Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 930
Filter
1.
Medwave ; 22(3): e8722, 2022 Apr 26.
Article in Spanish, English | MEDLINE | ID: mdl-35507807

ABSTRACT

Introduction: Hantavirus cardiopulmonary syndrome is an infection caused by rodents of the Bunyanvirales family towards humans. This disease in Chile is considered endemic, which has a high fatality rate. At present, some studies show the contagion between people of the Andes virus, whose locality is concentrated in Argentina and Chile. Objectives: Analyze the possibility of hantavirus transmission between humans using an SEIR-type mathematical model. Methods: An SEIR (Susceptible, Exposed, Infectious and Recovered) mathematical model to express the dynamics of hantavirus disease is proposed, including the possibility of human-to-human transmission and the perception of risk. Results: The peak of human-to-human contagion decreases by about 25% after increasing peoples perception of risk by reducing the rate of resistance to changeand increasing the speed of peoples reaction. Conclusions: It is urgent to review risk communication strategies and prevention measures in the face of this possibility of massive human-tohuman infections, in addition to strengthening research and planning the development of a vaccine to protect populations exposed to this disease with a high fatality rate.


Introducción: El síndrome cardiopulmonar por hantavirus es una enfermedad causada por un virus perteneciente al orden bunyanvirales, y transmitida hacia los humanos a través de roedores. Esta enfermedad en Chile es considerada endémica, la cual tiene una alta tasa de letalidad. En la actualidad existen estudios que evidencian el contagio entre personas del virus Andes, cuya localidad se concentra en los países de Argentina y Chile. Objetivos: Analizar la posibilidad de transmisión de hantavirus entre humanos, mediante un modelo matemático tipo SEIR. Métodos: Se plantea un modelo matemático tipo SEIR (susceptible, expuesto, infeccioso y recuperado) para expresar la dinámica de la enfermedad por hantavirus, incluyendo la posibilidad de transmisión entre humanos y la percepción del riesgo. Resultados: El máximo de contagio entre humanos disminuye cerca de 25% tras aumentar la percepción de riesgo de las personas, mediante la reducción de la tasa de resistencia al cambio y aumento la velocidad de reaccionar de las personas. Conclusiones: Es urgente revisar las estrategias de comunicación de riesgo y medidas de prevención ante esta posibilidad de contagios masivos entre humanos, además de fortalecer la investigación y proyectar el desarrollo de una vacuna para proteger las poblaciones expuestas a esta enfermedad con alta tasa de letalidad.


Subject(s)
Communicable Diseases , Hantavirus Infections , Hantavirus Pulmonary Syndrome , Hantavirus , Chile/epidemiology , Hantavirus Infections/epidemiology , Hantavirus Pulmonary Syndrome/epidemiology , Humans
2.
Radiol Clin North Am ; 60(3): 383-397, 2022 May.
Article in English | MEDLINE | ID: mdl-35534126

ABSTRACT

Viral pneumonia is usually community acquired and caused by influenza, parainfluenza, respiratory syncytial virus, human metapneumovirus, and adenovirus. Many of these infections are airway centric and chest imaging demonstrates bronchiolitis and bronchopneumonia, With the exception of adenovirus infections, the presence of lobar consolidation usually suggests bacterial coinfection. Community-acquired viral pathogens can cause more severe pneumonia in immunocompromised hosts, who are also susceptible to CMV and varicella infection. These latter 2 pathogens are less likely to manifest the striking airway-centric pattern. Airway-centric pattern is distinctly uncommon in Hantavirus pulmonary syndrome, a rare environmentally acquired infection with high mortality.


Subject(s)
Bronchiolitis , Influenza, Human , Pneumonia, Viral , Humans , Immunocompromised Host , Influenza, Human/diagnostic imaging , Pneumonia, Viral/complications , Pneumonia, Viral/diagnostic imaging
3.
J Anim Ecol ; 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35362148

ABSTRACT

Identifying reservoir host species is crucial for understanding the ecology of multi-host pathogens and predicting risks of pathogen spillover from wildlife to people. Predictive models are increasingly used for identifying ecological traits and prioritizing surveillance of likely zoonotic reservoirs, but these often employ different types of evidence for establishing host associations. Comparisons between models with different infection evidence are necessary to guide inferences about the trait profiles of likely hosts and identify which hosts and geographical regions are likely sources of spillover. Here, we use New World rodent-orthohantavirus associations to explore differences in the performance and predictions of models trained on two types of evidence for infection and onward transmission: RT-PCR and live virus isolation data, representing active infections versus host competence, respectively. Orthohantaviruses are primarily carried by muroid rodents and cause the diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) in humans. We show that although boosted regression tree (BRT) models trained on RT-PCR and live virus isolation data both performed well and capture generally similar trait profiles, rodent phylogeny influenced previously collected RT-PCR data, and BRTs using virus isolation data displayed a narrower list of predicted reservoirs than those using RT-PCR data. BRT models trained on RT-PCR data identified 138 undiscovered hosts and virus isolation models identified 92 undiscovered hosts, with 27 undiscovered hosts identified by both models. Distributions of predicted hosts were concentrated in several different regions for each model, with large discrepancies between evidence types. As a form of validation, virus isolation models independently predicted several orthohantavirus-rodent host associations that had been previously identified through empirical research using RT-PCR. Our model predictions provide a priority list of species and locations for future orthohantavirus sampling. More broadly, these results demonstrate the value of multiple data types for predicting zoonotic pathogen hosts. These methods can be applied across a range of systems to improve our understanding of pathogen maintenance and increase efficiency of pathogen surveillance.

4.
Infect Chemother ; 54(1): 1-19, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35384417

ABSTRACT

Hantaviruses can cause two types of infections in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome. The old world hantaviruses, primarily Hantaan virus (HTNV), responsible for causing HFRS occurs endemically in Asia and Europe. Apodernus agraricus, a striped field mouse, is being considered as main host reservoir for HTNV. Infection in humans is typically accidental and occurs when virus-containing rodent excretions such as urine, feces, or saliva are aerosolized. The major clinical manifestations includes increased vascular permeability causing vascular leakage, acute kidney injury and coagulation abnormalities. The case fatality rate of HFRS varies around 5.0 - 10.0% depending on the causative viral agent. The direct effects of viral infection on endothelial cells, as well as the immunological response to the viral infection, have been suggested to play a key role in the pathogenesis of HFRS. This article summarizes the current knowledge of HFRS epidemiology in Korea and around the globe, etiology, host transmission, clinical presentation, pathogenesis, diagnostic techniques, treatment, and prevention.

5.
Medwave ; 22(3)29-04-2022.
Article in English, Spanish | LILACS-Express | LILACS | ID: biblio-1368125

ABSTRACT

Introducción El síndrome cardiopulmonar por hantavirus es una enfermedad causada por un virus perteneciente al orden bunyanvirales, y transmitida hacia los humanos a través de roedores. Esta enfermedad en Chile es considerada endémica, la cual tiene una alta tasa de letalidad. En la actualidad existen estudios que evidencian el contagio entre personas del virus Andes, cuya localidad se concentra en los países de Argentina y Chile. Objetivos Analizar la posibilidad de transmisión de hantavirus entre humanos, mediante un modelo matemático tipo SEIR. Métodos Se plantea un modelo matemático tipo SEIR (susceptible, expuesto, infeccioso y recuperado) para expresar la dinámica de la enfermedad por hantavirus, incluyendo la posibilidad de transmisión entre humanos y la percepción del riesgo. Resultados El máximo de contagio entre humanos disminuye cerca de 25% tras aumentar la percepción de riesgo de las personas, mediante la reducción de la tasa de resistencia al cambio y aumento la velocidad de reaccionar de las personas. Conclusiones Es urgente revisar las estrategias de comunicación de riesgo y medidas de prevención ante esta posibilidad de contagios masivos entre humanos, además de fortalecer la investigación y proyectar el desarrollo de una vacuna para proteger las poblaciones expuestas a esta enfermedad con alta tasa de letalidad.


Introduction Hantavirus cardiopulmonary syndrome is an infection caused by rodents of the Bunyanvirales family towards humans. This disease in Chile is considered endemic, which has a high fatality rate. At present, some studies show the contagion between people of the Andes virus, whose locality is concentrated in Argentina and Chile. Objectives Analyze the possibility of hantavirus transmission between humans using an SEIR-type mathematical model. Methods An SEIR (Susceptible, Exposed, Infectious and Recovered) mathematical model to express the dynamics of hantavirus disease is proposed, including the possibility of human-to-human transmission and the perception of risk. Results The peak of human-to-human contagion decreases by about 25% after increasing people's perception of risk by reducing the rate of resistance to changeand increasing the speed of people's reaction. Conclusions It is urgent to review risk communication strategies and prevention measures in the face of this possibility of massive human-tohuman infections, in addition to strengthening research and planning the development of a vaccine to protect populations exposed to this disease with a high fatality rate.

6.
Dtsch Med Wochenschr ; 147(6): 312-318, 2022 Mar.
Article in German | MEDLINE | ID: mdl-35291036

ABSTRACT

In addition to the well-known clinical early symptoms of hantavirus disease (fever, flank and abdominal pain as well as arthralgia), unusual neurological changes in the context of infection come into focus. The spectrum of neurological symptoms ranges from transient myopia to severe pareses in the context of Guillain-Barré syndrome. In endemic areas, rapid IgM tests for initial assessment are of certain value for differential diagnosis. For therapeutic approaches, only supportive measures up to transient dialysis are available.Molecular genetic analysis and comparison of hantavirus strains of patients and mice from the same geographical area allowed molecular characterization of different outbreak regions. In the meantime, the Puumala viruses of the main outbreak regions in Germany are molecularly well characterized; therefore, the nucleotide sequence of the virus strain detected in a patient makes it possible to draw conclusions about the geographic region where the patient's infection took place.The human pathogenic hantaviruses being prevalent in Germany are the Puumala virus (reservoir: bank vole) and the Dobrava-Belgrade virus, genotype Kurkino (reservoir: striped field mouse). Recently, the molecular detection of further hantaviruses in patients with hantavirus disease was achieved. It can be concluded that also the Seoul virus (reservoir: rats) and the Tulavirus (reservoir: field mouse and related species) occasionally cause hantavirus disease in Germany.New results revealed that human infections can occur not only by the generally accepted route of inhalation of virus-containing aerosols, but also by ingestion of virus-containing materials.For patients with hantavirus infection or disease, it can be assumed that they are not infectious for their environment. A new systematic review could not confirm a human-to-human transmission previously postulated for South American hantaviruses.While all known human pathogenic hantaviruses are transmitted by rodents, other hantaviruses have been recently detected in shrews, moles, and bats. The clinical significance of these new viruses is quite unclear as yet.


Subject(s)
Communicable Diseases , Hantavirus Infections , Hantavirus , Animals , Communicable Diseases/complications , Disease Outbreaks , Germany/epidemiology , Hantavirus/genetics , Hantavirus Infections/diagnosis , Hantavirus Infections/epidemiology , Humans , Mice , Rats
7.
Sci Rep ; 12(1): 2692, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177639

ABSTRACT

Rodents living alongside humans increases the probability of encounter and also the transmission of rodent-borne diseases. Singapore's cosmopolitan urban landscape provides a perfect setting to study the prevalence of four rodent-borne pathogens: Seoul hantavirus (SEOV), Leptospira species, Rickettsia typhi and Yersinia pestis, and identify the potential risk factors which may influence rodent density and transmission of rodent-borne diseases. A total of 1143 rodents were trapped from 10 unique landscape structures throughout Singapore. Real-time quantitative Polymerase Chain Reactions were used to detect pathogenic and intermediate Leptospira spp. and Yersinia pestis, whereas the seroprevalence of SEOV and R. typhi were analysed by Enzyme-Linked Immunosorbent Assay and Immunofluorescence Assay respectively. Multivariable logistic regression analysis was used to evaluate the association between prevalence of infection in rodent reservoirs and risk factors. Most of the rodents were caught in public residential developments (62.2%). Among the tested rodents, 42.4% were infected with Leptospira spp., while 35.5% and 32.2% were seropositive for SEOV and R. typhi respectively, whereas Yersinia pestis was not detected. Furthermore, risk factors including habitat, species, gender, and weight of rodents, influenced prevalence of infection to a varying extent. This study highlights the presence of Leptospira spp., SEOV and R. typhi in Singapore's rodent population, suggesting the need for effective rodent management and sanitation strategies to prevent further circulation and transmission to humans.


Subject(s)
Disease Reservoirs , Rickettsia typhi , Seoul virus , Zoonoses/epidemiology , Animals , Humans , Leptospira , Rodentia , Seroepidemiologic Studies , Singapore/epidemiology
8.
Article in English | MEDLINE | ID: mdl-34986775

ABSTRACT

Hantaviruses are rodent viruses that have been identified as etiologic agents of 2 diseases of humans: hemorrhagic fever with renal syndrome (HFRS) and nephropathiaepidemica (NE) in the Old World and Hantavirus pulmonary syndrome (HPS) in the New World. Orthohantavirus is a genus of sin- gle-stranded, enveloped, negative-sense RNA viruses in the family Hantaviridae of the order Bunyavi- rales. The important reservoir of Hantaviruses is rodents. Each virus serotype has its unique rodent host species and is transmitted to human beings with the aid of aerosolized virus, which is shed in urine, fae- ces and saliva and hardly by a bite of the contaminated host. Andes virus is the only Hantavirus identified to be transmitted from human-to-human and its major signs and symptoms include fever, headache, mus- cle aches, lungs filled with fluid etc. In the early 1993, this viral syndrome appeared in the Four Cor- ner location in the south western United States. The only accepted therapeutics for this virus is Ribavirin. Recently, serological examinations to identify Hantavirus antibodies have become most popular for in- vestigation among humans and rodent reservoirs.

9.
Mol Ecol ; 31(1): 252-265, 2022 01.
Article in English | MEDLINE | ID: mdl-34614264

ABSTRACT

The natural host ranges of many viruses are restricted to very specific taxa. Little is known about the molecular barriers between species that lead to the establishment of this restriction or generally prevent virus emergence in new hosts. Here, we identify genomic polymorphisms in a natural rodent host associated with a strong genetic barrier to the transmission of European Tula orthohantavirus (TULV). We analysed the very abrupt spatial transition between two major phylogenetic clades in TULV across the comparatively much wider natural hybrid zone between evolutionary lineages of their reservoir host, the common vole (Microtus arvalis). Genomic scans of 79,225 single nucleotide polymorphisms (SNPs) in 323 TULV-infected host individuals detected 30 SNPs that were consistently associated with the TULV clades CEN.S or EST.S in two replicate sampling transects. Focusing the analysis on 199 voles with evidence of genomic admixture at the individual level (0.1-0.9) supported statistical significance for all 30 loci. Host genomic variation at these SNPs explained up to 37.6% of clade-specific TULV infections. Genes in the vicinity of associated SNPs include SAHH, ITCH and two members of the Syngr gene family, which are involved in functions related to immune response or membrane transport. This study demonstrates the relevance of natural hybrid zones as systems not only for studying processes of evolutionary divergence and speciation, but also for the detection of evolving genetic barriers for specialized parasites.


Subject(s)
Hantavirus Infections , Hantavirus , RNA Viruses , Animals , Arvicolinae/genetics , Phylogeny
10.
Phys Rev E ; 104(5-1): 054401, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942722

ABSTRACT

The spatial critical shelter sizes above which populations would survive are investigated for the infection of hantavirus among rodent populations surrounded by a deadly environment. We show that the critical shelter sizes for the infected population and the susceptible population are different due to symmetry breaking in the reproduction and the transmission processes. Therefore, there exists a shelter size gap within which the infected population becomes extinct while only the susceptible population survives. With the field data reported in the literature, we estimate that, if one confines the rodent population within a stripe region surrounded by a deadly environment with the shorter dimension between 335.5±27.2m and 547.9±78.3m, the infected population would become extinct. In addition, we introduce two factors that influence the movement of rodents, namely, the spatial asymmetry of the landscape and the sociality of rodents, to study their effects on the shelter size gap. The effects on the critical size due to environmental bias are twofold: it enhances the overall competition among rodents which increases the critical size, but on the other hand it promotes the spread of the hantavirus which reduces the critical size for the infected population. On the contrary, the sociality of rodents gives rise to a more localized population profile which promotes the spread of the hantavirus and reduces the shelter size gap. The results shed light on a possible strategy of eliminating hantavirus while preserving the integrity of food webs in ecosystems.

11.
Front Vet Sci ; 8: 748232, 2021.
Article in English | MEDLINE | ID: mdl-34966803

ABSTRACT

Rodents are important hosts of hantaviruses, and lungs and kidneys are known to be the preferred organs of these viruses. Recently, hantaviruses were detected in liver samples from wild rodents in Hungary and the United States, and feeder rats in the Netherlands. However, few studies have detected hantaviruses in the liver of rats from China. In this study, hantaviruses were investigated in liver samples from R. norvegicus and R. tanezumi trapped in urban areas of southern China. A total of 461 R. norvegicus and 64 R. tanezumi were trapped. Using a pan-hantavirus PCR method, hantaviruses were detected in liver, lung, and serum samples from these animals. About 7.43% of liver samples were positive for Seoul virus (SEOV). The detection rate of SEOV in liver samples from R. norvegicus (8.24%) was higher than that from R. tanezumi (1.56%), suggesting the predominant role of R. norvegicus in the transmission of SEOV in urban areas of China. Three R. norvegicus had SEOV RNA in their liver samples but not in their lung samples, suggesting that the liver might be one of the targeted organs of SEOV. The first full SEOV protein-coding sequences (CDS) of the S and M segments, and partial CDS of the L segment from R. tanezumi were amplified. Several full and partial CDS of the S, M, and L segments from R. norvegicus were also obtained. The SEOV sequences obtained from different animals were highly similar, suggesting the cross-species transmission potential of SEOV between R. norvegicus and R. tanezumi.

12.
Viruses ; 13(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34834957

ABSTRACT

Hantaviruses are zoonotic pathogens that can cause serious human disorders, including hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. As the main risk factor for human infections is the interaction with rodents, occupational groups such as farmers and forestry workers are reportedly at high risk, but no summary evidence has been collected to date. Therefore, we searched two different databases (PubMed and EMBASE), focusing on studies reporting the prevalence of hantaviruses in farmers and forestry workers. Data were extracted using a standardized assessment form, and results of such analyses were systematically reported, summarized and compared. We identified a total of 42 articles, including a total of 28 estimates on farmers, and 22 on forestry workers, with a total workforce of 15,043 cases (821 positive cases, 5.5%). A pooled seroprevalence of 3.7% (95% confidence interval [95% CI] 2.2-6.2) was identified in farmers, compared to 3.8% (95% CI 2.6-5.7) in forestry workers. Compared to the reference population, an increased occurrence was reported for both occupational groups (odds ratio [OR] 1.875, 95% CI 1.438-2.445 and OR 2.892, 95% CI 2.079-4.023 for farmers and forestry workers, respectively). In summary, our analyses stress the actual occurrence of hantaviruses in selected occupational groups. Improved understanding of appropriate preventive measures, as well as further studies on hantavirus infection rates in reservoir host species (rodents, shrews, and bats) and virus transmission to humans, is needed to prevent future outbreaks.


Subject(s)
Agriculture , Forestry , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Hantavirus , Animals , Chiroptera , Climate Change , Databases, Factual , Farmers , Humans , Public Health , Rodentia , Seroepidemiologic Studies , Shrews
13.
Viruses ; 13(10)2021 09 29.
Article in English | MEDLINE | ID: mdl-34696393

ABSTRACT

Understanding how perturbations to trophic interactions influence virus-host dynamics is essential in the face of ongoing biodiversity loss and the continued emergence of RNA viruses and their associated zoonoses. Herein, we investigated the role of predator exclusion on rodent communities and the seroprevalence of hantaviruses within the Reserva Natural del Bosque Mbaracayú (RNBM), which is a protected area of the Interior Atlantic Forest (IAF). In the IAF, two sympatric rodent reservoirs, Akodon montensis and Oligoryzomys nigripes, harbor Jaborá and Juquitiba hantavirus (JABV, JUQV), respectively. In this study, we employed two complementary methods for predator exclusion: comprehensive fencing and trapping/removal. The goal of exclusion was to preclude the influence of predation on small mammals on the sampling grids and thereby potentially reduce rodent mortality. Following baseline sampling on three grid pairs with different habitats, we closed the grids and began predator removal. By sampling three habitat types, we controlled for habitat-specific effects, which is important for hantavirus-reservoir dynamics in neotropical ecosystems. Our six-month predator exclusion experiment revealed that the exclusion of terrestrial mammalian predators had little influence on the rodent community or the population dynamics of A. montensis and O. nigripes. Instead, fluctuations in species diversity and species abundances were influenced by sampling session and forest degradation. These results suggest that seasonality and landscape composition play dominant roles in the prevalence of hantaviruses in rodent reservoirs in the IAF ecosystem.


Subject(s)
Disease Reservoirs/virology , Ecosystem , Forests , Hantavirus Infections/epidemiology , Hantavirus Infections/immunology , Hantavirus/immunology , Rodentia/virology , Zoonoses/virology , Animals , Female , Hantavirus Pulmonary Syndrome/epidemiology , Host Microbial Interactions , Male , Population Dynamics , Predatory Behavior , Rodent Diseases/epidemiology , Rodent Diseases/immunology , Rodent Diseases/virology , Seroepidemiologic Studies , Zoonoses/epidemiology , Zoonoses/transmission
14.
Case Rep Infect Dis ; 2021: 8800500, 2021.
Article in English | MEDLINE | ID: mdl-34603804

ABSTRACT

Hantavirus Cardiopulmonary Syndrome (HCPS) can occur after infection with Hantavirus which can occur by inhaling aerosolized rodent urine, feces, and saliva contaminated with the virus. It presents with the rapid development of pulmonary edema, respiratory failure, and cardiogenic shock with the hallmark being microvascular leakage. We report a patient with a history of alcohol abuse and recent exposure to mice and sick kittens who presented with cough with sputum production, shortness of breath, orthopnea, and new-onset lower extremity edema. Imaging revealed bilateral infiltrates more common on the left with an unremarkable echocardiogram. Testing for COVID-19, Human Immunodeficiency Virus (HIV), influenza, bacterial pneumonia including tuberculosis and methicillin-resistant Staphylococcus aureus (MRSA), aspergillosis, histoplasmosis, Blastomyces, and Coccidiodes was negative. Bronchoscopy and bronchoalveolar lavage revealed diffuse alveolar hemorrhage (DAH) and were negative for acid-fast bacilli and Nocardia cultures. He was further tested for Hantavirus, Q fever, leptospirosis, toxoplasmosis, and empiric treatment with doxycycline initiated. His Hantavirus IgM antibody came back positive. Human Hantavirus infection occurs after inhalation of infected rodent excreta; fortunately, human-to-human transmission has not been documented. HCPS most commonly occurs due to the Sin Nombre virus (SNV), has a case fatality rate of 50%, and is a notifiable disease in the United States. It has 3 distinct phases, prodromal, cardiopulmonary, and convalescent/recovery. The cardiopulmonary phase occurs from increased permeability of pulmonary capillaries and in severe cases can progress to cardiogenic shock. Diagnosis is based on the presence of IgM and IgG Hantavirus antibodies. Treatment is mainly supportive; however, patients are usually treated with broad-spectrum antibiotics while workup is underway. In animal models, ribavirin and favipiravir are only effective when administered in the prodromal phase. If suspicion of Hantavirus infection exists, early mobilization to the intensive care unit for treatment is recommended. Extracorporeal membrane oxygenation (ECMO) has been suggested to improve outcomes in severe HCPS with refractory shock.

15.
Emerg Infect Dis ; 27(10): 2707-2710, 2021 10.
Article in English | MEDLINE | ID: mdl-34545791

ABSTRACT

Andes virus, an orthohantavirus endemic to South America, causes severe hantavirus cardiopulmonary syndrome associated with human-to-human transmission. No approved treatments or vaccines against this virus are available. We show that a combined treatment with 2 monoclonal antibodies protected Syrian hamsters when administered at midstage or late-stage disease.


Subject(s)
Hantavirus Infections , Hantavirus , Animals , Antibodies, Monoclonal/therapeutic use , Cricetinae , Hantavirus Infections/drug therapy , Humans , Mesocricetus , South America
16.
J Virol ; 95(23): e0153421, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34549977

ABSTRACT

Sin Nombre orthohantavirus (SNV), a negative-sense, single-stranded RNA virus that is carried and transmitted by the North American deer mouse Peromyscus maniculatus, can cause infection in humans through inhalation of aerosolized excreta from infected rodents. This infection can lead to hantavirus cardiopulmonary syndrome (HCPS), which has an ∼36% case-fatality rate. We used reverse transcriptase quantitative PCR (RT-qPCR) to confirm SNV infection in a patient and identified SNV in lung tissues in wild-caught rodents from potential sites of exposure. Using viral whole-genome sequencing (WGS), we identified the likely site of transmission and discovered SNV in multiple rodent species not previously known to carry the virus. Here, we report, for the first time, the use of SNV WGS to pinpoint a likely site of human infection and identify SNV simultaneously in multiple rodent species in an area of known host-to-human transmission. These results will impact epidemiology and infection control for hantaviruses by tracing zoonotic transmission and investigating possible novel host reservoirs. IMPORTANCE Orthohantaviruses cause severe disease in humans and can be lethal in up to 40% of cases. Sin Nombre orthohantavirus (SNV) is the main cause of hantavirus disease in North America. In this study, we sequenced SNV from an infected patient and wild-caught rodents to trace the location of infection. We also discovered SNV in rodent species not previously known to carry SNV. These studies demonstrate for the first time the use of virus sequencing to trace the transmission of SNV and describe infection in novel rodent species.


Subject(s)
Disease Reservoirs/virology , Hantavirus Pulmonary Syndrome/transmission , Hantavirus Pulmonary Syndrome/veterinary , Hantavirus Pulmonary Syndrome/virology , Rodent Diseases/transmission , Rodent Diseases/virology , Rodentia/virology , Sin Nombre virus , Animals , Antibodies, Viral , Base Sequence , Female , Hantavirus/genetics , Hantavirus Infections/genetics , Hantavirus Infections/transmission , Hantavirus Infections/veterinary , Hantavirus Pulmonary Syndrome/epidemiology , Humans , Lung , Male , Mice , North America , Peromyscus/virology , Prevalence , RNA, Viral/genetics , Rodent Diseases/epidemiology , Sin Nombre virus/genetics , Whole Genome Sequencing
17.
Acta Biomed ; 92(4): e2021324, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34487097

ABSTRACT

BACKGROUND: Hantaviruses can cause serious human diseases including hemorrhagic fever with renal syndrome (HFRS) and Hantavirus Cardiopulmonary Syndrome (HCPS). European Hantavirus are usually associated with HFRS, and their geographical distribution mirrors the ecology of reservoir host species. Epidemiology of HFRS is well-studied in Western Europe, but data from Italy are fragmentary. METHODS: We searched into two different databases (PubMed and EMBASE), focusing on studies reporting the prevalence of Hantaviruses in Italy. Data were extracted using a standardized assessment form, and results of the analyses were systematically reported, summarized and compared. RESULTS: We identified a total of 18 articles, including 12 reports (total population: 5,336 subjects, 1981-2019) and 6 case reports (1984-2019). In total, 200 subjects exhibited some degree of seropositivity, with a pooled seroprevalence of 1.7% (95% confidence interval 0.7%-4.0%) in the general population. Higher occurrence was reported in selected subgroups, i.e. acute (28.7%, 95%CI 22.1-36.2) and chronic (6.6%, 95%CI 4.7-9.1) renal failure, forestry workers (3.0%, 95%CI 1.4-6.5, actual range 0.0 to 10.8%). CONCLUSIONS: In the last decade, no human cases of hantavirus infection have been officially reported in Italy. However, our analysis stresses the actual occurrence of Hantavirus among general population and in selected population groups. Further studies on hantavirus infection rates in reservoir host species (rodents, shrews, and bats) and virus transmission to humans are needed to prevent outbreaks in the future.


Subject(s)
Hantavirus Infections , Hantavirus , Hemorrhagic Fever with Renal Syndrome , Hantavirus Infections/diagnosis , Hantavirus Infections/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , Italy/epidemiology , Seroepidemiologic Studies
18.
Virusdisease ; : 1-13, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34518804

ABSTRACT

Bats have a primeval evolutionary origin and have adopted various survival methods. They have played a central role in the emergence of various viral diseases. The sustenance of a plethora of virus species inside them has been an earnest area of study. This review explains how the evolution of viruses in bats has been linked to their metabolic pathways, flight abilities, reproductive abilities and colonization behaviors. The utilization of host immune response by DNA and RNA viruses is a commencement of the understanding of differences in the impact of viral infection in bats from other mammals. Rabies virus and other lyssa viruses have had long documented history as bat viruses. While many others like Ebola virus, Nipah virus, Hantavirus, SARS-CoV, MERS-CoV and other new emerging viruses like Sosuga virus, Menangle and Tioman virus are now being studied extensively for their transmission in new hosts. The ongoing pandemic SARS-CoV-2 virus has also been implicated to be originated from bats. Certain factors have been linked to spillover events while the scope of entitlement of other conditions in the spread of diseases from bats still exists. However, certain physiological and ecological parameters have been linked to specific transmission patterns, and more definite proofs are awaited for establishing these connections.

19.
J Infect Dis ; 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34515290

ABSTRACT

BACKGROUND: Hantavirus is known to be transmitted from rodents to humans. However, some reports from Argentina and Chile have claimed that the hantavirus strain - Andes virus (ANDV) - can cause human-to-human transmission of the disease. The aim of this systematic review was to assess the evidence for human-to-human transmission of hantavirus. METHODS: We searched PubMed (inception to 28 February 2021), Cochrane CENTRAL, Embase, LILACS and SciELO (inception to 3 July 2020) and other sources. We included studies that assessed whether interpersonal contact with a person with laboratory-confirmed hantavirus infection led to human-to-human transmission. Two reviewers conducted screening, selection, data extraction, and risk of bias (RoB) assessment. RESULTS: Twenty-two studies met the inclusion criteria. Meta-analysis was not possible due to heterogeneity. With the exception of one prospective cohort study of ANDV in Chile with serious RoB, evidence from comparative studies (strongest level of evidence available) does not support human-to-human transmission of hantavirus infection. Non-comparative studies with a critical RoB suggest that human-to-human transmission of ANDV may be possible. CONCLUSIONS: The balance of the evidence does not support the claim of human-to-human transmission of ANDV. Well-designed cohort and case-control studies that control for co-exposure to rodents are needed to inform public health recommendations.


Hantavirus infection is a disease that is passed from animals to humans and can cause severe complications in the lungs and kidneys, and potentially death. The disease is transmitted to humans via contact with, or inhalation of, feces and urine of infected mice (rodents). There are some reports in the scientific literature from Argentina and Chile indicating that hantavirus transmission between humans also occurs. Our research evaluated the scientific evidence for this hypothesis. We found that the balance of evidence does not support human to human transmission. More research is needed to clarify the issue. Health workers and community individuals should continue to comply with basic principles of infection prevention and control, including hand hygiene and use of face masks.

20.
Virol J ; 18(1): 169, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404450

ABSTRACT

BACKGROUND: Transmission of all known pathogenic orthohantaviruses (family Hantaviridae) usually occurs via inhalation of aerosols contaminated with viral particles derived from infected rodents and organ manifestation of infections is characterized by lung and kidney involvement. Orthohantaviruses found in Eurasia cause hemorrhagic fever with renal syndrome (HFRS) and New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS). However, cases of infection with Old World orthohantaviruses with severe pulmonary manifestations have also been observed. Therefore, human airway cells may represent initial targets for orthohantavirus infection and may also play a role in the pathogenesis of infections with Eurasian orthohantaviruses. METHODS: We analyzed the permissiveness of primary endothelial cells of the human pulmonary microvasculature and of primary human epithelial cells derived from bronchi, bronchioles and alveoli for Old World orthohantavirus Puumala virus (PUUV) in vitro. In addition, we examined the expression of orthohantaviral receptors in these cell types. To minimize donor-specific effects, cells from two different donors were tested for each cell type. RESULTS: Productive infection with PUUV was observed for endothelial cells of the microvasculature and for the three tested epithelial cell types derived from different sites of the respiratory tract. Interestingly, infection and particle release were also detected in bronchial and bronchiolar epithelial cells although expression of the orthohantaviral receptor integrin ß3 was not detectable in these cell types. In addition, replication kinetics and viral release demonstrate enormous donor-specific variations. CONCLUSIONS: The human respiratory epithelium is among the first targets of orthohantaviral infection and may contribute to virus replication, dissemination and pathogenesis of HFRS-causing orthohantaviruses. Differences in initial pulmonary infection due to donor-specific factors may play a role in the observed broad variance of severity and symptoms of orthohantavirus disease in patients. The absence of detectable levels of integrin αVß3 surface expression on bronchial and small airway epithelial cells indicates an alternate mode of orthohantaviral entry in these cells that is independent from integrin ß3.


Subject(s)
Endothelial Cells/virology , Puumala virus , Virus Replication , Hemorrhagic Fever with Renal Syndrome , Humans , Integrins , Primary Cell Culture , Puumala virus/physiology , Respiratory System/cytology , Respiratory System/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...