Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.762
Filter
1.
Cell Death Dis ; 15(7): 486, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977663

ABSTRACT

Accumulating evidence suggests that caspase-3 plays critical roles beyond apoptosis, serving pro-survival functions in malignant transformation and tumorigenesis. However, the mechanism of non-apoptotic action of caspase-3 in oncogenic transformation remains unclear. In the present study, we show that caspase-3 is consistently activated in malignant transformation induced by exogenous expression of oncogenic cocktail (c-Myc, p53DD, Oct-4, and H-Ras) in vitro as well as in the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse model of breast cancer. Genetic ablation of caspase-3 significantly attenuated oncogene-induced transformation of mammalian cells and delayed breast cancer progression in MMTV-PyMT transgenic mice. Mechanistically, active caspase-3 triggers the translocation of endonuclease G (EndoG) from mitochondria, which migrates to the nucleus, thereby induces phosphorylation of Src-STAT3 signaling pathway to facilitate oncogenic transformation. Taken together, our data suggest that caspase-3 plays pivotal role in facilitating rather than suppressing oncogene-induced malignant transformation of mammalian cells.


Subject(s)
Caspase 3 , Cell Transformation, Neoplastic , Oncogenes , STAT3 Transcription Factor , Animals , STAT3 Transcription Factor/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Phosphorylation , Caspase 3/metabolism , Mice , Humans , Female , Oncogenes/genetics , src-Family Kinases/metabolism , src-Family Kinases/genetics , Mice, Transgenic , Signal Transduction , Mitochondria/metabolism
2.
Front Immunol ; 15: 1395427, 2024.
Article in English | MEDLINE | ID: mdl-39007135

ABSTRACT

Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.


Subject(s)
Lupus Erythematosus, Systemic , Signal Transduction , src-Family Kinases , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , src-Family Kinases/metabolism , src-Family Kinases/genetics , Humans , Animals , B-Lymphocytes/immunology , Mice
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230236, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853562

ABSTRACT

Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Alternative Splicing , Exons , Long-Term Potentiation , Nerve Tissue Proteins , Receptors, N-Methyl-D-Aspartate , src-Family Kinases , Animals , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Mice , src-Family Kinases/metabolism , src-Family Kinases/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Male , Synapses/physiology , Synapses/metabolism , Mice, Inbred C57BL
4.
J Cell Sci ; 137(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881365

ABSTRACT

Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.


Subject(s)
Extracellular Matrix , Focal Adhesions , src-Family Kinases , Focal Adhesions/metabolism , Extracellular Matrix/metabolism , Humans , src-Family Kinases/metabolism , src-Family Kinases/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Animals , CSK Tyrosine-Protein Kinase/metabolism , Signal Transduction , Endothelial Cells/metabolism , Endothelial Cells/pathology , Matrix Metalloproteinases/metabolism
5.
J Cell Sci ; 137(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38940198

ABSTRACT

TMEM16F (also known as ANO6), a Ca2+-activated lipid scramblase (CaPLSase) that dynamically disrupts lipid asymmetry, plays a crucial role in various physiological and pathological processes, such as blood coagulation, neurodegeneration, cell-cell fusion and viral infection. However, the mechanisms through which it regulates these processes remain largely elusive. Using endothelial cell-mediated angiogenesis as a model, here we report a previously unknown intracellular signaling function of TMEM16F. We demonstrate that TMEM16F deficiency impairs developmental retinal angiogenesis in mice and disrupts angiogenic processes in vitro. Biochemical analyses indicate that the absence of TMEM16F enhances the plasma membrane association of activated Src kinase. This in turn increases VE-cadherin phosphorylation and downregulation, accompanied by suppressed angiogenesis. Our findings not only highlight the role of intracellular signaling by TMEM16F in endothelial cells but also open new avenues for exploring the regulatory mechanisms for membrane lipid asymmetry and their implications in disease pathogenesis.


Subject(s)
Anoctamins , Endothelial Cells , Signal Transduction , Animals , Anoctamins/metabolism , Anoctamins/genetics , Mice , Humans , Endothelial Cells/metabolism , src-Family Kinases/metabolism , src-Family Kinases/genetics , Neovascularization, Physiologic , Phosphorylation , Cadherins/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Cell Membrane/metabolism , Mice, Inbred C57BL , Mice, Knockout , Angiogenesis , Phospholipid Transfer Proteins
6.
EMBO J ; 43(14): 2843-2861, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38755258

ABSTRACT

Glycine-12 mutations in the GTPase KRAS (KRASG12) are an initiating event for development of lung adenocarcinoma (LUAD). KRASG12 mutations promote cell-intrinsic rewiring of alveolar type-II progenitor (AT2) cells, but to what extent such changes interplay with lung homeostasis and cell fate pathways is unclear. Here, we generated single-cell RNA-seq (scRNA-seq) profiles from AT2-mesenchyme organoid co-cultures, mice, and stage-IA LUAD patients, identifying conserved regulators of AT2 transcriptional dynamics and defining the impact of KRASG12D mutation with temporal resolution. In AT2WT organoids, we found a transient injury/plasticity state preceding AT2 self-renewal and AT1 differentiation. Early-stage AT2KRAS cells exhibited perturbed gene expression dynamics, most notably retention of the injury/plasticity state. The injury state in AT2KRAS cells of patients, mice, and organoids was distinguishable from AT2WT states via altered receptor expression, including co-expression of ITGA3 and SRC. The combination of clinically relevant KRASG12D and SRC inhibitors impaired AT2KRAS organoid growth. Together, our data show that an injury/plasticity state essential for lung repair is co-opted during AT2 self-renewal and LUAD initiation, suggesting that early-stage LUAD may be susceptible to interventions that target specifically the oncogenic nature of this cell state.


Subject(s)
Lung Neoplasms , Organoids , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Humans , Organoids/metabolism , Organoids/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Mutation , Cell Differentiation , Gene Expression Regulation, Neoplastic , src-Family Kinases/metabolism , src-Family Kinases/genetics
7.
Protein Sci ; 33(6): e5023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801214

ABSTRACT

Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.


Subject(s)
HSP90 Heat-Shock Proteins , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , src-Family Kinases/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics , HEK293 Cells , Protein Stability , Mutation , Enzyme Stability , Fluorescence
8.
Biochem Biophys Res Commun ; 723: 150177, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38810320

ABSTRACT

PURPOSE: We found a novel lncRNA named lncAC138150.2 related to the overall survival and staging of patients with colorectal cancer (CRC) by bioinformatic analysis using data from the Cancer Genome Atlas (TCGA), and the study aimed to elucidate the function of lncAC138150.2 and underlying mechanisms. METHODS: Target molecules were knocked down by transfection with antisense oligonucleotides (ASOs), siRNAs, or lentiviruses and overexpressed by transfection with plasmids. The function of lncAC138150.2 was determined using histological, cytological, and molecular biology methods. The underlying mechanism of lncAC138150.2 function was investigated using RNA-seq, bioinformatics analysis, and molecular biology methods. RESULTS: The expression of lncAC138150.2 was increased in colorectal tissues compared with paired normal tissues. The lncAC138150.2 knockdown increased apoptosis but did not change the cell proliferation, cell cycle distribution, or cell migration ability of CRC cells, while lncAC138150.2 overexpression decreased CRC apoptosis. lncAC138150.2 was mainly located in the cell nucleus, and each lncAC138150.2 transcript knockdown increased CRC apoptosis. BCL-2 pathway was significantly altered in apoptosis induced by lncAC138150.2 knockdown, which was alleviated by BAX knockdown. The expression of LYN was significantly decreased with lncAC138150.2 knockdown, LYN knockdown increased CRC apoptosis, and its overexpression completely alleviated CRC apoptosis induced by lncAC138150.2 knockdown. CONCLUSION: lncAC138150.2 significantly inhibited CRC apoptosis and affected the prognosis of patients with CRC, through the LYN/BCL-2 pathway.


Subject(s)
Apoptosis , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-bcl-2 , RNA, Long Noncoding , Signal Transduction , src-Family Kinases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Apoptosis/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Prognosis , src-Family Kinases/metabolism , src-Family Kinases/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , Male , Cell Movement/genetics
9.
J Virol ; 98(6): e0170523, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38742902

ABSTRACT

Long non-coding RNAs (lncRNAs) represent a new group of host factors involved in viral infection. Current study identified an intergenic lncRNA, LINC08148, as a proviral factor of Zika virus (ZIKV) and Dengue virus 2 (DENV2). Knockout (KO) or silencing of LINC08148 decreases the replication of ZIKV and DENV2. LINC08148 mainly acts at the endocytosis step of ZIKV but at a later stage of DENV2. RNA-seq analysis reveals that LINC08148 knockout downregulates the transcription levels of five endocytosis-related genes including AP2B1, CHMP4C, DNM1, FCHO1, and Src. Among them, loss of Src significantly decreases the uptake of ZIKV. Trans-complementation of Src in the LINC08148KO cells largely restores the caveola-mediated endocytosis of ZIKV, indicating that the proviral effect of LINC08148 is exerted through Src. Finally, LINC08148 upregulates the Src transcription through associating with its transcription factor SP1. This work establishes an essential role of LINC08148 in the ZIKV entry, underscoring a significance of lncRNAs in the viral infection. IMPORTANCE: Long non-coding RNAs (lncRNAs), like proteins, participate in viral infection. However, functions of most lncRNAs remain unknown. In this study, we performed a functional screen based on microarray data and identified a new proviral lncRNA, LINC08148. Then, we uncovered that LINC08148 is involved in the caveola-mediated endocytosis of ZIKV, rather than the classical clathrin-mediated endocytosis. Mechanistically, LINC08148 upregulates the transcription of Src, an initiator of caveola-mediated endocytosis, through binding to its transcription factor SP1. This study identifies a new lncRNA involved in the ZIKV infection, suggesting lncRNAs and cellular proteins are closely linked and cooperate to regulate viral infection.


Subject(s)
Endocytosis , RNA, Long Noncoding , Virus Internalization , Zika Virus Infection , Zika Virus , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Zika Virus/genetics , Zika Virus/physiology , Humans , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Zika Virus Infection/genetics , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Caveolae/metabolism , Animals , Virus Replication , Up-Regulation , Dengue Virus/physiology , Dengue Virus/genetics , Chlorocebus aethiops , HEK293 Cells , Vero Cells , src-Family Kinases/metabolism , src-Family Kinases/genetics
10.
Elife ; 132024 May 23.
Article in English | MEDLINE | ID: mdl-38780416

ABSTRACT

Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above-which were used to identify endogenous PANX1 phosphorylation at these two sites-are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.


Subject(s)
Connexins , Nerve Tissue Proteins , src-Family Kinases , Phosphorylation , Connexins/metabolism , Connexins/genetics , Humans , src-Family Kinases/metabolism , src-Family Kinases/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Tyrosine/metabolism , Animals , HEK293 Cells , Mice
11.
Cancer Sci ; 115(6): 1896-1909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480477

ABSTRACT

Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.


Subject(s)
Annexin A2 , Bile Duct Neoplasms , Carcinogenesis , Cholangiocarcinoma , Mitochondria , src-Family Kinases , Animals , Humans , Male , Mice , Annexin A2/metabolism , Annexin A2/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mitochondria/metabolism , Phosphorylation , Signal Transduction , src-Family Kinases/metabolism , src-Family Kinases/genetics
12.
FEBS J ; 291(12): 2615-2635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38303113

ABSTRACT

Protein phosphatase-1 (PP1) complexed to nuclear inhibitor of PP1 (NIPP1) limits DNA repair through dephosphorylation of NIPP1-recruited substrates. However, the PP1:NIPP1 holoenzyme is completely inactive under basal conditions, hinting at a DNA damage-regulated activation mechanism. Here, we report that DNA damage caused the activation of PP1:NIPP1 after a time delay of several hours through phosphorylation of NIPP1 at the C-terminal tyrosine 335 (Y335) by a Src-family kinase. PP1:NIPP1 activation partially resulted from the dissociation of the C terminus of NIPP1 from the active site of PP1. In addition, the released Y335-phosphorylated C terminus interacted with the N terminus of NIPP1 to enhance substrate recruitment by the flanking forkhead-associated (FHA) domain. Constitutive activation of PP1:NIPP1 by knock-in of a phospho-mimicking (Y335E) NIPP1 mutant led to the hypo-phosphorylation of FHA ligands and an accumulation of DNA double-strand breaks. Our data indicate that PP1:NIPP1 activation through circularization of NIPP1 is a late response to DNA damage that contributes to the timely recovery from damage repair.


Subject(s)
DNA Damage , Protein Phosphatase 1 , src-Family Kinases , Phosphorylation , Humans , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/chemistry , src-Family Kinases/metabolism , src-Family Kinases/genetics , src-Family Kinases/chemistry , DNA Repair , Allosteric Regulation , DNA Breaks, Double-Stranded , HEK293 Cells , Protein Binding , Intracellular Signaling Peptides and Proteins
13.
Nat Commun ; 15(1): 1300, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346942

ABSTRACT

Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for ∼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity. Here, we reveal that GPR54 activation by its natural ligand Kisspeptin-10 (Kp-10) causes Dusp18 to dephosphorylate Src at Tyr 416. Mechanistically, Gpr54 recruits both active Src and the Dusp18 phosphatase at its proline/arginine-rich motif in its C terminus. We show that Kp-10 binding to Gpr54 leads to the up-regulation of Dusp18. Kiss1, Gpr54 and Dusp18 knockout mice all exhibit osteoclast hyperactivation and bone loss, and Kp-10 abrogated bone loss by suppressing osteoclast activity in vivo. Therefore, Kp-10/Gpr54 is a promising therapeutic target to abrogate bone resorption by Dusp18-mediated Src dephosphorylation.


Subject(s)
Bone Resorption , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Mice, Knockout , Bone Resorption/genetics , Receptors, Kisspeptin-1
14.
Cancer Lett ; 582: 216516, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38052369

ABSTRACT

Triple-negative breast cancer (TNBC) is highly aggressive and metastatic, and has the poorest prognosis among all breast cancer subtypes. Activated ß-catenin is enriched in TNBC and involved in Wnt signaling-independent metastasis. However, the underlying mechanisms of ß-catenin activation in TNBC remain unknown. Here, we found that SHC4 was upregulated in TNBC and high SHC4 expression was significantly correlated with poor outcomes. Overexpression of SHC4 promoted TNBC aggressiveness in vitro and facilitated TNBC metastasis in vivo. Mechanistically, SHC4 interacted with Src and maintained its autophosphorylated activation, which activated ß-catenin independent of Wnt signaling, and finally upregulated the transcription and expression of its downstream genes CD44 and MMP7. Furthermore, we determined that the PxPPxPxxxPxxP sequence on CH2 domain of SHC4 was critical for SHC4-Src binding and Src kinase activation. Overall, our results revealed the mechanism of ß-catenin activation independent of Wnt signaling in TNBC, which was driven by SHC4-induced Src autophosphorylation, suggesting that SHC4 might be a potential prognostic marker and therapeutic target in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , src-Family Kinases/genetics , src-Family Kinases/metabolism , Cell Line, Tumor , beta Catenin/genetics , beta Catenin/metabolism , Cell Proliferation , Wnt Signaling Pathway/genetics , Shc Signaling Adaptor Proteins/genetics , Shc Signaling Adaptor Proteins/metabolism
15.
Cell Chem Biol ; 31(2): 207-220.e11, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37683649

ABSTRACT

Kinase inhibitors are effective cancer therapies, but resistance often limits clinical efficacy. Despite the cataloging of numerous resistance mutations, our understanding of kinase inhibitor resistance is still incomplete. Here, we comprehensively profiled the resistance of ∼3,500 Src tyrosine kinase mutants to four different ATP-competitive inhibitors. We found that ATP-competitive inhibitor resistance mutations are distributed throughout Src's catalytic domain. In addition to inhibitor contact residues, residues that participate in regulating Src's phosphotransferase activity were prone to the development of resistance. Unexpectedly, we found that a resistance-prone cluster of residues located on the top face of the N-terminal lobe of Src's catalytic domain contributes to autoinhibition by reducing catalytic domain dynamics, and mutations in this cluster led to resistance by lowering inhibitor affinity and promoting kinase hyperactivation. Together, our studies demonstrate how drug resistance profiling can be used to define potential resistance pathways and uncover new mechanisms of kinase regulation.


Subject(s)
Adenosine Triphosphate , src-Family Kinases , src-Family Kinases/genetics , Catalytic Domain , Phosphorylation , Adenosine Triphosphate/metabolism , Drug Resistance
16.
Oncol Rep ; 51(2)2024 02.
Article in English | MEDLINE | ID: mdl-38099418

ABSTRACT

C­X­C motif chemokine 12 (CXCL12) promotes metastasis of several tumors by affecting cell migration and invasion via its receptors, C­X­C chemokine receptor type (CXCR)4 and CXCR7. Current therapeutic approaches focus on the selective inactivation of either CXCR4 or CXCR7 in patients with cancer. Alternative strategies may emerge from the analysis of downstream events that mediate the migratory effects of CXCL12 in cancer cells. While CXCR4 activates cell signaling through both G proteins and arrestins, CXCR7 is believed to preferentially signal through arrestins. The present study analyzed the CXCL12­dependent chemotaxis of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells, in which either the activity of G proteins, EGFR or Src kinase was inhibited pharmacologically or the expression of arrestins was inhibited by RNA interference. The results demonstrated that CXCL12­induced migration of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells was attenuated by the Gαi/o­inhibitor pertussis toxin (PTX), but was unaffected by small interfering RNA­mediated gene silencing of ß­arrestin1/2. In particular, the sensitivity of DLD­1 migration to PTX was unexpected, as it is solely dependent on the non­classical chemokine receptor, CXCR7. Furthermore, chemotactic responses to CXCL12 were additionally prevented by inhibiting EGFR activity via AG1478 and Src kinase activity via Src inhibitor­1. In conclusion, the results of the present study suggest that G protein­ and Src­dependent transactivation of EGFR is a common mechanism through which CXCL12­bound CXCR4 and/or CXCR7 control cancer cell migration and metastasis. These findings highlight EGFR as a potential therapeutic target that interferes with CXCL12­induced cancer expansion.


Subject(s)
Neoplasms , Receptors, CXCR , Humans , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Transcriptional Activation , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Signal Transduction , GTP-Binding Proteins , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Cell Movement , Arrestins/genetics , Arrestins/metabolism , Arrestins/pharmacology , src-Family Kinases/genetics , src-Family Kinases/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism
17.
Life Sci Alliance ; 7(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38148112

ABSTRACT

The endothelial junction component vascular endothelial (VE)-cadherin governs junctional dynamics in the blood and lymphatic vasculature. Here, we explored how lymphatic junction stability is modulated by elevated VEGFA signaling to facilitate metastasis to sentinel lymph nodes. Zippering of VE-cadherin junctions was established in dermal initial lymphatic vessels after VEGFA injection and in tumor-proximal lymphatics in mice. Shape analysis of pan-cellular VE-cadherin fragments revealed that junctional zippering was accompanied by accumulation of small round-shaped VE-cadherin fragments in the lymphatic endothelium. In mice expressing a mutant VEGFR2 lacking the Y949 phosphosite (Vegfr2 Y949F/Y949F ) required for activation of Src family kinases, zippering of lymphatic junctions persisted, whereas accumulation of small VE-cadherin fragments was suppressed. Moreover, tumor cell entry into initial lymphatic vessels and subsequent metastatic spread to lymph nodes was reduced in mutant mice compared with WT, after challenge with B16F10 melanoma or EO771 breast cancer. We conclude that VEGFA mediates zippering of VE-cadherin junctions in initial lymphatics. Zippering is accompanied by increased VE-cadherin fragmentation through VEGFA-induced Src kinase activation, correlating with tumor dissemination to sentinel lymph nodes.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Mice , Animals , Lymphatic Metastasis , Cadherins/genetics , src-Family Kinases/genetics
18.
Oncogene ; 42(46): 3385-3393, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37848624

ABSTRACT

Most of our understanding regarding the involvement of SRC-family tyrosine kinases in cancer has stemmed from studies focused on the prototypical SRC oncogene. However, emerging research has shed light on the important role of YES signaling in oncogenic transformation, tumor growth, metastatic progression, and resistance to various cancer therapies. Clinical evidence indicates that dysregulated expression or activity of YES is a frequent occurrence in human cancers and is associated with unfavorable outcomes. These findings provide a compelling rationale for specifically targeting YES in certain cancer subtypes. Here, we review the crucial role of YES in cancer and discuss the challenges associated with translating preclinical observations into effective YES-targeted therapies.


Subject(s)
Neoplasms , Proto-Oncogene Proteins , Humans , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-yes , Protein-Tyrosine Kinases/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics
19.
FEBS Lett ; 597(19): 2433-2445, 2023 10.
Article in English | MEDLINE | ID: mdl-37669828

ABSTRACT

Although signal-transducing adaptor protein-2 (STAP-2) acts in certain immune responses, its role in B cell receptor (BCR)-mediated signals remains unknown. In this study, we have revealed that BCR-mediated signals, cytokine production and antibody production were increased in STAP-2 knockout (KO) mice compared with wild-type (WT) mice. Phosphorylation of tyrosine-protein kinase LYN Y508 was reduced in STAP-2 KO B cells after BCR stimulation. Mechanistic analysis revealed that STAP-2 directly binds to LYN, dependently of STAP-2 Y250 phosphorylation by LYN. Furthermore, phosphorylation of STAP-2 enhanced interactions between LYN and tyrosine-protein kinase CSK, resulting in enhanced CSK-mediated LYN Y508 phosphorylation. These results suggest that STAP-2 is crucial for controlling BCR-mediated signals and antibody production by enhanced CSK-mediated feedback regulation of LYN.


Subject(s)
Signal Transduction , src-Family Kinases , Mice , Animals , CSK Tyrosine-Protein Kinase/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Receptors, Antigen, B-Cell/metabolism , Phosphorylation , B-Lymphocytes/metabolism , Mice, Knockout
20.
Front Immunol ; 14: 1224520, 2023.
Article in English | MEDLINE | ID: mdl-37680627

ABSTRACT

The Src family kinases (SFKs) Lck and Lyn are crucial for lymphocyte development and function. Albeit tissue-restricted expression patterns the two kinases share common functions; the most pronounced one being the phosphorylation of ITAM motifs in the cytoplasmic tails of antigenic receptors. Lck is predominantly expressed in T lymphocytes; however, it can be ectopically found in B-1 cell subsets and numerous pathologies including acute and chronic B-cell leukemias. The exact impact of Lck on the B-cell signaling apparatus remains enigmatic and is followed by the long-lasting question of mechanisms granting selectivity among SFK members. In this work we sought to investigate the mechanistic basis of ectopic Lck function in B-cells and compare it to events elicited by the predominant B-cell SFK, Lyn. Our results reveal substrate promiscuity displayed by the two SFKs, which however, is buffered by their differential susceptibility toward regulatory mechanisms, revealing a so far unappreciated aspect of SFK member-specific fine-tuning. Furthermore, we show that Lck- and Lyn-generated signals suffice to induce transcriptome alterations, reminiscent of B-cell activation, in the absence of receptor/co-receptor engagement. Finally, our analyses revealed a yet unrecognized role of SFKs in tipping the balance of cellular stress responses, by promoting the onset of ER-phagy, an as yet completely uncharacterized process in B lymphocytes.


Subject(s)
Signal Transduction , src-Family Kinases , src-Family Kinases/genetics , Gene Expression Profiling , Phosphorylation , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...