Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunol ; 26(8): 427-37, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24618118

ABSTRACT

B-1 lymphocytes comprise a unique subset of B cells that differ phenotypically, ontogenetically and functionally from conventional B-2 cells. A frequent specificity of the antibody repertoire of peritoneal B-1 cells is phosphatidylcholine. Liposomes containing phosphatidylcholine have been studied as adjuvants and their interaction with dendritic cells and macrophages has been demonstrated. However, the role of B-1 cells in the adjuvanticity of liposomes composed of phosphatidylcholine has not been explored. In the present work, we studied the contribution of B-1 cells to the humoral response against ovalbumin (OVA) encapsulated into dipalmitoylphosphatidylcholine (DPPC) and cholesterol-containing liposomes. BALB/X-linked immunodeficient (xid) mice, which are deficient in B-1 cells, showed quantitative and qualitative differences in the anti-OVA antibody response compared with wild-type animals after immunization with these liposomes. The OVA-specific immune response was significantly increased in the BALB/xid mice when reconstituted with B-1 cells from naive BALB/c mice. Our results indicate the internalization of DPPC-containing liposomes by these cells and their migration from the peritoneal cavity to the spleen. Phosphatidylcholine significantly contributed to the immunogenicity of liposomes, as DPPC-containing liposomes more effectively stimulated the anti-OVA response compared with vesicles composed of dipalmitoylphosphatidylglycerol. In conclusion, we present evidence for a cognate interaction between B-1 cells and phosphatidylcholine liposomes, modulating the immune response to encapsulated antigens. This provides a novel targeting approach to assess the role of B-1 cells in humoral immunity.


Subject(s)
Antigens/immunology , B-Lymphocyte Subsets/immunology , Adjuvants, Immunologic , Animals , Antibodies/immunology , Antibody Formation/immunology , Antibody Specificity , Antigens/chemistry , B-Lymphocyte Subsets/metabolism , Cell Movement , Female , Immunization , Liposomes , Mice , Ovalbumin/immunology , Phosphatidylcholines/chemistry , Phosphatidylcholines/immunology , Spleen/immunology
2.
Microbes Infect ; 14(13): 1144-51, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22842508

ABSTRACT

Recognizing the invasive potential of the dermatophytes and understanding the mechanisms involved in this process will help with disease diagnosis and with developing an appropriate treatment plan. In this report, we present the histopathological, microbiological and immunological features of a model of invasive dermatophytosis that is induced by subcutaneous infection of Trichophyton mentagrophytes in healthy adult Swiss mice. Using this model, we observed that the fungus rapidly spreads to the popliteal lymph nodes, spleen, liver and kidneys. Similar to the human disease, the lymph nodes were the most severely affected sites. The fungal infection evoked acute inflammation followed by a granulomatous reaction in the mice, which is similar to what is observed in patients. The mice were able to mount a Th1-polarized immune response and displayed IL-10-mediated immune regulation. We believe that the model described here will provide valuable information regarding the dermatophyte-host relationship and will yield new perspective for a better understanding of the immunological and pathological aspects of invasive dermatophytosis.


Subject(s)
Antigens, Fungal/immunology , Host-Pathogen Interactions/immunology , Interleukin-10/immunology , Tinea/immunology , Trichophyton/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Injections, Subcutaneous , Interleukin-10/metabolism , Kidney/immunology , Kidney/microbiology , Liver/immunology , Liver/microbiology , Lymph Nodes/immunology , Lymph Nodes/microbiology , Male , Mice , Skin/immunology , Skin/microbiology , Spleen/immunology , Spleen/microbiology , Th1 Cells/immunology , Time Factors , Tinea/microbiology , Tinea/pathology , Trichophyton/growth & development , Trichophyton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...