Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.649
Filter
1.
J Med Entomol ; 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33822117

ABSTRACT

We conducted a baseline characterization of the abundance and seasonality of Aedes aegypti (Linnaeus, 1762)-a vector of dengue, chikungunya, and Zika-in two suburban localities of Yucatan, Mexico, as the first step in the implementation of an integrated vector management (IVM) plan combining 'traditional Aedes control' (source reduction/truck-mounted ultra-low volume [ULV] spraying) and incompatible insect technique/sterile insect technique for population suppression in Yucatan, Mexico. Weekly entomological collections with ovitraps and BG-sentinel traps were performed in 1-ha quadrants of both localities for 1 yr. Three distinct periods/phases were identified, closely associated with precipitation: 1) a phase of low population abundance during the dry season (weekly average of Aedes eggs per ovitrap and adults per BG trap = 15.51 ± 0.71 and 10.07 ± 0.88, respectively); 2) a phase of population growth and greatest abundance of Aedes (49.03 ± 1.48 eggs and 25.69 ± 1.31 adults) during the rainy season; and finally 3) a phase of decline among populations (20.91 ± 0.97 eggs and 3.24 ± 0.21 adults) after the peak of the rainy season. Seasonal abundance and dynamics of Ae. aegypti populations suggest that it is feasible to develop and implement time-specific actions as part of an IVM approach incorporating integrating novel technologies (such as rear-and-release of Wolbachia-infected males) with classic (insecticide-based) approaches implemented routinely for vector control. In agreement with the local vector control program, we propose a pilot IVM strategy structured in a preparation phase, an attack phase with traditional vector control, and a suppression phase with inundative releases, which are described in this paper.

2.
PLoS One ; 16(4): e0246215, 2021.
Article in English | MEDLINE | ID: mdl-33831004

ABSTRACT

Vale do Rio Juruá in western Acre, Brazil, is a persistent malaria transmission hotspot partly due to fish farming development that was encouraged to improve local standards of living. Fish ponds can be productive breeding sites for Amazonian malaria vector species, including Nyssorhynchus darlingi, which, combined with high human density and mobility, add to the local malaria burden.This study reports entomological profile of immature and adult Ny. darlingi at three sites in Mâncio Lima, Acre, during the rainy and dry season (February to September, 2017). From 63 fishponds, 10,859 larvae were collected, including 5,512 first-instar Anophelinae larvae and 4,927 second, third and fourth-instars, of which 8.5% (n = 420) were Ny. darlingi. This species was most abundant in not-abandoned fishponds and in the presence of emerging aquatic vegetation. Seasonal analysis of immatures in urban landscapes found no significant difference in the numbers of Ny. darlingi, corresponding to equivalent population density during the rainy to dry transition period. However, in the rural landscape, significantly higher numbers of Ny. darlingi larvae were collected in August (IRR = 5.80, p = 0.037) and September (IRR = 6.62, p = 0.023) (dry season), compared to February (rainy season), suggesting important role of fishponds for vector population maintenance during the seasonal transition in this landscape type. Adult sampling detected mainly Ny. darlingi (~93%), with similar outdoor feeding behavior, but different abundance according to landscape profile: urban site 1 showed higher peaks of human biting rate in May (46 bites/person/hour), than February (4) and September (15), while rural site 3 shows similar HBR during the same sampling period (22, 24 and 21, respectively). This study contributes to a better understanding of the larvae biology of the main malaria vector in the Vale do Rio Juruá region and, ultimately will support vector control efforts.

3.
Parasit Vectors ; 14(1): 167, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33741050

ABSTRACT

BACKGROUND: In 2015, an outbreak of Zika virus spread across Latin America and the Caribbean (LAC). Public health programs promoted vector control behaviors, including covering water storage containers with lids. Such approaches disrupt Zika transmission by eliminating the habitats of the Aedes aegypti mosquito, which breeds in stagnant water. METHODS: A quantitative household survey and observation checklist with trained enumerators were undertaken between August and October 2018 in selected urban/peri-urban USAID implementation communities in El Salvador, Guatemala, and Honduras. The survey included questions regarding knowledge, attitudes, and practices related to Zika virus. An accompanying checklist was implemented to observe water storage containers, including for short-term and long-term water use. The characteristics of these containers were tabulated, including the presence of a lid. The lids were examined for key features to determine their potential effectiveness to prevent mosquito breeding: fully covering and sealing the container, not having holes, and not having water on them (potentially creating a secondary breeding site). Multivariate logistic regression was used to estimate the effectiveness of lid types and characteristics on the presence of larvae. RESULTS: Overall, in adjusted models, using an effective lid versus no lid was associated with a 94% decrease in odds of larval presence in long-term water storage containers (odds ratio = 0.06; 95% confidence interval [0.029, 0.152]); however, similar impacts were not observed for washbasins in the adjusted models. Models adjusted for household wealth, receiving a visit from a vector control technician, scrubbing the container in the last 7 days, and perception of more mosquitoes around. CONCLUSIONS: Effective lids, if made available and coupled with complementary behavioral messaging, may reduce transmission of Zika and other Aedes mosquito-borne diseases in the LAC region.

4.
Article in English | MEDLINE | ID: mdl-33681923

ABSTRACT

INTRODUCTION: This retrospective study conducted from 2001 to 2018 investigated the residual foci of Triatoma infestans infestation in Rio Grande do Sul, Brazil. METHODS: The data were obtained via entomological surveillance and the distribution of vector occurrence. The coverage of active research was mapped. RESULTS: The largest coverage rate for active research was observed in the northwest region of the total of 515,081 domiciles researched. Most T. infestans specimens were captured in the peridomicile. CONCLUSIONS: Infestation has decreased significantly since 2008, and T. infestans has not been captured since 2015.


Subject(s)
Chagas Disease , Triatoma , Animals , Brazil , Environment , Insect Vectors , Retrospective Studies
5.
Bol. malariol. salud ambient ; 61(1): 21-28, 10 de marzo de 2021.
Article in Spanish, English | LILACS-Express | LILACS | ID: biblio-1177399

ABSTRACT

Las Enfermedades de Transmisión Vectorial contribuyen de manera importante a la carga mundial de morbilidad afectando de manera especial a las poblaciones de los países en desarrollo. Ecuador es un país tropical, con condiciones climáticas favorables a para albergar mosquitos de las especies Aedes que son vectores activos de arbovirosis como el dengue, el zika, el chikungunya y la fiebre amarilla para las no existe un tratamiento específico ni métodos efectivos de inmunización, y la única forma de controlar la transmisión está dirigida hacia sus vectores. El uso de insecticidas químicos ha sido la forma más utilizada en los programas de Control, siendo Temephos, Deltametrina y Malathion los más comunes en Ecuador en la actualidad. El uso de los insecticidas tiene un efecto dual sobre la salud pública: Positivo, gracias al control que brinda a los vectores transmisores de ETV; y Negativo, traducido en los riesgos para la salud de trabajadores expuestos directamente y de la población en general causando efectos agudos y crónicos. El reconocimiento como trabajo de alto riesgo a la tarea de los fumigadores de Ecuador dado por el mayor ente ambiental del país, permite que se tomen las acciones necesarias para garantizar su salud y de ésta manera pueda verse reducido el impacto negativo, adoptando mejores y más eficientes métodos y equipos que sean seguros en la aplicación de insecticidas de control vectorial.


Vector-borne diseases contribute significantly to the global burden of disease, particularly affecting populations in developing countries. Ecuador is a tropical country, with favorable climatic conditions to house mosquitoes of Aedes species that are active vectors of arbovirosis such as dengue, Zika, chikungunya and yellow fever for which there is no specific treatment or effective method of immunization, and the only way to control transmission is to target their vectors. The use of chemical insecticides has been the most used form in Control programs, being Temephos, Deltametrina and Malathion the most common in Ecuador today. The use of insecticides has a dual effect on public health: Positive, thanks to the control provided to ETV transmitter vectors; and Negative, translated into the health risks to directly exposed workers and the general population causing acute and chronic effects. The recognition as high-risk work of the work of the Ecuadorian fumigators given by the largest environmental entity in the country, allows the necessary actions to be taken to guarantee their health and in this way the negative impact can be reduced, adopting better and more efficient methods and equipment that are safe in the application of vector control insecticides.

6.
Vet Parasitol Reg Stud Reports ; 23: 100530, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33678384

ABSTRACT

Trypanosoma cruzi, the etiologic agent of Chagas disease, is widely distributed in the Americas and is transmitted through vectorial, transfusional, and oral routes. This study aimed to evaluate the risk of vectorial transmission of Chagas disease in municipalities located in southern Minas Gerais, Brazil, by analyzing triatomine specimens collected from 2014 to 2020. All 1522 hematophagous triatomines were identified as Panstrongylus megistus, and were subjected to parasitological and molecular examinations. From 2014 to 2016, approximately 10% of insects were positive in the microscopic analysis of intestinal content, and 27% were positive as detected by the quantitative polymerase chain reaction (qPCR) of the same sampling. However, in the last investigated years, an increase in infected triatomines was observed in microscopic analysis (22%) and qPCR methods (41%). This corroborates the findings of acute human Chagas disease cases, which have increased in the study area from a maximum of 2 cases in previous years to 20 cases in 2019, and 17 cases in 2020 through June. Additionally, bloodmeal sources of infected triatomines were investigated; human blood was detected in up to 85.7% of the samples. Moreover, canine blood was also detected in triatomine intestinal content in recent years, reaching 91% of analyzed insects in 2018. Data on bloodmeal sources have demonstrated human-vector contact and have suggested the participation of dogs in the parasite transmission cycle. These results indicate the risk of T. cruzi vectorial transmission in Southern Minas Gerais and São Paulo owing to the boundary between these states. Thus, enhanced surveillance and vector control of Chagas disease are highly recommended in these areas.

7.
Insects ; 12(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671621

ABSTRACT

Morphometrics has been used on Triatomines, a well-known phenotypically variable insect, to understand the process of morphological plasticity and infer the changes of this phenomenon. The following research was carried out in two regions of the inter-Andean valleys and two Chaco regions of Chuquisaca-Bolivia. Triatoma infestans adults were collected from the peridomestic (pens and chicken coops) along a geographic gradient in order to evaluate the morphological differentiation between groups and their pattern of sexual shape dimorphism. Geometric morphometric methods were applied on the wings and heads of T. infestans. The main findings include that we proved sexual dimorphism in heads and wings, determined the impact of environmental factors on size and shape and validated the impact of nutrition on head shape variation. These results show that geometric morphometric procedures can be used to provide key insight into the biological adaptation of T. infestans on different biotic (nutrition) and abiotic (environment) conditions, which could serve in understanding and evaluating infestation processes and further vector control programs.

8.
Insects ; 12(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673456

ABSTRACT

Aedes aegypti, also known as the yellow fever mosquito, is the main vector of several arboviruses. In Ecuador, dengue and chikungunya are the most prevalent mosquito-borne diseases. Hence, there is a need to understand the population dynamics and genetic structure of the vector in tropical areas for a better approach towards effective vector control programs. This study aimed to assess the genetic diversity of Ae. aegypti, through the analyses of the mitochondrial gene ND4, using a combination of phylogenetic and population genetic structure from 17 sites in Ecuador. Results showed two haplotypes in the Ecuadorian populations of Ae. aegypti. Haplotype 1 was closely related to Ae. aegypti reported from America, Asia, and West Africa. Haplotype 2 was only related to samples from America. The sampled vectors from the diverse localities showed low nucleotide diversity (π = 0-0.01685) and genetic differentiation (FST = 0.152). AMOVA analyses indicated that most of the variation (85-91%) occurred within populations, suggesting that geographical barriers have little effect on the genetic structure of Ecuadorian populations of Ae. aegypti. These results agree with the one main population (K = 1) detected by Structure. Vector genetic identity may be a key factor in the planning of vector control strategies.

9.
Malar J ; 20(1): 106, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608024

ABSTRACT

BACKGROUND: Vector control for malaria prevention relies most often on the use of insecticide-treated bed net (ITNs) and indoor residual spraying. Little is known about the longevity of long-lasting insecticidal nets (LLINs) in the Americas. The physical integrity and insecticide retention of LLINs over time were monitored after a bed net distribution campaign to assess community practices around LLIN care and use in Waspam, northeastern Nicaragua. METHODS: At least 30 nets were collected at 6, 12, 24, and 36 months post distribution. Physical integrity was measured by counting holes and classifying nets into categories (good, damaged, and too torn) depending on a proportionate hole index (pHI). Insecticide bioefficacy was assessed using cone bioassays, and insecticide content measured using a cyanopyrethroid field test (CFT). RESULTS: At 6 months, 87.3 % of LLINs were in good physical condition, while by 36 months this decreased to 20.6 %, with 38.2 % considered 'too torn.' The median pHI increased from 7 at the 6-month time point to 480.5 by 36 months. After 36 months of use, median mortality in cone bioassays was 2 % (range: 0-6 %) compared to 16 % (range: 2-70 %) at 6 months. There was a decrease in the level of deltamethrin detected on the surface of the LLINs with 100 % of tested LLINs tested at 12 months and 24 months crossing the threshold for being considered a failed net by CFT. CONCLUSIONS: This first comprehensive analysis of LLIN durability in Central America revealed rapid loss of chemical bioefficacy and progressive physical damage over a 36-month period. Use of these findings to guide future LLIN interventions in malaria elimination settings in Nicaragua, and potentially elsewhere in the Americas, could help optimize the successful implementation of vector control strategies.

10.
Article in English | MEDLINE | ID: mdl-33572650

ABSTRACT

Aedes aegypti is a cosmopolitan vector for arboviruses dengue, Zika and chikungunya, disseminated in all Brazilian states. The Eco-Bio-Social (EBS) strategy is vital in Aedes aegypti control as it mobilizes stakeholders (government, professionals, society, and academics) to promote healthy environments. This paper describes the rationale and methods of expanding the EBS strategy for Aedes aegypti control in Fortaleza, Northeast Brazil. A cluster, non-randomized controlled clinical trial was developed to analyze the strategy's effectiveness in vulnerable territories (high incidence of dengue and violent deaths; low HDI; substandard urban infrastructure, high population density, and water scarcity). We selected two intervention and two control groups, resulting in a sample of approximately 16,000 properties. The intervention consisted of environmental management by sealing large elevated water tanks, introduction of beta fish in waterholes, elimination of potential breeding sites, and mobilization and training of schoolchildren, endemic disease workers, health workers, social mobilizers, and community leaders; community surveillance of arboviruses; construction and validation of a booklet for the prevention of arboviruses in pregnant women. We analyzed the costs of arboviruses to government and households, the intervention cost-effectiveness, chikungunya's chronicity, and acceptance, sustainability, and governance of vector control actions. The primary outcome (infestation) was analyzed using the house, container, and Breteau indices. We hope that this study will help us understand how to scale up strategies to fight Aedes aegypti in vulnerable areas.


Subject(s)
Aedes , Dengue , Zika Virus Infection , Zika Virus , Animals , Brazil/epidemiology , Child , Dengue/epidemiology , Dengue/prevention & control , Female , Humans , Mosquito Control , Mosquito Vectors , Pregnancy , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control
11.
Infect Genet Evol ; 90: 104759, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33556557

ABSTRACT

Sylvatic populations of Triatoma infestans represent a challenge to Chagas disease control as they are not targeted by vector control activities and may play a key role in post-spraying house re-infestation. Understanding sylvatic foci distribution and gene flow between sylvatic and domestic populations is crucial to optimize vector control interventions and elucidate the development and spread of insecticide resistance. Herein, the genetic profiles of five Andean T. infestans populations from Bolivia with distinct insecticide susceptibility profiles were compared. Multilocus genotypes based on eight microsatellites and the DNA sequence of a fragment of the cytochrome B (cytB) gene were obtained for 92 individuals. CytB haplotypes were analyzed with previously reported Bolivian T. infestans haplotypes to evaluate putative historical gene flow among populations. Each specimen was also screened for two nucleotide mutations in the sodium channel gene (kdr), related to pyrethroid resistance (L1014 and L9251). Significant genetic differentiation was observed among all populations, although individuals of admixed origin were detected in four of them. Notably, the genetic profiles of adjacent domestic and sylvatic populations of Mataral, characterized by higher levels of insecticide resistance, support their common ancestry. Only one sylvatic individual from Mataral carried the kdr mutation L1014, suggesting that this mechanism is unlikely to cause the altered insecticide susceptibility observed in these populations. However, as the resistance mutation is present in the area, it has the potential to be selected under insecticidal pressure. Genetic comparisons of these populations suggest that insecticide resistance is likely conferred by ancient trait(s) in T. infestans sylvatic populations, which are capable of invading domiciles. These results emphasize the need for stronger entomological surveillance in the region, including early detection of house invasion, particularly post-spraying, monitoring for resistance to pyrethroids and the design of integrative control actions that consider sylvatic foci around domestic settings and their dispersion dynamics.

12.
Mem Inst Oswaldo Cruz ; 115: e200313, 2021.
Article in English | MEDLINE | ID: mdl-33533870

ABSTRACT

BACKGROUND: Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES: Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS: In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS: Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION: The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Subject(s)
Aedes/drug effects , Insect Vectors/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Aedes/genetics , Aedes/virology , Animals , French Guiana , Insect Vectors/drug effects , Mosquito Control/methods , Mosquito Vectors/virology , Spatio-Temporal Analysis
13.
Parasit Vectors ; 14(1): 35, 2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33422133

ABSTRACT

BACKGROUND: Peri-urban and urban settings have recently gained more prominence in studies on vector-borne transmission of Trypanosoma cruzi due to sustained rural-to-urban migrations and reports of urban infestations with triatomines. Prompted by the finding of Triatoma infestans across the rural-to-urban gradient in Avia Terai, an endemic municipality of the Argentine Chaco, we assessed selected components of domestic transmission risk in order to determine its variation across the gradient. METHODS: A baseline vector survey was conducted between October 2015 and March 2016, following which we used multistage random sampling to select a representative sample of T. infestans at the municipal level. We assessed T. cruzi infection and blood-feeding sources of 561 insects collected from 109 houses using kinetoplast DNA-PCR assays and direct enzyme-linked immunosorbent assays, respectively. We stratified triatomines according to their collection site (domestic or peridomestic), and we further categorized peridomestic sites in ecotopes of low- or high-risk for T. cruzi infection. RESULTS: The overall adjusted prevalence of T. cruzi-infected T. infestans was 1.8% (95% confidence interval [CI] 1.3-2.3) and did not differ between peri-urban (1.7%) and rural (2.2%) environments. No infection was detected in bugs captured in the urban setting; rather, infected triatomines were mainly collected in rural and peri-urban domiciles, occurring in 8% of T. infestans-infested houses. The main blood-feeding sources of domestic and peridomestic triatomines across the gradient were humans and chickens, respectively. The proportion of triatomines that had fed on humans did not differ between peri-urban (62.5%) and rural (65.7%) domiciles, peaking in the few domestic triatomines collected in urban houses and decreasing significantly with an increasing proportion of chicken- and dog- or cat-fed bugs. The relative odds ratio (OR) of having a T. cruzi infection was nearly threefold higher in bugs having a blood meal on humans (OR 3.15), dogs (OR 2.80) or cats (OR: 4.02) in a Firth-penalized multiple logistic model. CONCLUSIONS: Trypanosoma cruzi transmission was likely occurring both in peri-urban and rural houses of Avia Terai. Widespread infestation in a third of urban blocks combined with high levels of human-triatomine contact in the few infested domiciles implies a threat to urban inhabitants. Vector control strategies and surveillance originally conceived for rural areas should be tailored to peri-urban and urban settings in order to achieve sustainable interruption of domestic transmission in the Chaco region.


Subject(s)
Chagas Disease/epidemiology , Chagas Disease/transmission , Insect Vectors/parasitology , Triatoma , Trypanosoma cruzi , Adult , Animals , Argentina/epidemiology , Cats , Chickens , Dogs , Enzyme-Linked Immunosorbent Assay , Feeding Behavior , Female , Goats , Humans , Male , Mice , Risk Factors , Rural Population
14.
PLoS Negl Trop Dis ; 15(1): e0009005, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33465098

ABSTRACT

BACKGROUND: The integration of house-screening and long-lasting insecticidal nets, known as insecticide-treated screening (ITS), can provide simple, safe, and low-tech Aedes aegypti control. Cluster randomised controlled trials in two endemic localities for Ae. aegypti of south Mexico, showed that ITS conferred both, immediate and sustained (~2 yr) impact on indoor-female Ae. aegypti infestations. Such encouraging results require further validation with studies quantifying more epidemiologically-related endpoints, including arbovirus infection in Ae. aegypti. We evaluated the efficacy of protecting houses with ITS on Ae. aegypti infestation and arbovirus infection during a Zika outbreak in Merida, Yucatan, Mexico. METHODOLOGY/PRINCIPAL FINDINGS: A two-arm cluster-randomised controlled trial evaluated the entomological efficacy of ITS compared to the absence of ITS (with both arms able to receive routine arbovirus vector control) in the neighbourhood Juan Pablo II of Merida. Cross-sectional entomological surveys quantified indoor adult mosquito infestation and arbovirus infection at baseline (pre-ITS installation) and throughout two post-intervention (PI) surveys spaced at 6-month intervals corresponding to dry/rainy seasons over one year (2016-2017). Household-surveys assessed the social reception of the intervention. Houses with ITS were 79-85% less infested with Aedes females than control houses up to one-year PI. A similar significant trend was observed for blood-fed Ae. aegypti females (76-82%). Houses with ITS had significantly less infected female Ae. aegypti than controls during the peak of the epidemic (OR = 0.15, 95%CI: 0.08-0.29), an effect that was significant up to a year PI (OR = 0.24, 0.15-0.39). Communities strongly accepted the intervention, due to its perceived mode of action, the prevalent risk for Aedes-borne diseases in the area, and the positive feedback from neighbours receiving ITS. CONCLUSIONS/SIGNIFICANCE: We show evidence of the protective efficacy of ITS against an arboviral disease of major relevance, and discuss the relevance of our findings for intervention adoption.

15.
Am J Trop Med Hyg ; 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33399039

ABSTRACT

Chagas disease is a potentially life-threatening illness caused by the protozoan Trypanosoma cruzi and transmitted, mainly, by hematophagous insects of the Triatominae subfamily. In Brazil, there are currently about 66 triatomine species distributed throughout the country's 27 states. Triatoma infestans is considered as a species of great vectorial importance, mainly because of its biological characteristics, such as the high degree of anthropophilia, adaptation to the home environment, ability to withstand long periods of fasting, and present a wide geographical distribution. Taking into account the epidemiological importance of these species, we carried out the first report of T. infestans in the Espírito Santo, Brazil, and development of an identification key for all species notified in that state, based on cytogenetic data. This information is important because they contribute to the direction of epidemiological surveillance activities carried out by vector control programs of the Espírito Santo, Brazil.

16.
J Med Entomol ; 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33511394

ABSTRACT

The increase in malaria transmission in the Amazon region motivated vector control units of the Ministry of Health of Ecuador and Peru to investigate Anopheles (Diptera: Culicidae) species present in transmission hotspots. Mosquitoes were collected using prokopack aspirators and CDC light traps (Ecuador) and human landing catch in Peru. In Ecuador, 84 Anopheles were captured from Pastaza, Morona Santiago, and Orellana provinces and identified morphologically [An. (An.) apicimacula Dyar and Knab, An. (Nys.) near benarrochi, An. (Nys.) near oswaldoi, An. (Nys.) near strodei, An. (An.) nimbus (Theobald, 1902), and An. (Nyssorhynchus) sp.]. In Peru, 1,150 Anopheles were collected in Andoas District. A subsample of 166 specimens was stored under silica and identified as An. near oswaldoi, An. darlingi, and An. (An.) mattogrossensis Lutz and Neiva. COI barcode region sequences were obtained for 137 adults (107 from Peru, 30 from Ecuador) identified by ITS2 PCR-RFLP as An. benarrochi Gabaldon, Cova Garcia, and Lopez and retained in the final analysis. Haplotypes from the present study plus An. benarrochi B GenBank sequences grouped separately from Brazilian An. benarrochi GenBank sequences by 44 mutation steps, indicating that the present study specimens were An. benarrochi B. Our findings confirm the presence of An. benarrochi B in Ecuador and reported here for the first time from the Amazonian provinces of Orellana and Morona Santiago. Furthermore, we confirm that the species collected in Andoas District in the Datem del Maranon Province, Peru, is An. benarrochi B, and we observed that it is highly anthropophilic. Overall, the known distribution of An. benarrochi B has been extended and includes southern Colombia, much of Peru and eastern Ecuador.

17.
Nat Commun ; 12(1): 151, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420058

ABSTRACT

Mosquito-borne viruses threaten the Caribbean due to the region's tropical climate and seasonal reception of international tourists. Outbreaks of chikungunya and Zika have demonstrated the rapidity with which these viruses can spread. Concurrently, dengue fever cases have climbed over the past decade. Sustainable disease control measures are urgently needed to quell virus transmission and prevent future outbreaks. Here, to improve upon current control methods, we analyze temporal and spatial patterns of chikungunya, Zika, and dengue outbreaks reported in the Dominican Republic between 2012 and 2018. The viruses that cause these outbreaks are transmitted by Aedes mosquitoes, which are sensitive to seasonal climatological variability. We evaluate whether climate and the spatio-temporal dynamics of dengue outbreaks could explain patterns of emerging disease outbreaks. We find that emerging disease outbreaks were robust to the climatological and spatio-temporal constraints defining seasonal dengue outbreak dynamics, indicating that constant surveillance is required to prevent future health crises.


Subject(s)
Chikungunya Fever/epidemiology , Communicable Diseases, Emerging/epidemiology , Dengue/epidemiology , Disease Outbreaks/statistics & numerical data , Endemic Diseases/statistics & numerical data , Zika Virus Infection/epidemiology , Adolescent , Aedes/virology , Animals , Chikungunya Fever/prevention & control , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Child , Child, Preschool , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Dengue/prevention & control , Dengue/transmission , Dengue/virology , Dengue Virus/isolation & purification , Disease Outbreaks/prevention & control , Dominican Republic/epidemiology , Endemic Diseases/prevention & control , Epidemiological Monitoring , Female , Humans , Infant , Infant, Newborn , Male , Mosquito Control , Mosquito Vectors/virology , Spatio-Temporal Analysis , Young Adult , Zika Virus/isolation & purification , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Zika Virus Infection/virology
18.
Parasitol Int ; 82: 102286, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33486127

ABSTRACT

Phlebotomine sand flies are considered the main vectors of Leishmania, the causal agents of leishmaniasis, which is a serious emerging public health problem worldwide. The use of biological control alternatives, like endosymbiotic bacteria (Wolbachia and Rickettsia), have been proposed to decrease sand fly populations and reduce Leishmania transmissions, yet only few records on the detection of Wolbachia or Rickettsia in sand flies are available worldwide. The aim of this study was to perform the molecular detection of Rickettsial agents associated with sand flies from the last patch of a rainforest in south-eastern Mexico, where a high prevalence of Leishmania infantum has been reported. Sampling effort of sand flies covered 300 trap-nights between 2011 and 2013, and a total of 925 specimens from twelve species were morphologically identified. Using PCR techniques, we identified a new lineage of the endosymbionts Rickettsia in Psathyromyia aclydifera (prevalence of 19.54%), and Wolbachia in Psathyromyia shannoni and Lutzomyia sp. (prevalence of 25%). The detected Wolbachia lineage was similar to the wWhi strain found in Pa. shannoni from Colombia and Nyssomyia whitmani from Brazil; whereas the identified Rickettsia represents a new lineage worldwide. This is the first record of Rickettsial agents associated to sand flies from this region, yet it remains for analysed if these bacteria possibly play a role as vector control agents, capable of reducing the sand fly populations in Mexico.

19.
Cochrane Database Syst Rev ; 1: CD013398, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33471371

ABSTRACT

BACKGROUND: Despite being preventable, malaria remains an important public health problem. The World Health Organization (WHO) reports that overall progress in malaria control has plateaued for the first time since the turn of the century. Researchers and policymakers are therefore exploring alternative and supplementary malaria vector control tools. Research in 1900 indicated that modification of houses may be effective in reducing malaria: this is now being revisited, with new research now examining blocking house mosquito entry points or modifying house construction materials to reduce exposure of inhabitants to infectious bites. OBJECTIVES: To assess the effects of house modifications on malaria disease and transmission. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Centre for Agriculture and Bioscience International (CAB) Abstracts (Web of Science); and the Latin American and Caribbean Health Science Information database (LILACS), up to 1 November 2019. We also searched the WHO International Clinical Trials Registry Platform (www.who.int/ictrp/search/en/), ClinicalTrials.gov (www.clinicaltrials.gov), and the ISRCTN registry (www.isrctn.com/) to identify ongoing trials up to the same date. SELECTION CRITERIA: Randomized controlled trials, including cluster-randomized controlled trials (cRCTs), cross-over studies, and stepped-wedge designs were eligible, as were quasi-experimental trials, including controlled before-and-after studies, controlled interrupted time series, and non-randomized cross-over studies. We only considered studies reporting epidemiological outcomes (malaria case incidence, malaria infection incidence or parasite prevalence). We also summarised qualitative studies conducted alongside included studies. DATA COLLECTION AND ANALYSIS: Two review authors selected eligible studies, extracted data, and assessed the risk of bias. We used risk ratios (RR) to compare the effect of the intervention with the control for dichotomous data. For continuous data, we presented the mean difference; and for count and rate data, we used rate ratios. We presented all results with 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS: Six cRCTs met our inclusion criteria, all conducted in sub-Saharan Africa; three randomized by household, two by village, and one at the community level. All trials assessed screening of windows, doors, eaves, ceilings or any combination of these; this was either alone, or in combination with eave closure, roof modification or eave tube installation (a "lure and kill" device that reduces mosquito entry whilst maintaining some airflow). In two trials, the interventions were insecticide-based. In five trials, the researchers implemented the interventions. The community implemented the interventions in the sixth trial. At the time of writing the review, two of the six trials had published results, both of which compared screened houses (without insecticide) to unscreened houses. One trial in Ethiopia assessed screening of windows and doors. Another trial in the Gambia assessed full screening (screening of eaves, doors and windows), as well as screening of ceilings only. Screening may reduce clinical malaria incidence caused by Plasmodium falciparum (rate ratio 0.38, 95% CI 0.18 to 0.82; 1 trial, 184 participants, 219.3 person-years; low-certainty evidence; Ethiopian study). For malaria parasite prevalence, the point estimate, derived from The Gambia study, was smaller (RR 0.84, 95% CI 0.60 to 1.17; 713 participants, 1 trial; low-certainty evidence), and showed an effect on anaemia (RR 0.61, 95% CI 0.42, 0.89; 705 participants; 1 trial, moderate-certainty evidence). Screening may reduce the entomological inoculation rate (EIR): both trials showed lower estimates in the intervention arm. In the Gambian trial, there was a mean difference in EIR between the control houses and treatment houses ranging from 0.45 to 1.50 (CIs ranged from -0.46 to 2.41; low-certainty evidence), depending on the study year and treatment arm. The Ethiopian trial reported a mean difference in EIR of 4.57, favouring screening (95% CI 3.81 to 5.33; low-certainty evidence). Pooled analysis of the trials showed that individuals living in fully screened houses were slightly less likely to sleep under a bed net (RR 0.84, 95% CI 0.65 to 1.09; 2 trials, 203 participants). In one trial, bed net usage was also lower in individuals living in houses with screened ceilings (RR 0.69, 95% CI 0.50 to 0.95; 1 trial, 135 participants). AUTHORS' CONCLUSIONS: Based on the two trials published to date, there is some evidence that screening may reduce malaria transmission and malaria infection in people living in the house. The four trials awaiting publication are likely to enrich the current evidence base, and we will add these to this review when they become available.


Subject(s)
Construction Materials , Housing , Malaria, Falciparum/prevention & control , Adolescent , Adult , Africa South of the Sahara/epidemiology , Anemia/diagnosis , Anemia/epidemiology , Animals , Architecture , Child , Child, Preschool , Female , Humans , Incidence , Infant , Insecticides , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Mosquito Nets , Mosquito Vectors , Plasmodium falciparum , Pregnancy , Prevalence , Randomized Controlled Trials as Topic/methods , Randomized Controlled Trials as Topic/statistics & numerical data
20.
Pest Manag Sci ; 77(4): 1981-1989, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33314578

ABSTRACT

BACKGROUND: With a shortage of effective options for control of Aedes aegypti in Puerto Rico due to widespread resistance to conventional mosquito adulticides, an alternative approach was investigated to reduce vector populations. In two areas (totaling 144 ha) of the municipality of Bayamón, Puerto Rico, Bacillus thuringiensis israelensis (Bti) AM65-52 WDG was applied at a rate of 500 g/ha using vehicle-mounted aqueous wide-area larvicide spray applications weekly for 4 weeks and then every other week for a further 16 weeks. Bioassay jars were placed in the field to monitor for deposition of Bti droplets in open spaces, and under vegetation and building coverage. Autocidal gravid ovitraps were placed throughout the field site to monitor the population of adult female Ae. aegypti in both treatment and control sites. RESULTS: Larvicide spray was successfully deposited into jars in an array of open and covered locations, as confirmed by larval bioassays. After the fourth weekly spraying, differences in autocidal gravid ovitrap densities were observed between treatment and control sites resulting in 62% (P = 0.0001) and 28% (P < 0.0001) reductions in adult female Ae. aegypti numbers. CONCLUSION: Repeated wide-area larvicide spray application of Bti AM65-52 WDG to residential areas in Puerto Rico effectively suppressed dengue vector populations. The success of this trial has led to expansion of the WALS® program to a larger area of Bayamón and other municipalities in Puerto Rico. © 2020 Society of Chemical Industry.


Subject(s)
Aedes , Bacillus thuringiensis , Animals , Female , Larva , Mosquito Control , Mosquito Vectors , Puerto Rico
SELECTION OF CITATIONS
SEARCH DETAIL
...