac remodeling in mice after MI by reducing endoplasmic reticulum stress (ERS). In vivo, similar to AT, pharmacological inhibition of PCAF by Embelin improved cardiac recovery and attenuated ERS in MI mice. Furthermore, we observed that both IGF-1, a simulated exercise environment, and Embelin protected from H2O2-induced cardiomyocyte injury, while PCAF overexpression by viruses or the sirtuin inhibitor nicotinamide eliminated the protective effect of IGF-1 in H9C2 cells. Thus, our data indicate that maintaining low PCAF levels plays an essential role in AT-mediated cardiac protection, and PCAF inhibition represents a promising therapeutic target for attenuating cardiac remodeling after MI.


Subject(s)
Myocardial Infarction , Physical Conditioning, Animal , Ventricular Remodeling , p300-CBP Transcription Factors , Animals , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Ventricular Remodeling/drug effects , Ventricular Remodeling/physiology , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Endoplasmic Reticulum Stress/drug effects
2.
Biol Direct ; 19(1): 48, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902802

ABSTRACT

BACKGROUND: Prior research has highlighted the involvement of a transcriptional complex comprising C-terminal binding protein 2 (CtBP2), histone acetyltransferase p300, and nuclear factor kappa B (NF-κB) in the transactivation of proinflammatory cytokine genes, contributing to inflammation in mice with acute respiratory distress syndrome (ARDS). Nonetheless, it remains uncertain whether the therapeutic targeting of the CtBP2-p300-NF-κB complex holds potential for ARDS suppression. METHODS: An ARDS mouse model was established using lipopolysaccharide (LPS) exposure. RNA-Sequencing (RNA-Seq) was performed on ARDS mice and LPS-treated cells with CtBP2, p300, and p65 knockdown. Small molecules inhibiting the CtBP2-p300 interaction were identified through AlphaScreen. Gene and protein expression levels were quantified using RT-qPCR and immunoblots. Tissue damage was assessed via histological staining. KEY FINDINGS: We elucidated the specific role of the CtBP2-p300-NF-κB complex in proinflammatory gene regulation. RNA-seq analysis in LPS-challenged ARDS mice and LPS-treated CtBP2-knockdown (CtBP2KD), p300KD, and p65KD cells revealed its significant impact on proinflammatory genes with minimal effects on other NF-κB targets. Commercial inhibitors for CtBP2, p300, or NF-κB exhibited moderate cytotoxicity in vitro and in vivo, affecting both proinflammatory genes and other targets. We identified a potent inhibitor, PNSC928, for the CtBP2-p300 interaction using AlphaScreen. PNSC928 treatment hindered the assembly of the CtBP2-p300-NF-κB complex, substantially downregulating proinflammatory cytokine gene expression without observable cytotoxicity in normal cells. In vivo administration of PNSC928 significantly reduced CtBP2-driven proinflammatory gene expression in ARDS mice, alleviating inflammation and lung injury, ultimately improving ARDS prognosis. CONCLUSION: Our results position PNSC928 as a promising therapeutic candidate to specifically target the CtBP2-p300 interaction and mitigate inflammation in ARDS management.


Subject(s)
Alcohol Oxidoreductases , E1A-Associated p300 Protein , Inflammation , Respiratory Distress Syndrome , Animals , Mice , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Male , Lipopolysaccharides , Mice, Inbred C57BL , Disease Models, Animal , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , NF-kappa B/metabolism
3.
Cell Commun Signal ; 22(1): 306, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831454

ABSTRACT

BACKGROUND: Dysregulation in histone acetylation, a significant epigenetic alteration closely associated with major pathologies including cancer, promotes tumorigenesis, inactivating tumor-suppressor genes and activating oncogenic pathways. AMP-activated protein kinase (AMPK) is a cellular energy sensor that regulates a multitude of biological processes. Although a number of studies have identified the mechanisms by which AMPK regulates cancer growth, the underlying epigenetic mechanisms remain unknown. METHODS: The impact of metformin, an AMPK activator, on cervical cancer was evaluated through assessments of cell viability, tumor xenograft model, pan-acetylation analysis, and the role of the AMPK-PCAF-H3K9ac signaling pathway. Using label-free quantitative acetylproteomics and chromatin immunoprecipitation-sequencing (ChIP) technology, the activation of AMPK-induced H3K9 acetylation was further investigated. RESULTS: In this study, we found that metformin, acting as an AMPK agonist, activates AMPK, thereby inhibiting the proliferation of cervical cancer both in vitro and in vivo. Mechanistically, AMPK activation induces H3K9 acetylation at epigenetic level, leading to chromatin remodeling in cervical cancer. This also enhances the binding of H3K9ac to the promoter regions of multiple tumor suppressor genes, thereby promoting their transcriptional activation. Furthermore, the absence of PCAF renders AMPK activation incapable of inducing H3K9 acetylation. CONCLUSIONS: In conclusion, our findings demonstrate that AMPK mediates the inhibition of cervical cancer growth through PCAF-dependent H3K9 acetylation. This discovery not only facilitates the clinical application of metformin but also underscores the essential role of PCAF in AMPK activation-induced H3K9 hyperacetylation.


Subject(s)
AMP-Activated Protein Kinases , Cell Proliferation , Histones , Metformin , Uterine Cervical Neoplasms , p300-CBP Transcription Factors , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Humans , Acetylation/drug effects , Female , Histones/metabolism , AMP-Activated Protein Kinases/metabolism , Cell Proliferation/drug effects , Animals , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , Metformin/pharmacology , Mice , Mice, Nude , Cell Line, Tumor , Enzyme Activation/drug effects
4.
Nat Commun ; 15(1): 4962, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862536

ABSTRACT

In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.


Subject(s)
Histones , Transcription, Genetic , Ubiquitination , Acetylation , Histones/metabolism , Humans , p300-CBP Transcription Factors/metabolism , Protein Processing, Post-Translational , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Lysine/metabolism
5.
Nat Commun ; 15(1): 4770, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839769

ABSTRACT

SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.


Subject(s)
Gene Expression Regulation, Neoplastic , SMARCB1 Protein , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Humans , Animals , Cell Line, Tumor , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Chromatin Assembly and Disassembly/genetics , Mice, Nude , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays , Promoter Regions, Genetic/genetics , Cell Proliferation/genetics , Cell Proliferation/drug effects , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology
6.
J Med Chem ; 67(11): 9194-9213, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38829718

ABSTRACT

The epigenetic target CREB (cyclic-AMP responsive element binding protein) binding protein (CBP) and its homologue p300 were promising therapeutic targets for the treatment of acute myeloid leukemia (AML). Herein, we report the design, synthesis, and evaluation of a class of CBP/p300 PROTAC degraders based on our previously reported highly potent and selective CBP/p300 inhibitor 5. Among the compounds synthesized, 11c (XYD129) demonstrated high potency and formed a ternary complex between CBP/p300 and CRBN (AlphaScreen). The compound effectively degraded CBP/p300 proteins and exhibited greater inhibition of growth in acute leukemia cell lines compared to its parent compound 5. Furthermore, 11c demonstrated significant inhibition of tumor growth in a MOLM-16 xenograft model (TGI = 60%) at tolerated dose schedules. Our findings suggest that 11c is a promising lead compound for the treatment of AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/metabolism , Structure-Activity Relationship , Drug Discovery , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/metabolism , Xenograft Model Antitumor Assays , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , Proteolysis/drug effects , Cell Proliferation/drug effects
7.
Bioorg Chem ; 148: 107427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728911

ABSTRACT

Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Ubiquitin-Protein Ligases , p300-CBP Transcription Factors , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Apoptosis/drug effects , Cell Line, Tumor
8.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718570

ABSTRACT

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Subject(s)
Apigenin , Epithelial-Mesenchymal Transition , Glucose , Histones , Retinal Pigment Epithelium , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Apigenin/pharmacology , Acetylation/drug effects , Humans , Glucose/metabolism , Glucose/toxicity , Histones/metabolism , Cell Line , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Mice, Inbred C57BL , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/drug therapy , E1A-Associated p300 Protein/metabolism , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics
9.
J Exp Clin Cancer Res ; 43(1): 117, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641672

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS: The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS: We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS: This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Humans , Mice , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/pathology , Gene Expression Regulation, Neoplastic , Genes, Neurofibromatosis 2 , Histones/metabolism , Lysine/metabolism , Mice, SCID , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
10.
J Med Chem ; 67(9): 6952-6986, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38649304

ABSTRACT

The transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 have emerged as attractive therapeutic targets for human cancers such as acute myeloid leukemia (AML). Herein, we report the design, synthesis, and biological evaluation of a series of cereblon (CRBN)-recruiting CBP/p300 proteolysis targeting chimeras (PROTACs) based on the inhibitor CCS1477. The representative compounds 14g (XYD190) and 14h (XYD198) potently inhibited the growth of AML cells with low nanomolar IC50 values and effectively degraded CBP and p300 proteins in a concentration- and time-dependent manner. Mechanistic studies confirmed that 14g and 14h can selectively bind to CBP/p300 bromodomains and induce CBP and p300 degradation in bromodomain family proteins in a CRBN- and proteasome-dependent manner. 14g and 14h displayed remarkable antitumor efficacy in the MV4;11 xenograft model (TGI = 88% and 93%, respectively). Our findings demonstrated that 14g and 14h are useful lead compounds and deserve further optimization and activity evaluation for the treatment of human cancers.


Subject(s)
Antineoplastic Agents , Proteolysis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Animals , Mice , Proteolysis/drug effects , Cell Line, Tumor , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/antagonists & inhibitors , CREB-Binding Protein/metabolism , CREB-Binding Protein/antagonists & inhibitors , Drug Discovery , Xenograft Model Antitumor Assays , Structure-Activity Relationship , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Cell Proliferation/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice, Nude
11.
Br J Cancer ; 130(10): 1621-1634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575732

ABSTRACT

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Radiation Tolerance , p300-CBP Transcription Factors , Animals , Female , Humans , Mice , DNA-Activated Protein Kinase/metabolism , HeLa Cells , Mice, Inbred BALB C , Mice, Nude , Neoplasms/radiotherapy , Neoplasms/metabolism , Neoplasms/genetics , p300-CBP Transcription Factors/metabolism , Protein Processing, Post-Translational , Xenograft Model Antitumor Assays
12.
Nat Commun ; 15(1): 3580, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678032

ABSTRACT

The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.


Subject(s)
E2F1 Transcription Factor , E2F4 Transcription Factor , Neoplastic Stem Cells , Pancreatic Neoplasms , Paracrine Communication , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , E2F4 Transcription Factor/metabolism , E2F4 Transcription Factor/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Female , Cell Proliferation , Mice , Signal Transduction , Drug Resistance, Neoplasm/genetics
13.
J Biol Chem ; 300(5): 107205, 2024 May.
Article in English | MEDLINE | ID: mdl-38519032

ABSTRACT

Major histocompatibility complex (MHC) class I molecules play an essential role in regulating the adaptive immune system by presenting antigens to CD8 T cells. CITA (MHC class I transactivator), also known as NLRC5 (NLR family, CARD domain-containing 5), regulates the expression of MHC class I and essential components involved in the MHC class I antigen presentation pathway. While the critical role of the nuclear distribution of NLRC5 in its transactivation activity has been known, the regulatory mechanism to determine the nuclear localization of NLRC5 remains poorly understood. In this study, a comprehensive analysis of all domains in NLRC5 revealed that the regulatory mechanisms for nuclear import and export of NLRC5 coexist and counterbalance each other. Moreover, GCN5 (general control non-repressed 5 protein), a member of HATs (histone acetyltransferases), was found to be a key player to retain NLRC5 in the nucleus, thereby contributing to the expression of MHC class I. Therefore, the balance between import and export of NLRC5 has emerged as an additional regulatory mechanism for MHC class I transactivation, which would be a potential therapeutic target for the treatment of cancer and virus-infected diseases.


Subject(s)
Active Transport, Cell Nucleus , Histocompatibility Antigens Class I , Intracellular Signaling Peptides and Proteins , Transcriptional Activation , Humans , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , MCF-7 Cells , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/genetics
14.
Pharmacol Ther ; 257: 108636, 2024 May.
Article in English | MEDLINE | ID: mdl-38521246

ABSTRACT

Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.


Subject(s)
Histone Acetyltransferases , Neoplasms , Mice , Animals , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/therapeutic use , Protein Domains , Neoplasms/drug therapy , p300-CBP Transcription Factors/metabolism
15.
J Med Chem ; 67(4): 2466-2486, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38316017

ABSTRACT

Adenoviral E1A binding protein 300 kDa (p300) and its closely related paralog CREB binding protein (CBP) are promising therapeutic targets for human cancer. Here, we report the first discovery of novel potent small-molecule PROTAC degraders of p300/CBP against hepatocellular carcinoma (HCC), one of the most common solid tumors. Based upon the clinical p300/CBP bromodomain inhibitor CCS1477, a conformational restriction strategy was used to optimize the linker to generate a series of PROTACs, culminating in the identification of QC-182. This compound effectively induces p300/CBP degradation in the SK-HEP-1 HCC cells in a dose-, time-, and ubiquitin-proteasome system-dependent manner. QC-182 significantly downregulates p300/CBP-associated transcriptome in HCC cells, leading to more potent cell growth inhibition compared to the parental inhibitors and the reported degrader dCBP-1. Notably, QC-182 potently depletes p300/CBP proteins in mouse SK-HEP-1 xenograft tumor tissue. QC-182 is a promising lead compound toward the development of p300/CBP-targeted HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , CREB-Binding Protein/chemistry , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Protein Domains , p300-CBP Transcription Factors/metabolism
16.
Br J Pharmacol ; 181(12): 1843-1856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38378175

ABSTRACT

BACKGROUND AND PURPOSE: Our previous studies have found that andrographolide (AGP) alleviates calcific aortic valve disease (CAVD), but the underlying mechanism is unclear. This study explores the molecular target and signal mechanisms of AGP in inhibiting CAVD. EXPERIMENTAL APPROACH: The anti-calcification effects of the aortic valve with AGP treatment were evaluated by alizarin red staining in vitro and ultrasound and histopathological assessment of a high-fat (HF)-fed ApoE-/- mouse valve calcification model. A correlation between the H3 histone lactylation (H3Kla) and calcification was detected. Molecular docking and surface plasmon resonance (SPR) experiments were further used to confirm p300 as a target for AGP. Overexpression (oe) and silencing (si) of p300 were used to verify the inhibitory effect of AGP targeting p300 on the H3Kla in vitro and ex vivo. KEY RESULTS: AGP significantly inhibited calcium deposition in valve interstitial cells (VICs) and ameliorated aortic valve calcification. The multi-omics analysis revealed the glycolysis pathway involved in CAVD, indicating that AGP interfered with lactate production by regulating lactate dehydrogenase A (LDHA). In addition, lactylation, a new post-translational modification, was shown to have a role in promoting aortic valve calcification. Furthermore, H3Kla and H3K9la site were shown to correlate with Runx2 expression inhibition by AGP treatment. Importantly, we found that p300 transferase was the molecular target of AGP in inhibiting H3Kla. CONCLUSIONS AND IMPLICATIONS: Our findings, for the first time, demonstrated that AGP alleviates calcification by interfering with H3Kla via p300, which might be a powerful drug to prevent CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Diterpenes , Histones , Animals , Humans , Male , Mice , Aortic Valve/pathology , Aortic Valve/metabolism , Aortic Valve/drug effects , Aortic Valve Stenosis/drug therapy , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Calcinosis/metabolism , Calcinosis/drug therapy , Calcinosis/pathology , Diterpenes/pharmacology , Diterpenes/chemistry , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/antagonists & inhibitors , Histones/metabolism , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors
17.
Genomics ; 116(1): 110759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072145

ABSTRACT

OBJECTIVE: Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS: Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS: Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION: DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.


Subject(s)
MicroRNAs , Osteoporosis , Humans , Osteogenesis/genetics , MicroRNAs/metabolism , Osteoporosis/genetics , Cell Differentiation/genetics , Cells, Cultured , Histone-Lysine N-Methyltransferase , Serine-Arginine Splicing Factors/genetics , p300-CBP Transcription Factors/metabolism
18.
Am J Respir Cell Mol Biol ; 70(2): 110-118, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37874694

ABSTRACT

Obstructive sleep apnea (OSA), a widespread breathing disorder, leads to intermittent hypoxia (IH). Patients with OSA and IH-treated rodents exhibit heightened sympathetic nerve activity and hypertension. Previous studies reported transcriptional activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) by HIF-1 (hypoxia-inducible factor-1) contribute to autonomic dysfunction in IH-treated rodents. Lysine acetylation, regulated by KATs (lysine acetyltransferases) and KDACs (lysine deacetylases), activates gene transcription and plays an important role in several physiological and pathological processes. This study tested the hypothesis that acetylation of HIF-1α by p300/CBP (CREB-binding protein) (KAT) activates Nox transcription, leading to sympathetic activation and hypertension. Experiments were performed on pheochromocytoma-12 cells and rats treated with IH. IH increased KAT activity, p300/CBP protein, HIF-1α lysine acetylation, HIF-1 transcription, and HIF-1 binding to the Nox4 gene promoter in pheochromocytoma-12 cells, and these responses were blocked by CTK7A, a selective p300/CBP inhibitor. Plasma norepinephrine (index of sympathetic activation) and blood pressures were elevated in IH-treated rats. These responses were associated with elevated p300/CBP protein, HIF-1α stabilization, transcriptional activation of Nox2 and Nox4 genes, and reactive oxygen species, and all these responses were absent in CTK7A-treated IH rats. These findings suggest lysine acetylation of HIF-1α by p300/CBP is an important contributor to sympathetic excitation and hypertension by IH.


Subject(s)
Adrenal Gland Neoplasms , Hypertension , Pheochromocytoma , Sleep Apnea, Obstructive , Animals , Rats , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit , Lysine , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism , Sleep Apnea, Obstructive/complications
19.
Sci Rep ; 13(1): 17112, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816914

ABSTRACT

The activation of stress response pathways in synovial fibroblasts (SF) is a hallmark of rheumatoid arthritis (RA). CBP and p300 are two highly homologous histone acetyl transferases and writers of activating histone 3 lysine 27 acetylation (H3K27ac) marks. Furthermore, they serve as co-factors for transcription factors and acetylate many non-histone proteins. Here we showed that p300 but not CBP protein expression was down regulated by TNF and 4-hydroxynonenal, two factors that mimic inflammation and oxidative stress in the synovial microenvironment. We used existing RNA-sequencing data sets as a basis for a further in-depth investigation of individual functions of CBP and p300 in regulating different stress response pathways in SF. Pathway enrichment analysis pointed to a profound role of CBP and/ or p300 in regulating stress response-related gene expression, with an enrichment of pathways associated with oxidative stress, hypoxia, autophagy and proteasome function. We silenced CBP or p300, and performed confirmatory experiments on transcriptome, protein and functional levels. We have identified some overlap of CBP and p300 target genes in the oxidative stress response pathway, however, with several genes being regulated in opposite directions. The majority of stress response genes was regulated by p300, with a specific function of p300 in regulating hypoxia response genes and genes encoding proteasome subunits. Silencing of p300 suppressed proteasome enzymatic activities. CBP and p300 regulated autophagy on transcriptome and functional levels. Whereas CBP was indispensable for autophagy synthesis, silencing of p300 affected late-stage autophagy. In line with impaired autophagy and proteasome function, poly-ubiquitinated proteins accumulated after silencing of p300.


Subject(s)
CREB-Binding Protein , p300-CBP Transcription Factors , Humans , Acetylation , CREB-Binding Protein/metabolism , Fibroblasts/metabolism , Hypoxia , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism , Proteasome Endopeptidase Complex/metabolism
20.
J Bone Miner Res ; 38(12): 1885-1899, 2023 12.
Article in English | MEDLINE | ID: mdl-37850815

ABSTRACT

CREB-binding protein (CBP) (CREBBP) and p300 (EP300) are multifunctional histone acetyltransferases (HATs) with extensive homology. Germline mutations of CBP or p300 cause skeletal abnormalities in humans and mice. However, the precise roles of CBP/p300 in bone homeostasis remain elusive. Here, we report that conditional knockout of CBP or p300 in osteoblasts results in reduced bone mass and strength due to suppressed bone formation. The HAT activity is further confirmed to be responsible for CBP/p300-mediated osteogenesis using A-485, a selective inhibitor of CBP/p300 HAT. Mechanistically, CBP/p300 HAT governs osteogenic gene expression in part through transcriptional activation of ß-catenin and inhibition of Stat1. Furthermore, acetylation of histone H3K27 and the transcription factor Foxo1 are demonstrated to be involved in CBP/p300 HAT-regulated ß-catenin and Stat1 transcription, respectively. Taken together, these data identify acetyltransferases CBP/p300 as critical regulators that promote osteoblast differentiation and reveal an epigenetic mechanism responsible for maintaining bone homeostasis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
CREB-Binding Protein , p300-CBP Transcription Factors , Animals , Humans , Mice , Acetylation , beta Catenin/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Osteogenesis/genetics , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism , STAT1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...