Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Environ Pollut ; 361: 124844, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39209054

ABSTRACT

In late summer and early autumn 2022, an intense bloom of Protoceratium reticulatum-the main yessotoxin (YTX) producer along Chilean coasts and a major threat to artisanal fisheries, the aquaculture industry, and environmental health-was recorded in the Patagonian fjord system. The high YTX levels (>3.75 mg kg-1) resulted in the first ban of shellfish collection in Chile. At Puyuhuapi Fjord, a global "hotspot" of harmful algal bloom events, the cell density of P. reticulatum determined in integrated tube samples (0-10 m) at the end of April 2022 reached 407,000 cells L-1. At the same time, YTX levels well exceeded the regulatory limit by roughly 2.5-fold, with concentrations as high as 9.42 mg kg-1 measured in native populations of the blue mussel Mytilus chilensis. Five different YTX analogues, 45-OH-YTX, COOH-45-keto-YTX, COOH-45-OH-YTX, COOH-YTX, and 45,55-diOH-YTX, were also detected in relevant amounts. While the ban lasted close to 3 months, accumulation and detoxification processes were monitored over a 1-year period. This study assessed the implications of high levels of YTXs and their analogues on the local economy and ecosystem health, given the increase in P. reticulatum blooms predicted for NW Patagonia in the context of a changing climate.


Subject(s)
Environmental Monitoring , Estuaries , Mollusk Venoms , Oxocins , Chile , Animals , Oxocins/analysis , Harmful Algal Bloom , Mytilus , Water Pollutants, Chemical/analysis , Marine Toxins/analysis
2.
Harmful Algae ; 135: 102649, 2024 05.
Article in English | MEDLINE | ID: mdl-38830714

ABSTRACT

Protoceratium reticulatum is the main yessotoxin-producer along the Chilean coast. Thus far, the yessotoxin levels recorded in this region have not posed a serious threat to human health. However, a bloom of P. reticulatum during the austral summer of 2022 caused the first ban of shellfish collection, due to the high toxin levels. A bloom of P. reticulatum during the austral summer of 2020 allowed an evaluation of the fine-scale distribution of the dinoflagellate during a tidal cycle. High-resolution measurements of biophysical properties were carried out in mid-summer (February 18-19) at a fixed sampling station in Puyuhuapi Fjord, Chilean Patagonia, as part of an intensive 24-h biophysical experiment to monitor the circadian distributions of P. reticulatum vegetative cells and yessotoxins. High P. reticulatum cell densities (>20 × 103 cells L-1) were found in association with a warmer (14.5-15 °C) and estuarine (23.5-24.5 g kg-1) sub-surface water layer (6-8 m). P. reticulatum cell numbers and yessotoxins followed a synchronic distribution pattern consistent with the excursions of the pycnocline. Nevertheless, the surface aggregation of the cells was modulated by the light cycle, suggesting daily vertical migration. The yessotoxin content per P. reticulatum cell ranged from 9.4 to 52.2 pg. This study demonstrates both the value of fine-scale resolution measurements of biophysical properties in a highly stratified system and the potential ecosystem impact of P. reticulatum strains producing high levels of yessotoxins.


Subject(s)
Dinoflagellida , Mollusk Venoms , Oxocins , Dinoflagellida/physiology , Oxocins/analysis , Chile , Estuaries , Light , Harmful Algal Bloom , Marine Toxins/analysis
3.
Sports Med Health Sci ; 6(2): 101-110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708322

ABSTRACT

Proprioception is significantly impaired in knee osteoarthritis (KOA), contributing to reduced functionality. Strength training (ST) is essential in KOA by improving muscle strength, although it may also be effective in improving proprioception. The purpose was to determine the effect of ST on knee proprioception in KOA patients. Pubmed, CINAHL, Scopus, WOS, and PEDro were searched for randomized controlled trials (RCTs) (inception to March 2023). Comparisons for ST were physical exercise different from ST, non-exercise-based interventions, and no intervention. Methodological quality was assessed using the PEDro scale, and risk of bias (RoB) using the Cochrane tool. Meta-analyses were performed by comparison groups using the standardized mean difference (SMD) (Hedge's g) with random effects models, also considering subgroups by proprioception tests. Finally, six RCTs were included. The mean PEDro score was 6.3, and the highest proportion of biases corresponds to performance, selection, and detection. The meta-analysis indicated that only when compared with non-intervention, ST significantly improved knee proprioception for the joint position sense (JPS) (active + passive), JPS (passive), and threshold to detect passive motion (TTDPM) subgroups (g â€‹= â€‹-1.33 [-2.33, -0.32], g = â€‹-2.29 [-2.82, -1.75] and g â€‹= â€‹-2.40 [-4.23, -0.58], respectively). However, in the knee JPS (active) subgroup, ST was not significant (g â€‹= â€‹-0.72 [-1.84, 0.40]). In conclusion, ST improves knee proprioception compared to non-intervention. However, due to the paucity of studies and diversity of interventions, more evidence is needed to support the effectiveness of ST. Future RCTs may address the limitations of this review to advance knowledge about proprioceptive responses to ST and contribute to clinical practice.

4.
Toxins (Basel) ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38393154

ABSTRACT

At the end of summer 2020, a moderate (~105 cells L-1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. Previous Karenia events with devastating effects on caged salmon and the wild fauna of Chilean Patagonia had been restricted to offshore waters, eventually reaching the southern coasts of Chiloé Island through the channel connecting the Chiloé Inland Sea to the Pacific Ocean. This event occurred at the onset of the COVID-19 lockdown when monitoring activities were slackened. A few salmon mortalities were related to other fish-killing species (e.g., Margalefidinium polykrikoides). As in the major Karenia event in 1999, the austral summer of 2020 was characterised by negative anomalies in rainfall and river outflow and a severe drought in March. Karenia spp. appeared to have been advected in a warm (14-15 °C) surface layer of estuarine saline water (S > 21). A lack of daily vertical migration patterns and cells dispersed through the whole water column suggested a declining population. Satellite images confirmed the decline, but gave evidence of dynamic multifrontal patterns of temperature and chl a distribution. A conceptual circulation model is proposed to explain the hypothetical retention of the Karenia bloom by a coastally generated eddy coupled with the semidiurnal tides at the mouth of Pitipalena Fjord. Thermal fronts generated by (topographically induced) upwelling around the Tic Toc Seamount are proposed as hot spots for the accumulation of swimming dinoflagellates in summer in the southern Chiloé Inland Sea. The results here provide helpful information on the environmental conditions and water column structure favouring Karenia occurrence. Thermohaline properties in the surface layer in summer can be used to develop a risk index (positive if the EFW layer is thin or absent).


Subject(s)
Dinoflagellida , Animals , Estuaries , Chile , Ecosystem , Oceans and Seas , Fishes , Salmon , Harmful Algal Bloom
5.
Harmful Algae ; 132: 102583, 2024 02.
Article in English | MEDLINE | ID: mdl-38331541

ABSTRACT

The bays of Tongoy and Guanaqueros are located in the Humboldt Current system, where Argopecten purpuratus has been the subject of intense aquaculture development. These bays lie in one of the most productive marine ecosystems on Earth and are dominated by permanent coastal upwelling at Lengua de Vaca Point and Choros Point, one of the three upwelling centers on the Chilean coast. Significantly, this productive system experiences a high recurrence of harmful algal bloom (HAB) events. This paper examines 9-year (2010-2018) samples of three toxic microalgal species collected in different monitoring programs and research projects. During this period, nine HAB events were detected in Guanaqueros Bay and 14 in Tongoy Bay. Among these, three HAB events were produced simultaneously in both bays by Pseudo-nitzschia australis, and two events produced simultaneously were detected in one bay by Alexandrium spp. and the other by Dinophysis acuminata. Before El Niño 2015-16, there were more HAB events of longer duration by the three species. Since El Niño, the number and duration of events were reduced and only produced by P. australis. HAB events were simulated with the FVCOM model and a virtual particle tracker model to evaluate the dynamics of bays and their relationship with HAB events. The results showed retention in bays during the relaxation conditions of upwelling and low connectivity between bays, which explains why almost no simultaneous events were recorded.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Bays , Ecosystem , Chile
6.
Mar Pollut Bull ; 199: 116022, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211543

ABSTRACT

The effects of yessotoxins (YTXs) produced by the dinoflagellate Protoceratium reticulatum in the early stages of bivalves have not been studied in detail. The present study evaluates the effects of P. reticulatum and YTXs on the survival and feed ingestion of veliger larvae of Argopecten purpuratus. Larvae were 96 h-exposed to 500, 1000 and 2000 P. reticulatum cells mL-1, and their equivalent YTX extract was prepared in methanol. Results show a survival mean of 82 % at the highest density of dinoflagellate, and 38 % for larvae with the highest amount of YTX extract. Feed ingestion is reduced in the dinoflagellate exposure treatments as a function of cell density. Therefore, the effect of YTXs on A. purpuratus represents a new and important area of study for investigations into the deleterious effects of these toxins in the early stages of the life cycle of this and, potentially, other bivalves.


Subject(s)
Bivalvia , Dinoflagellida , Mollusk Venoms , Oxocins , Pectinidae , Animals , Marine Toxins/metabolism , Larva , Dinoflagellida/metabolism , Eating
7.
Harmful Algae ; 130: 102520, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38061816

ABSTRACT

To expand knowledge of Pseudo-nitzschia species in the Southeast Pacific, we isolated specimens from coastal waters of central Chile (36°S-30°S), the Gulf of Corcovado, and the oceanic Robinson Crusoe Island (700 km offshore) and grew them into monoclonal strains. A total of 123 Pseudo-nitzschia strains were identified to 11 species based on sequencing of the ITS region of the nuclear rDNA and on ultrastructural and morphometric analyses of the frustule in selected representatives of each clade: P. australis, P. bucculenta, P. cf. chiniana, P. cf. decipiens, P. fraudulenta, P. hasleana, P. multistriata, P. plurisecta, P. cf. sabit, the new species P. dampieri sp. nov., and one undescribed species. Partial 18S and 28S rDNA sequences, including the hypervariable V4 and D1-D3 regions used for barcoding, were gathered from representative strains of each species to facilitate future metabarcoding studies. Results showed different levels of genetic, and at times ultrastructural, diversity among the above-mentioned entities, suggesting morphological variants (P. bucculenta), rapidly radiating complexes with ill-defined species boundaries (P. cf. decipiens and P. cf. sabit), and the presence of new species (P. dampieri sp. nov., Pseudo-nitzschia sp. 1, and probably P. cf. chiniana). Domoic acid (DA) was detected in 18 out of 82 strains tested, including those of P. australis, P. plurisecta, and P. multistriata. Toxicity varied among species mostly corresponding to expectations from previous reports, with the prominent exception of P. fraudulenta; DA was not detected in any of its 10 strains tested. In conclusion, a high diversity of Pseudo-nitzschia exists in Chilean waters, particularly offshore.


Subject(s)
Diatoms , Diatoms/chemistry , Plankton , Oceans and Seas , DNA, Ribosomal , Chile
8.
Harmful Algae ; 129: 102495, 2023 11.
Article in English | MEDLINE | ID: mdl-37951626

ABSTRACT

The frequency of harmful algal blooms (HABs) has increased over the last two decades, a phenomenon enhanced by global climate change. However, the effects of climate change will not be distributed equally, and Chile has emerged as one important, vulnerable area. The Chilean Patagonian region (41‒56°S) hosts two marine ecoregions that support robust blue economies via wild fisheries, aquaculture, and tourism. However, the harmful algal bloom-forming dinoflagellate Alexandrium catenella, a causative agent of paralytic shellfish poisoning outbreaks, threatens the viability of blue industries in this region and others worldwide. Despite the proliferation of A. catenella blooms over the last few decades, the role of sedimentary resting cysts in the recurrence of harmful algal blooms and the species' northward expansion across Chilean Patagonia is not well understood. As a resting cyst-producing species, the sediment-cyst dynamics of A. catenella likely contribute to the geographical expansion and bloom recurrence of this species. For this purpose, we analyzed a decade of A. catenella surface sediment cyst records across the two ecoregions of the Chilean Patagonian System that were further stratified into five subregions based on water temperature, salinity, dissolved oxygen, and nutrient characteristics. We also analyzed spatio-temporal cyst dynamics in a pre-, during-, and post-bloom scenario of the Chiloense ecoregion (more northern) of the Magellanic province. Our results indicated highly variable A. catenella resting cyst abundances, with a maximum of 221 cysts cm-3 recorded in 2002 after an intense bloom. Generalized linear mixed models and linear mixed models found that sampling season, subregion, and Total Organic Matter (%) explained resting cyst presence and density. The results also demonstrated the presence of A. catenella cysts in northern subregions, evidencing the northward geographical expansion observed during the last few decades. The risks of A. catenella bloom recurrence from small, patchy resting cyst distributions across broad geographical areas and under changing environmental conditions are discussed.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Harmful Algal Bloom , Temperature , Aquaculture
9.
Harmful Algae ; 127: 102478, 2023 08.
Article in English | MEDLINE | ID: mdl-37544678

ABSTRACT

Public awareness about Benthic Harmful Algal Blooms (BHABs) and their negative impacts has increased substantially over the past few decades. Even so, reports of BHABs remain relatively scarce in South America (SA). This paper provides a comprehensive overview of the current state of knowledge on BHABs in the continent, by integrating data from published articles, books, and technical reports. We recorded ∼300 different occurrences of potentially toxic BHAB species over the Caribbean, Atlantic and Pacific coasts, mostly in marine (>95%) but also in estuarine areas located from 12°36' N to 54°53' S. Over 70% of the data was published/released within the past 10 years, and ∼85% were concentrated in Brazil, Venezuela, Ecuador and Colombia. Benthic species were mainly associated with macroalgae, seagrass and sediment. Incidental detection in the plankton was also relevant, mainly in places where studies targeting BHAB species are still rare, like Argentina, Uruguay, Chile and Peru. The study listed 31 infrageneric taxa of potentially toxic benthic dinoflagellates and eight of estuarine cyanobacteria occurring in SA, with the greatest species diversity recorded in the equatorial-tropical zone, mainly in northeastern Brazil (Atlantic), Venezuela and Colombia (Caribbean), and the Galapagos Islands, Ecuador (Pacific). Local strains of Amphidinium, Gambierdiscus, Coolia and Prorocentrum spp. produced toxic compounds of emerging concern. Prorocentrum lima species complex was the most common and widely distributed taxon, followed by Ostreopsis cf. ovata. In fact, these two dinoflagellates were associated with most BHAB events in SA. Whereas the former has caused the contamination of multiple marine organisms and cases of Diarrhetic Shellfish Poisoning in subtropical and temperate areas, the latter has been associated with faunal mortalities and is suspected of causing respiratory illness to beach users in tropical places. Ciguatera Poisoning has been reported in Colombia (∼240 cases; no deaths) and Venezuela (60 cases; two deaths), and may be also a risk in other places where Gambierdiscus spp. and Fukuyoa paulensis have been reported, such as the Galapagos Islands and the tropical Brazilian coast. Despite the recent advances, negative impacts from BHABs in SA are intensified by limited research/training funding, as well as the lack of official HAB monitoring and poor analytical capability for species identification and toxin detection in parts of the continent.


Subject(s)
Ciguatera Poisoning , Dinoflagellida , Microalgae , Harmful Algal Bloom , Brazil
10.
J Phycol ; 59(4): 725-737, 2023 08.
Article in English | MEDLINE | ID: mdl-37232027

ABSTRACT

Coolia species are epiphytic and benthic dinoflagellates with a cosmopolitan distribution in tropical and subtropical areas. In the austral summer of 2016, during a survey in Bahía Calderilla, a dinoflagellate of the genus Coolia was detected in macroalgae samples, and a clonal culture was established. Subsequently, the cultured cells were observed by scanning electron microscopy (SEM) and identified as C. malayensis based on their morphological characteristics. Phylogenetic analyses based on the LSU rDNA D1/D2 regions confirmed that strain D005-1 corresponded to C. malayensis and clustered with strains isolated from New Zealand, Mexico, and Asia Pacific countries. Although the strain D005-1 culture did not contain yessotoxin (YTX), cooliatoxin, 44-methyl gambierone, or its analogs in detectable amounts by LC-MS/MS, more research is needed to evaluate its toxicity and to determine the possible impact of C. malayensis in northern Chilean waters.


Subject(s)
Dinoflagellida , Environmental Monitoring , Dinoflagellida/classification , Pacific Ocean , Tandem Mass Spectrometry , Seaweed , Microscopy, Electron, Scanning
11.
Animals (Basel) ; 13(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37106979

ABSTRACT

Massive mortalities in farmed larvae of the scallop Argopecten purpuratus have been associated with pathogenic Vibrio outbreaks. An energetic trade-off between development-associated demands and immune capacity has been observed. Given that highly unsaturated fatty acids (HUFAs) are essential nutrients for larval development, we evaluated the effect of diets based on microalgae low and high in HUFAs (LH and HH, respectively) on the energetic condition and the immune response of scallop larvae. The results showed that the HH diet increased cellular membrane fluidity in veliger larvae. The routine respiration rate was 64% higher in the HH-fed veligers than in the LH-fed veligers. Additionally, the metabolic capacity tended to be higher in the HH-fed veligers than in the LH-fed veligers after the Vibrio challenge. After the challenge, the HH-fed veligers presented higher transcript induction of ApTLR (immune receptor) and ApGlys (immune effector) genes, and the HH-fed pediveligers presented higher induction of ApLBP/BPI1 (antimicrobial immune effector) gene, than the LH-fed larvae. Furthermore, the HH-fed veligers controlled total Vibrio proliferation (maintaining near basal levels) after the bacterial challenge, while the LH-fed veligers were not able to control this proliferation, which increased three-fold. Finally, the HH-fed larvae showed 20-25% higher growth and survival rates than the LH-fed veligers. Overall, the results indicated that the administration of a HH diet increases cell membrane fluidity and energy metabolic capacity, which in turn enhances immunity and the ability to control Vibrio proliferation. The administration of microalgae high in HUFAs would be a promising strategy for improving scallop larval production efficiency.

12.
Mar Drugs ; 21(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36827105

ABSTRACT

Dinophysis acuminata and D. acuta, which follows it seasonally, are the main producers of lipophilic toxins in temperate coastal waters, including Southern Chile. Strains of the two species differ in their toxin profiles and impacts on shellfish resources. D. acuta is considered the major cause of diarrhetic shellfish poisoning (DSP) outbreaks in Southern Chile, but there is uncertainty about the toxicity of D. acuminata, and little information on microscale oceanographic conditions promoting their blooms. During the austral summer of 2020, intensive sampling was carried out in two northern Patagonian fjords, Puyuhuapi (PUY) and Pitipalena (PIT), sharing D. acuminata dominance and D. acuta near detection levels. Dinophysistoxin 1 (DTX 1) and pectenotoxin 2 (PTX 2) were present in all net tow samples but OA was not detected. Although differing in hydrodynamics and sampling dates, D. acuminata shared behavioural traits in the two fjords: cell maxima (>103 cells L-1) in the interface (S ~ 21) between the estuarine freshwater (EFW)) and saline water (ESW) layers; and phased-cell division (µ = 0.3-0.4 d-1) peaking after dawn, and abundance of ciliate prey. Niche analysis (Outlying Mean Index, OMI) of D. acuta with a high marginality and much lower tolerance than D. acuminata indicated an unfavourable physical environment for D. acuta (bloom failure). Comparison of toxin profiles and Dinophysis niches in three contrasting years in PUY-2020 (D. acuminata bloom), 2018 (exceptional bloom of D. acuta), and 2019 (bloom co-occurrence of the two species)-shed light on the vertical gradients which promote each species. The presence of FW (S < 11) and thermal inversion may be used to provide short-term forecasts of no risk of D. acuta blooms and OA occurrence, but D. acuminata associated with DTX 1 pose a risk of DSP events in North Patagonian fjords.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Humans , Marine Toxins/analysis , Estuaries , Okadaic Acid/analysis
13.
Mar Drugs ; 21(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36662217

ABSTRACT

Harmful algal blooms of toxin-producing microalgae are recurrent in southern Chile. Paralytic shellfish poisoning (PSP) outbreaks pose the main threat to public health and the fishing industry in the Patagonian fjords. This study aims to increase understanding of the individual and spatial variability of PSP toxicity in the foot of Concholepas concholepas, Chile's most valuable commercial benthic invertebrate species, extracted from the Guaitecas Archipelago in Chilean Patagonia. The objective is to determine the effect of pigment removal and freezing during the detoxification process. A total of 150 specimens (≥90 mm length) were collected from this area. The live specimens were transferred to a processing plant, where they were measured and gutted, the foot was divided into two equal parts, and pigment was manually removed from one of these parts. The PSP toxicity of each foot (edible tissue) was determined by mouse bioassay (MBA) and high-performance liquid chromatography with fluorescence detection and postcolumn oxidation (HPLC-FLD PCOX). The individual toxicity per loco, as the species is known locally, varied from <30 to 146 µg STX diHCL eq 100 g−1 (CV = 43.83%) and from 5.96 to 216.3 µg STX diHCL eq 100 g−1 (CV = 34.63%), using MBA and HPLC, respectively. A generalized linear model showed a negative relation between individual weight and toxicity. The toxicological profile showed a dominance of STX (>95%), neoSTX and GTX2. The removal of pigment produced a reduction in PSP toxicity of up to 90% and could represent a good detoxification tool moving forward. The freezing process in the muscle with pigment did not produce a clear pattern. There is a significant reduction (p < 0.05) of PSP toxicity via PCOX but not MBA. Furthermore, the study discusses possible management and commercialization implications of the findings regarding small-scale fisheries.


Subject(s)
Gastropoda , Shellfish Poisoning , Animals , Mice , Marine Toxins/analysis , Saxitoxin/analysis , Chromatography, High Pressure Liquid , Shellfish/analysis
14.
Sci Total Environ ; 865: 161288, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36587668

ABSTRACT

Harmful algal blooms (HABs) in southern Chile are a serious threat to public health, tourism, artisanal fisheries, and aquaculture in this region. Ichthyotoxic HAB species have recently become a major annual threat to the Chilean salmon farming industry, due to their severe economic impacts. In early austral autumn 2021, an intense bloom of the raphidophyte Heterosigma akashiwo was detected in Comau Fjord, Chilean Patagonia, resulting in a high mortality of farmed salmon (nearly 6000 tons of biomass) within 15 days. H. akashiwo cells were first detected at the head of the fjord on March 16, 2021 (up to 478 cells mL-1). On March 31, the cell density at the surface had reached a maximum of 2 × 105 cells mL-1, with intense brown spots visible on the water surface. Strong and persistent high-pressure anomalies over the southern tip of South America, consistent with the positive phase of the Southern Annular Mode (SAM), resulted in extremely dry conditions, high solar radiation, and strong southerly winds. A coupling of these features with the high water retention times inside the fjord can explain the spatial-temporal dynamics of this bloom event. Other factors, such as the internal local physical uplift process (favored by the north-to-south orientation of the fjord), salt-fingering events, and the uplift of subantarctic deep-water renewal, likely resulted in the injection of nutrients into the euphotic layer, which in turn could have promoted cell growth and thus high microalgal cell densities, such as reached by the bloom.


Subject(s)
Estuaries , Microalgae , Animals , Climate Change , Harmful Algal Bloom , Salmon , Chile , Water
15.
J Back Musculoskelet Rehabil ; 36(1): 61-70, 2023.
Article in English | MEDLINE | ID: mdl-35871321

ABSTRACT

BACKGROUND: Chronic neck pain is one of the main reasons for visiting a healthcare professional. In recent years, it has been shown that upper cervical restriction may be a factor involved in neck pain. OBJECTIVE: To compare the immediate effects of a real cervical mobilization technique versus a sham cervical mobilization technique in patients with chronic neck pain and upper cervical restriction. METHODS: This was a randomised, controlled, double-blind clinical trial. Twenty-eight patients with chronic neck pain were recruited and divided into two groups (14 = real cervical mobilization; 14 = sham mobilization). Both groups received a single 5-minute treatment session. Upper cervical range motion, flexion-rotation test, deep cervical activation and pressure pain threshold were measured. RESULTS: In the between-groups comparison, statistically significant differences were found in favour of the real cervical mobilization group in upper cervical extension (p= 0.003), more restricted side of flexion-rotation test (p< 0.001) and less restricted side of flexion-rotation test (p= 0.007) and in the pressure pain threshold of the right trapezius (p= 0.040) and right splenius (p= 0.049). No differences in deep muscle activation were obtained. CONCLUSION: The real cervical mobilization group generates improvements in upper cervical spine movement and pressure pain threshold of right trapezius and right splenius compared to the sham group in patients with chronic neck pain and upper cervical restriction.


Subject(s)
Chronic Pain , Pain Threshold , Humans , Pain Threshold/physiology , Neck Pain/therapy , Pain Measurement/methods , Neck , Chronic Pain/therapy , Cervical Vertebrae , Range of Motion, Articular/physiology
16.
Toxins (Basel) ; 14(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36422960

ABSTRACT

Harmful algal blooms, in particular recurrent blooms of the dinoflagellate Alexandrium catenella, associated with paralytic shellfish poisoning (PSP), frequently limit commercial shellfish harvests, resulting in serious socio-economic consequences. Although the PSP-inducing species that threaten the most vulnerable commercial species of shellfish are very patchy and spatially heterogeneous in their distribution, the spatial and temporal scales of their effects have largely been ignored in monitoring programs and by researchers. In this study, we examined the spatial and temporal dynamics of PSP toxicity in the clam (Ameghinomya antiqua) in two fishing grounds in southern Chile (Ovalada Island and Low Bay). During the summer of 2009, both were affected by an intense toxic bloom of A. catenella (up to 1.1 × 106 cells L-1). Generalized linear models were used to assess the potential influence of different environmental variables on the field detoxification rates of PSP toxins over a period of 12 months. This was achieved using a four parameter exponential decay model to fit and compare field detoxification rates per sampling site. The results show differences in the spatial variability and temporal dynamics of PSP toxicity, given that greater toxicities (+10-fold) and faster detoxification (20% faster) are observed at the Ovalada Island site, the less oceanic zone, and where higher amounts of clam are annually produced. Our observations support the relevance of considering different spatial and temporal scales to obtain more accurate assessments of PSP accumulation and detoxification dynamics and to improve the efficacy of fisheries management after toxic events.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Toxins, Biological , Humans , Shellfish , Harmful Algal Bloom
17.
Mar Pollut Bull ; 184: 114103, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36115195

ABSTRACT

Harmful Algal Blooms (HAB) pose a severe socio-economic problem worldwide. The dinoflagellate species Alexandrium catenella produces potent neurotoxins called saxitoxins (STXs) and its blooms are associated with the human intoxication named Paralytic Shellfish Poisoning (PSP). Knowing where and how these blooms originate is crucial to predict blooms. Most studies in the Chilean Patagonia, were focused on coastal areas, considering that blooms from the adjacent oceanic region are almost non-existent. Using a combination of field studies and modelling approaches, we first evaluated the role of the continental shelf off northern Chilean Patagonia as a source of A. catenella resting cysts, which may act as inoculum for their toxic coastal blooms. This area is characterized by a seasonal upwelling system with positive Ekman pumping during spring-summer, and by the presence of six major submarine canyons. We found out that these submarine canyons increase the vertical advection of bottom waters, and thus, significantly enhance the process of coastal upwelling. This is a previously unreported factor, among those involved in bloom initiation. This finding put this offshore area at high risk of resuspension of resting cysts of A. catenella. Here, we discuss in detail the physical processes promoting this resuspension.


Subject(s)
Cysts , Dinoflagellida , Shellfish Poisoning , Humans , Chile , Harmful Algal Bloom , Oceans and Seas
18.
Mar Drugs ; 20(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35200651

ABSTRACT

A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world's major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries' demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.


Subject(s)
Marine Toxins/toxicity , Microalgae/metabolism , Shellfish Poisoning/prevention & control , Animals , Biological Assay/methods , Bivalvia/chemistry , Bivalvia/metabolism , Chile , Humans , Marine Toxins/isolation & purification , Mice
19.
Mar Pollut Bull ; 174: 113234, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34922228

ABSTRACT

Fish-killing blooms of Heterosigma akashiwo and Pseudochattonella verruculosa have been devastating for the farmed salmon industry, but in Southern Chile the conditions that promote the growth and toxicity of these microalgae are poorly understood. This study examined the effects of different combinations of temperature (12, 15, 18 °C) and salinity (10, 20, 30 psu) on the growth of Chilean strains of these two species. The results showed that the optimal growth conditions for H. akashiwo and P. verruculosa differed, with a maximum rate of 0.99 day-1 obtained at 15 °C and a salinity of 20 psu for H. akashiwo, and a maximum rate of 1.06 day-1 obtained at 18 °C and a salinity of 30 psu for P. verruculosa. Cytotoxic assays (2 × 101 - 2 × 105 cell mL-1; cells, filtrates, and cell lysates) performed at salinities of 20 and 30 psu showed a 100% reduction in the viability of embryonic fish cells exposed to intact cells of H. akashiwo and a 39% reduction following exposure to culture filtrates of P. verruculosa. Differences in the fish-killing mechanisms (direct cell contact vs. extracellular substances) and physiological traits of H. akashiwo and P. verruculosa explain the recent occurrence of very large blooms under contrasting (cold-brackish vs. hot-salty) extreme climate conditions in Chile.


Subject(s)
Microalgae , Stramenopiles , Animals , Homicide , Salinity , Temperature
20.
PeerJ ; 9: e12052, 2021.
Article in English | MEDLINE | ID: mdl-34513338

ABSTRACT

Mesophotic and deeper habitats (∼40 to 350 m in depth) around Rapa Nui (Easter Island) were investigated using a remotely operated vehicle. We observed extensive fields of filamentous cyanobacteria-like mats covering sandy substrates and mostly dead mesophotic Leptoseris spp. reefs. These mats covered up to 100% of the seafloor off Hanga Roa, the main village on the island, located on its western side. The highest mortality of corals was observed at depths between 70 and 95 m in this area. Healthy Leptoseris reefs were documented off the northern and southeastern sides of the island, which are also the least populated. A preliminary morphologic analysis of samples of the mats indicated that the assemblage is composed of at least four filamentous taxa, including two cyanobacteria (cf. Lyngbya sp. and Pseudoanabaena sp.), a brown alga (Ectocarpus sp.), and a green alga (Cladophora sp.). An ongoing eutrophication process is suggested as a potential driver of the proliferation of these filamentous mats off Hanga Roa village.

SELECTION OF CITATIONS
SEARCH DETAIL