Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.637
Filter
1.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182703

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Macrophages , SARS-CoV-2 , Virus Replication , Animals , Mice , RAW 264.7 Cells , Virus Replication/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/virology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Mice, Transgenic , Pogostemon/chemistry , Cytokines/metabolism , Apoptosis/drug effects , Lung/drug effects , Lung/virology , Lung/pathology , Glucosides/pharmacology , Glucosides/isolation & purification , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Humans
2.
J Environ Sci (China) ; 149: 406-418, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181653

ABSTRACT

Improving the accuracy of anthropogenic volatile organic compounds (VOCs) emission inventory is crucial for reducing atmospheric pollution and formulating control policy of air pollution. In this study, an anthropogenic speciated VOCs emission inventory was established for Central China represented by Henan Province at a 3 km × 3 km spatial resolution based on the emission factor method. The 2019 VOCs emission in Henan Province was 1003.5 Gg, while industrial process source (33.7%) was the highest emission source, Zhengzhou (17.9%) was the city with highest emission and April and August were the months with the more emissions. High VOCs emission regions were concentrated in downtown areas and industrial parks. Alkanes and aromatic hydrocarbons were the main VOCs contribution groups. The species composition, source contribution and spatial distribution were verified and evaluated through tracer ratio method (TR), Positive Matrix Factorization Model (PMF) and remote sensing inversion (RSI). Results show that both the emission results by emission inventory (EI) (15.7 Gg) and by TR method (13.6 Gg) and source contribution by EI and PMF are familiar. The spatial distribution of HCHO primary emission based on RSI is basically consistent with that of HCHO emission based on EI with a R-value of 0.73. The verification results show that the VOCs emission inventory and speciated emission inventory established in this study are relatively reliable.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Volatile Organic Compounds , Volatile Organic Compounds/analysis , China , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/statistics & numerical data , Air Pollution/analysis
4.
Cell Rep Methods ; : 100856, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39243752

ABSTRACT

The ongoing co-circulation of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains necessitates advanced methods such as high-throughput multiplex pseudovirus systems for evaluating immune responses to different variants, crucial for developing updated vaccines and neutralizing antibodies (nAbs). We have developed a quadri-fluorescence (qFluo) pseudovirus platform by four fluorescent reporters with different spectra, allowing simultaneous measurement of the nAbs against four variants in a single test. qFluo shows high concordance with the classical single-reporter assay when testing monoclonal antibodies and human plasma. Utilizing qFluo, we assessed the immunogenicities of the spike of BA.5, BQ.1.1, XBB.1.5, and CH.1.1 in hamsters. An analysis of cross-neutralization against 51 variants demonstrated superior protective immunity from XBB.1.5, especially against prevalent strains such as "FLip" and JN.1, compared to BA.5. Our finding partially fills the knowledge gap concerning the immunogenic efficacy of the XBB.1.5 vaccine against current dominant variants, being instrumental in vaccine-strain decisions and insight into the evolutionary path of SARS-CoV-2.

5.
Am J Orthopsychiatry ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250251

ABSTRACT

We examined differences between social workers in hospitals versus social workers in community health services regarding levels of professional quality of life (ProQoL), proximity to COVID-19, resilience, perceived social support, and preparedness for the next pandemic during waves 3-5 of the COVID-19 pandemic in Israel (December 2020-December 2021, the main COVID-19 variants were Alpha and Delta). We also examined the moderating role of resilience, social support, preparedness for the next pandemic, and health care service type in the association between proximity to COVID-19 and ProQoL. Participants were 163 social workers from four hospitals and 98 social workers from a major health maintenance organization in the community. Social workers in both settings revealed moderate-high levels of compassion satisfaction and moderate levels of burnout and secondary traumatic stress. The study's model indicated that after controlling for the effects of the covariates, higher levels of self-reported-resilience and greater perceived organizational support were associated with higher compassion satisfaction and lower burnout and secondary traumatic stress. Furthermore, a stronger sense of preparedness for the next pandemic was related to lower levels of burnout. The model indicated that the effects of organizational support, informal social support, and preparedness on compassion satisfaction were dependent on the study group (i.e., working in hospital or community settings). Findings indicate that intervention programs should be implemented to help increase compassion satisfaction and prevent/reduce burnout and secondary traumatic stress among social workers in health care settings during health care crises. Enhancing resilience and preparedness should focus not only on the social workers as individuals but also on the institutions for which they work. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

6.
Biomed J ; : 100787, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251135

ABSTRACT

We planned a series of experiments to investigate the possible role of spike protein of different SARS-CoV-2 variants in influencing erythrocyte biology. The values of erythrocyte count, hemoglobin, and mean corpuscular hemoglobin (MHC) did not vary across all samples challenged with both concentrations of the four different SARS-CoV-2 recombinant spike proteins. A significant increase in mean corpuscular volume (MCV) was observed with the recombinant SARS-CoV-2 Alpha and Delta spike proteins at both 2 and 20 ng/mL final concentrations. Red blood cell distribution width (RDW) values increased significantly in samples treated with 20 ng/mL of all SARS-CoV-2 recombinant spike proteins and reached the highest values in samples treated with Omicron recombinant spike protein. Blood smear revision evidenced hemagglutination and rouleaux in samples to which recombinant SARS-CoV-2 spike proteins were added, especially in those with Alpha and Delta variants.

7.
Braz J Microbiol ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254799

ABSTRACT

Neutralizing antibody (nAb) responses against SARS-CoV-2 variants after inactivated virus vaccine (CoronaVac) in kidney transplant recipients (KTRs) with or without SARS-CoV-2 infection history remains unclear. We aimed to evaluate the neutralizing antibody responses against emerging SARS-CoV-2 variants after two doses of CoronaVac in these patients. 22.2% of participants had hybrid immunity. Anti-spike IgG antibodies were evidenced in 44% of the patients. nAbs against B.1.111, Mu, and Omicron were detected in 28.5%, 17.9%, and 21.4% of naïve KTRs, respectively. Furthermore, nearly 100% of KTRs with hybrid immunity had nAbs against the variants evaluated. Thus, a significant proportion of infection-naïve KTRs had no detectable nAb titers against Mu and Omicron variants after two doses of the CoronaVac vaccine. However, the nAb titers were significantly higher in patients with hybrid immunity, and it was no association between the immunosuppressive regimen and the seropositivity rate of anti-SARS-CoV-2 neutralizing antibodies. Therefore, hybrid KTRs are protected against COVID-19 by emerging variants able to escape from vaccine-elicited nAbs such as Mu and Omicron.

8.
J Appl Lab Med ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246012

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants demonstrate predilection for different regions of the respiratory tract. While saliva-based reverse transcription-polymerase chain reaction (RT-PCR) testing is a convenient, cost-effective alternative to nasopharyngeal swabs (NPS), few studies to date have investigated whether saliva sensitivity differs across variants of concern. METHODS: SARS-CoV-2 RT-PCR was performed on paired NPS and saliva specimens collected from individuals with acute coronavirus disease 2019 (COVID-19) symptoms or exposure to a COVID-19 household contact. Viral genome sequencing of NPS specimens and Los Angeles County surveillance data were used to determine the variant of infection. Saliva sensitivity was calculated using NPS-positive RT-PCR as the reference standard. Factors contributing to the likelihood of saliva SARS-CoV-2 RT-PCR positivity were evaluated with univariate and multivariable analyses. RESULTS: Between June 2020 and December 2022, 548 saliva samples paired with SARS-CoV-2 positive NPS samples were tested by RT-PCR. Overall, saliva sensitivity for SARS-CoV-2 detection was 61.7% (95% CI, 57.6%-65.7%). Sensitivity was highest with Delta infection (79.6%) compared to pre-Delta (58.5%) and Omicron (61.5%) (P = 0.003 and 0.01, respectively). Saliva sensitivity was higher in symptomatic individuals across all variants compared to asymptomatic cases [pre-Delta 80.6% vs 48.3% (P < 0.001), Delta 100% vs 72.5% (P = 0.03), Omicron 78.7% vs 51.2% (P < 0.001)]. Infection with Delta, symptoms, and high NPS viral load were independently associated with 2.99-, 3.45-, and 4.0-fold higher odds of SARS-CoV-2 detection by saliva-based RT-PCR (P = 0.004, <0.001, and <0.001), respectively. CONCLUSIONS: As new variants emerge, evaluating saliva-based testing approaches may be crucial to ensure effective virus detection.

10.
Microbiol Spectr ; : e0340623, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240085

ABSTRACT

Although the Omicron variant has been associated with greater transmissibility and tropism of the upper respiratory tract, the clinical and pathogenic features of patients infected with the Omicron variant during an outbreak in China have been unclear. Adults with COVID-19 were retrospectively enrolled from seven medical centers in Guangzhou, China, and clinical information and specimens ( BALF, sputum, and throat swabs) from participants were collected. Conventional detection methods, metagenomics next-generation sequencing (mNGS), and other methods were used to detect pathogens in lower respiratory tract samples. From December 2022 to January 2023, we enrolled 836 patients with COVID-19, among which 56.7% patients had severe/critical illness. About 91.4% of patients were infected with the Omicron strain (BA.5.2). The detection rate of possible co-infection pathogens was 53.4% by mNGS, including Klebsiella pneumoniae (16.3%), Aspergillus fumigatus (12.2%), and Pseudomonas aeruginosa (11.8%). The co-infection rate was 19.5%, with common pathogens being Streptococcus pneumoniae (11.5%), Haemophilus influenzae (9.2%), and Adenovirus (6.9%). The superinfection rate was 75.4%, with common pathogens such as Klebsiella pneumoniae (26.1%) and Pseudomonas aeruginosa (19.4%). Klebsiella pneumoniae (27.1%% vs 6.1%, P < 0.001), Aspergillus fumigatus (19.6% vs 5.3%, P = 0.001), Acinetobacter baumannii (18.7% vs 4.4%, P = 0.001), Pseudomonas aeruginosa (16.8% vs 7.0%, P = 0.024), Staphylococcus aureus (14.0% vs 5.3%, P = 0.027), and Streptococcus pneumoniae (0.9% vs 10.5%, P = 0.002) were more common in severe cases. Co-infection and superinfection of bacteria and fungi are common in patients with severe pneumonia associated with Omicron variant infection. Sequencing methods may aid in the diagnosis and differential diagnosis of pathogens. IMPORTANCE: Our study has analyzed the clinical characteristics and pathogen spectrum of the lower respiratory tract associated with co-infection or superinfection in Guangzhou during the outbreak of the Omicron strain, particularly after the relaxation of the epidemic prevention and control strategy in China. This study will likely prompt further research into the specific issue, which will benefit clinical practice.

11.
PLoS One ; 19(9): e0307805, 2024.
Article in English | MEDLINE | ID: mdl-39240827

ABSTRACT

BACKGROUND: Healthcare workers (HCWs) have suffered considerable morbidity and mortality during the COVID-19 pandemic. Few data on COVID-19 vaccine effectiveness (VE) are available from middle-income countries in the WHO European Region. We evaluated primary series COVID-19 VE against laboratory-confirmed COVID-19 among HCWs in Georgia. METHODS: HCWs in six hospitals in Georgia were invited to enroll in a prospective cohort study conducted during March 19-December 5, 2021. Participants completed weekly symptom questionnaires. Symptomatic HCWs were tested by RT-PCR and/or rapid antigen test (RAT), and participants were routinely tested for SARS-CoV-2 by RT-PCR or RAT, regardless of symptoms. Serology was collected at enrolment, and quarterly thereafter, and tested by electrochemiluminescence immunoassay for SARS-CoV-2 antibodies. We defined primary series vaccination as two doses of COVID-19 vaccine received ≥14 days before symptom onset. We estimated VE as (1-hazard ratio)*100 using a Cox proportional hazards model with vaccination status as a time-varying covariate. Estimates were adjusted by potential confounders that changed the VE estimate by more than 5%, according to the change-in-estimate approach. RESULTS: Overall, 1561/3849 (41%) eligible HCWs enrolled and were included in the analysis. The median age was 40 (IQR: 30-53), 1318 (84%) were female, and 1003 (64%) had laboratory evidence of prior SARS-Cov-2 infection. At enrolment, 1300 (83%) were unvaccinated; By study end, 1082 (62%) had completed a primary vaccine series (69% BNT162b2 (Pfizer-BioNTech); 22% BBIBP-CorV (Sinopharm); 9% other). During the study period, 191(12%) participants had a new PCR- or RAT-confirmed symptomatic SARS-CoV-2 infection. VE against PCR- or RAT- confirmed symptomatic SARS-CoV-2 infection was 58% (95%CI: 41; 70) for all primary series vaccinations, 68% (95%CI: 51; 79) for BNT162b2, and 40% (95%CI: 1; 64) for BBIBP-CorV vaccines. Among previously infected HCWs, VE was 58% (95%CI: 11; 80). VE against medically attended COVID-19 was 52% (95%CI: 28; 68), and VE against hospitalization was 69% (95% CI: 36; 85). During the period of predominant Delta variant circulation (July-December 2021), VE against symptomatic COVID-19 was 52% (95%CI: 30; 66). CONCLUSIONS: Primary series vaccination with BNT162b2 and BBIBP-CorV was effective at preventing COVID-19 among HCWs, most of whom had previous infection, during a period of mainly Delta circulation. Our results support the utility of COVID-19 primary vaccine series, and the importance of increasing coverage, even among previously infected individuals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Health Personnel , SARS-CoV-2 , Vaccine Efficacy , Humans , Female , Male , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Adult , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Middle Aged , Prospective Studies , Georgia (Republic)/epidemiology , Vaccination , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage
12.
PLoS One ; 19(9): e0306740, 2024.
Article in English | MEDLINE | ID: mdl-39240908

ABSTRACT

IMPORTANCE: Understanding the susceptibility and infectiousness of children and adolescents in comparison to adults is important to appreciate their role in the COVID-19 pandemic. OBJECTIVE: To determine SARS-CoV-2 susceptibility and infectiousness of children and adolescents with adults as comparator for three variants (wild-type, alpha, delta) in the household setting. We aimed to identify the effects independent of vaccination or prior infection. DATA SOURCES: We searched EMBASE, PubMed and medRxiv up to January 2022. STUDY SELECTION: Two reviewers independently identified studies providing secondary household attack rates (SAR) for SARS-CoV-2 infection in children (0-9 years), adolescents (10-19 years) or both compared with adults (20 years and older). DATA EXTRACTION AND SYNTHESIS: Two reviewers independently extracted data, assessed risk of bias and performed a random-effects meta-analysis model. MAIN OUTCOMES AND MEASURES: Odds ratio (OR) for SARS-CoV-2 infection comparing children and adolescents with adults stratified by wild-type (ancestral type), alpha, and delta variant, respectively. Susceptibility was defined as the secondary attack rate (SAR) among susceptible household contacts irrespective of the age of the index case. Infectiousness was defined as the SAR irrespective of the age of household contacts when children/adolescents/adults were the index case. RESULTS: Susceptibility analysis: We included 27 studies (308,681 contacts), for delta only one (large) study was available. Compared to adults, children and adolescents were less susceptible to the wild-type and delta, but equally susceptible to alpha. Infectiousness analysis: We included 21 studies (201,199 index cases). Compared to adults, children and adolescents were less infectious when infected with the wild-type and delta. Alpha -related infectiousness remained unclear, 0-9 year old children were at least as infectious as adults. Overall SAR among household contacts varied between the variants. CONCLUSIONS AND RELEVANCE: When considering the potential role of children and adolescents, variant-specific susceptibility, infectiousness, age group and overall transmissibility need to be assessed.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Child , Adolescent , Adult , Disease Susceptibility , Family Characteristics , Child, Preschool , Young Adult , Infant
13.
PLoS One ; 19(9): e0309645, 2024.
Article in English | MEDLINE | ID: mdl-39240934

ABSTRACT

Recent studies suggest an increased risk of reinfection with the SARS-CoV-2 Omicron variant compared with previous variants, potentially due to an increased ability to escape immunity specific to older variants, high antigenic divergence of Omicron from earlier virus variants as well as its altered cell entry pathway. The present study sought to investigate epidemiological evidence for differential SARS-CoV-2 reinfection intervals and incidence rates for the Delta versus Omicron variants within Wales. Reinfections in Wales up to February 2022 were defined using genotyping and whole genome sequencing. The median inter-infection intervals for Delta and Omicron were 226 and 192 days, respectively. An incidence rate ratio of 2.17 for reinfection with Omicron compared to Delta was estimated using a conditional Poisson model, which accounted for several factors including sample collection date, age group, area of residence, vaccination and travel status. These findings are consistent with an increased risk of reinfection with the Omicron variant, and highlight the value of monitoring emerging variants that have the potential for causing further waves of cases.


Subject(s)
COVID-19 , Reinfection , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/virology , Humans , Reinfection/virology , Reinfection/epidemiology , Wales/epidemiology , Adult , Middle Aged , Male , Female , Aged , Adolescent , Incidence , Young Adult , Child , Child, Preschool , Infant
14.
PLoS Comput Biol ; 20(9): e1012443, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39241101

ABSTRACT

Genomic surveillance of pathogen evolution is essential for public health response, treatment strategies, and vaccine development. In the context of SARS-COV-2, multiple models have been developed including Multinomial Logistic Regression (MLR) describing variant frequency growth as well as Fixed Growth Advantage (FGA), Growth Advantage Random Walk (GARW) and Piantham parameterizations describing variant Rt. These models provide estimates of variant fitness and can be used to forecast changes in variant frequency. We introduce a framework for evaluating real-time forecasts of variant frequencies, and apply this framework to the evolution of SARS-CoV-2 during 2022 in which multiple new viral variants emerged and rapidly spread through the population. We compare models across representative countries with different intensities of genomic surveillance. Retrospective assessment of model accuracy highlights that most models of variant frequency perform well and are able to produce reasonable forecasts. We find that the simple MLR model provides ∼0.6% median absolute error and ∼6% mean absolute error when forecasting 30 days out for countries with robust genomic surveillance. We investigate impacts of sequence quantity and quality across countries on forecast accuracy and conduct systematic downsampling to identify that 1000 sequences per week is fully sufficient for accurate short-term forecasts. We conclude that fitness models represent a useful prognostic tool for short-term evolutionary forecasting.

15.
Metabolomics ; 20(5): 102, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242444

ABSTRACT

INTRODUCTION: Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident discovery of breath-based biomarkers. OBJECTIVES: To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs in the breath of a heterogeneous human population. METHODS: The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous population. Owlstone Medical's Breath Biopsy® OMNI® platform, consisting of sample collection, TD-GC-MS analysis and feature extraction was utilized. VOCs were determined to be "on-breath" if they met at least one of three pre-defined metrics compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical standards, using retention indexing and high-resolution accurate mass spectral matching. RESULTS: 1471 VOCs were present in > 80% of samples (breath and background), and 585 were on-breath by at least one metric. Of these, 148 have been identified covering a broad range of chemical classes. CONCLUSIONS: A robust breath collection and relative-quantitative analysis method has been developed, producing a list of 148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved standardization.


Subject(s)
Breath Tests , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Breath Tests/methods , Humans , Gas Chromatography-Mass Spectrometry/methods , Male , Female , Middle Aged , Adult , Biomarkers/analysis , Aged , Young Adult , Exhalation
16.
iScience ; 27(9): 110174, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39224511

ABSTRACT

Antibodies represent a primary mediator of protection against respiratory viruses. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are poorly understood. Here we show that antibody correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, NAbs were the strongest correlate of protection and linked to spike-specific binding antibodies and other extra-NAb functions that create a larger protective network. In bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal spike-specific immunoglobulin (Ig)G, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites.

17.
J Virol ; : e0052824, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230305

ABSTRACT

The continued emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates updating coronavirus disease 2019 (COVID-19) vaccines to match circulating strains. The immunogenicity and efficacy of these vaccines must be tested in pre-clinical animal models. In Syrian hamsters, we measured the humoral and cellular immune response after immunization with the nanoparticle recombinant Spike (S) protein-based COVID-19 vaccine (Novavax, Inc.). We also compared the efficacy of the updated monovalent XBB.1.5 variant vaccine with previous COVID-19 vaccines for the induction of XBB.1.5 and EG.5.1 neutralizing antibodies and protection against a challenge with the EG.5.1 variant of SARS-CoV-2. Immunization induced high levels of S-specific IgG and IgA antibody-secreting cells and antigen-specific CD4+ T cells. The XBB.1.5 and XBB.1.16 vaccines, but not the Prototype vaccine, induced high levels of neutralizing antibodies against the XBB.1.5, EG.5.1, and JN.1 variants of SARS-CoV-2. Upon challenge with the Omicron EG.5.1 variant, the XBB.1.5 and XBB.1.16 vaccines reduced the virus load in the lungs, nasal turbinates, trachea, and nasal washes. The bivalent vaccine (Prototype rS + BA.5 rS) continued to offer protection in the trachea and lungs, but protection was reduced in the upper airways. By contrast, the monovalent Prototype vaccine no longer offered good protection, and breakthrough infections were observed in all animals and tissues. Thus, based on these study results, the protein-based XBB.1.5 vaccine is immunogenic and increased the breadth of protection against the Omicron EG.5.1 variant in the Syrian hamster model. IMPORTANCE: As SARS-CoV-2 continues to evolve, there is a need to assess the immunogenicity and efficacy of updated vaccines against newly emerging variants in pre-clinical models such as mice and hamsters. Here, we compared the immunogenicity and efficacy between the updated XBB.1.5, the original Prototype Wuhan-1, and the bivalent Prototype + BA.5 vaccine against a challenge with the EG.5.1 Omicron variant of SARS-CoV-2 in hamsters. The XBB.1.5 and bivalent vaccine, but not the Prototype, induced serum-neutralizing antibodies against EG.5.1, albeit the titers were higher in the XBB.1.5 immunized hamsters. The presence of neutralizing antibodies was associated with complete protection against EG.5.1 infection in the lower airways and reduced virus titers in the upper airways. Compared with the bivalent vaccine, immunization with XBB.1.5 improved viral control in the nasal turbinates. Together, our data show that the updated vaccine is immunogenic and that it offers better protection against recent variants of SARS-CoV-2.

18.
Sci Rep ; 14(1): 20728, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237611

ABSTRACT

The characteristics of the host are crucial in the final outcome of COVID-19. Herein, the influence of genetic and clinical variants in COVID-19 severity was investigated in a total of 1350 patients. Twenty-one single nucleotide polymorphisms of genes involved in SARS-CoV-2 sensing as Toll-like-Receptor 7, antiviral immunity as the type I interferon signalling pathway (TYK2, STAT1, STAT4, OAS1, SOCS) and the vasoactive intestinal peptide and its receptors (VIP/VIPR1,2) were studied. To analyse the association between polymorphisms and severity, a model adjusted by age, sex and different comorbidities was generated by ordinal logistic regression. The genotypes rs8108236-AA (OR 0.12 [95% CI 0.02-0.53]; p = 0.007) and rs280519-AG (OR 0.74 [95% CI 0.56-0.99]; p = 0.03) in TYK2, and rs688136-CC (OR 0.7 [95% CI 0.5-0.99]; p = 0.046) in VIP, were associated with lower severity; in contrast, rs3853839-GG in TLR7 (OR 1.44 [95% CI 1.07-1.94]; p = 0.016), rs280500-AG (OR 1.33 [95% CI 0.97-1.82]; p = 0.078) in TYK2 and rs1131454-AA in OAS1 (OR 1.29 [95% CI 0.95-1.75]; p = 0.110) were associated with higher severity. Therefore, these variants could influence the risk of severe COVID-19.


Subject(s)
COVID-19 , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Male , Female , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Aged , Adult , Toll-Like Receptor 7/genetics , TYK2 Kinase/genetics , Genotype , Genetic Predisposition to Disease , 2',5'-Oligoadenylate Synthetase/genetics
19.
Front Public Health ; 12: 1442728, 2024.
Article in English | MEDLINE | ID: mdl-39224554

ABSTRACT

Background: China exited strict Zero-COVID policy with a surge in Omicron variant infections in December 2022. Given China's pandemic policy and population immunity, employing Baidu Index (BDI) to analyze the evolving disease landscape and estimate the nationwide pneumonia hospitalizations in the post Zero COVID period, validated by hospital data, holds informative potential for future outbreaks. Methods: Retrospective observational analyses were conducted at the conclusion of the Zero-COVID policy, integrating internet search data alongside offline records. Methodologies employed were multidimensional, encompassing lagged Spearman correlation analysis, growth rate assessments, independent sample T-tests, Granger causality examinations, and Bayesian structural time series (BSTS) models for comprehensive data scrutiny. Results: Various diseases exhibited a notable upsurge in the BDI after the policy change, consistent with the broader trajectory of the COVID-19 pandemic. Robust connections emerged between COVID-19 and diverse health conditions, predominantly impacting the respiratory, circulatory, ophthalmological, and neurological domains. Notably, 34 diseases displayed a relatively high correlation (r > 0.5) with COVID-19. Among these, 12 exhibited a growth rate exceeding 50% post-policy transition, with myocarditis escalating by 1,708% and pneumonia by 1,332%. In these 34 diseases, causal relationships have been confirmed for 23 of them, while 28 garnered validation from hospital-based evidence. Notably, 19 diseases obtained concurrent validation from both Granger causality and hospital-based data. Finally, the BSTS models approximated approximately 4,332,655 inpatients diagnosed with pneumonia nationwide during the 2 months subsequent to the policy relaxation. Conclusion: This investigation elucidated substantial associations between COVID-19 and respiratory, circulatory, ophthalmological, and neurological disorders. The outcomes from comprehensive multi-dimensional cross-over studies notably augmented the robustness of our comprehension of COVID-19's disease spectrum, advocating for the prospective utility of internet-derived data. Our research highlights the potential of Internet behavior in predicting pandemic-related syndromes, emphasizing its importance for public health strategies, resource allocation, and preparedness for future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , China/epidemiology , Retrospective Studies , Hospitalization/statistics & numerical data , Bayes Theorem , Health Policy , Pandemics
20.
Front Immunol ; 15: 1443297, 2024.
Article in English | MEDLINE | ID: mdl-39224588

ABSTRACT

α -1 antitrypsin (A1AT) is a 52 kDa acute-phase glycoprotein belonging to the serine protease inhibitor superfamily (SERPIN). It is primarily synthesized by hepatocytes and to a lesser extent by monocytes, macrophages, intestinal epithelial cells, and bronchial epithelial cells. A1AT is encoded by SERPINA1 locus, also known as PI locus, highly polymorphic with at least 100 allelic variants described and responsible for different A1AT serum levels and function. A1AT inhibits a variety of serine proteinases, but its main target is represented by Neutrophil Elastase (NE). However, recent attention has been directed towards its immune-regulatory and homeostatic activities. A1AT exerts immune-regulatory effects on different cell types involved in innate and adaptive immunity. Additionally, it plays a role in metal and lipid metabolism, contributing to homeostasis. An adequate comprehension of these mechanisms could support the use of A1AT augmentation therapy in many disorders characterized by a chronic immune response. The aim of this review is to provide an up-to-date understanding of the molecular mechanisms and regulatory pathways responsible for immune-regulatory and homeostatic activities of A1AT. This knowledge aims to support the use of A1AT in therapeutic applications. Furthermore, the review summarizes the current state of knowledge regarding the application of A1AT in clinical and laboratory settings human and animal models.


Subject(s)
Homeostasis , alpha 1-Antitrypsin , Humans , alpha 1-Antitrypsin/immunology , alpha 1-Antitrypsin/therapeutic use , alpha 1-Antitrypsin/metabolism , Animals , Immunity, Innate , Adaptive Immunity
SELECTION OF CITATIONS
SEARCH DETAIL