Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
IEEE Trans Pattern Anal Mach Intell ; 45(5): 6587-6593, 2023 May.
Article in English | MEDLINE | ID: mdl-36269905

ABSTRACT

Centered kernel alignment (CKA), also known as centered kernel-target alignment, is useful as a similarity measure between kernels and as a kernel-based similarity measure between feature representations. We prove that CKA based on a Gaussian RBF kernel converges to linear CKA in the large-bandwidth limit. The result relies on mean-centering of the feature maps and on a Hilbert-Schmidt Independence Criterion (HSIC) identity. We show that convergence onset is sensitive to the geometry of the feature representations, and that a notion of representation eccentricity, ρ, constrains the bandwidth range for which Gaussian CKA can differ noticeably from linear CKA. Our experimental results suggest that Gaussian bandwidths less than ρ should be selected in order to enable nonlinear modeling.

3.
Sci Rep ; 11(1): 22012, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34759296

ABSTRACT

Previous studies have found that Autism Spectrum Disorder (ASD) children scored lower during a Go/No-Go task and faced difficulty focusing their gaze on the speaker's face during a conversation. To date, however, there has not been an adequate study examining children's response and gaze during the Go/No-Go task to distinguish ASD from typical children. We investigated typical and ASD children's gaze modulation when they played a version of the Go/No-Go game. The proposed system represents the Go and the No-Go stimuli as chicken and cat characters, respectively. It tracks children's gaze using an eye tracker mounted on the monitor. Statistically significant between-group differences in spatial and auto-regressive temporal gaze-related features for 21 ASD and 31 typical children suggest that ASD children had more unstable gaze modulation during the test. Using the features that differ significantly as inputs, the AdaBoost meta-learning algorithm attained an accuracy rate of 88.6% in differentiating the ASD subjects from the typical ones.


Subject(s)
Attention/physiology , Autism Spectrum Disorder/diagnosis , Fixation, Ocular , Inhibition, Psychological , Algorithms , Autism Spectrum Disorder/psychology , Child, Preschool , Eye-Tracking Technology , Female , Humans , Japan , Male , Psychomotor Performance
4.
Microorganisms ; 9(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668764

ABSTRACT

The type III secretion systems (T3SS) encoded in pathogenicity islands SPI-1 and SPI-2 are key virulence factors of Salmonella. These systems translocate proteins known as effectors into eukaryotic cells during infection. To characterize the functionality of T3SS effectors, gene fusions to the CyaA' reporter of Bordetella pertussis are often used. CyaA' is a calmodulin-dependent adenylate cyclase that is only active within eukaryotic cells. Thus, the translocation of an effector fused to CyaA' can be evaluated by measuring cAMP levels in infected cells. Here, we report the construction of plasmids pCyaA'-Kan and pCyaA'-Cam, which contain the ORF encoding CyaA' adjacent to a cassette that confers resistance to kanamycin or chloramphenicol, respectively, flanked by Flp recombinase target (FRT) sites. A PCR product from pCyaA'-Kan or pCyaA'-Cam containing these genetic elements can be introduced into the bacterial chromosome to generate gene fusions by homologous recombination using the Red recombination system from bacteriophage λ. Subsequently, the resistance cassette can be removed by recombination between the FRT sites using the Flp recombinase. As a proof of concept, the plasmids pCyaA'-Kan and pCyaA'-Cam were used to generate unmarked chromosomal fusions of 10 T3SS effectors to CyaA' in S. Typhimurium. Each fusion protein was detected by Western blot using an anti-CyaA' monoclonal antibody when the corresponding mutant strain was grown under conditions that induce the expression of the native gene. In addition, T3SS-1-dependent secretion of fusion protein SipA-CyaA' during in vitro growth was verified by Western blot analysis of culture supernatants. Finally, efficient translocation of SipA-CyaA' into HeLa cells was evidenced by increased intracellular cAMP levels at different times of infection. Therefore, the plasmids pCyaA'-Kan and pCyaA'-Cam can be used to generate unmarked chromosomal cyaA' translational fusion to study regulated expression, secretion and translocation of Salmonella T3SS effectors into eukaryotic cells.

5.
IEEE/ACM Trans Comput Biol Bioinform ; 17(6): 1835-1845, 2020.
Article in English | MEDLINE | ID: mdl-31027049

ABSTRACT

Convolutional neural networks (CNN) have demonstrated state-of-the-art classification results in image categorization, but have received comparatively little attention for classification of one-dimensional physiological signals. We design a deep CNN architecture for automated sleep stage classiffication of human sleep EEG and EOG signals. The CNN proposed in this paper amply outperforms recent work that uses a different CNN architecture over a single-EEG-channel version of the same dataset. We show that the performance gains achieved by our network rely mainly on network depth, and not on the use of several signal channels. Performance of our approach is on par with human expert inter-scorer agreement. By examining the internal activation levels of our CNN, we find that it spontaneously discovers signal features such as sleep spindles and slow waves that figure prominently in sleep stage categorization as performed by human experts.


Subject(s)
Deep Learning , Electroencephalography/classification , Signal Processing, Computer-Assisted , Sleep Stages/physiology , Computational Biology , Humans
6.
Infect Drug Resist ; 12: 2237-2242, 2019.
Article in English | MEDLINE | ID: mdl-31413600

ABSTRACT

Inorganic polyphosphate (polyP) and its metabolic enzymes are important in several cellular processes related with virulence and antibiotic susceptibility. Accordingly, bacterial polyP synthesis has been proposed as a good target for designing novel antivirulence molecules as alternative to conventional antibiotics. In most pathogenic bacteria, polyphosphate kinase 1 (PPK1), in charge of polyP synthesis from ATP, is widely conserved. Current colorimetric and radioactive polyP synthesis enzymatic assays are not suitable for high-throughput screening of PPK1 inhibitors. Given the ability of polyP to modify the excitation-emission spectra of DAPI (4'-6-diamidino-2-phenylindole), a fluorescence assay was previously developed by using a purified recombinant PPK1 enzyme from Escherichia coli. In this work we have developed a suitable methodology for high-throughput measurement of E. coli PPK1 activity. This platform can be used for the screening putative antimicrobial molecules for related enteropathogenic bacteria.

7.
Front Microbiol ; 9: 3001, 2018.
Article in English | MEDLINE | ID: mdl-30574134

ABSTRACT

The twin-arginine translocation (Tat) system is a specialized secretion pathway required for bacteria to export fully folded proteins through the cytoplasmic membrane. This system is crucial during Salmonella infection of animal hosts. In this study, we show that Salmonella enterica serovar Typhimurium (S. Typhimurium) requires the Tat system to survive and proliferate intracellularly in the social amoeba Dictyostelium discoideum. To achieve this, we developed a new infection assay to assess intracellular bacterial loads in amoeba by direct enumeration of colony forming units (CFU) at different times of infection. Using this assay we observed that a ΔtatABC mutant was internalized in higher numbers than the wild type, and was defective for intracellular survival in the amoeba at all times post infection evaluated. In addition, we assessed the effect of the ΔtatABC mutant in the social development of D. discoideum. In contrast to the wild-type strain, we observed that the mutant was unable to delay the social development of the amoeba at 2 days of co-incubation. This phenotype correlated with defects in intracellular proliferation presented by the ΔtatABC mutant in D. discoideum after 24 h of infection. All phenotypes described for the mutant were reverted by the presence of a plasmid carrying tatABC genes, indicating that abrogation of Tat system attenuates S. Typhimurium in this model organism. Overall, our results indicate that the Tat system is crucial for S. Typhimurium to survive and proliferate intracellularly in D. discoideum and for virulence in this host. To the best of our knowledge, this is the first report on the relevance of the Tat system in the interaction of any bacterial pathogen with the social amoeba D. discoideum.

8.
Genes (Basel) ; 9(7)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996532

ABSTRACT

Acidithiobacillus ferrooxidans resists extremely high concentrations of copper. Strain ATCC 53993 is much more resistant to the metal compared with strain ATCC 23270, possibly due to the presence of a genomic island in the former one. The global response of strain ATCC 53993 to copper was analyzed using iTRAQ (isobaric tag for relative and absolute quantitation) quantitative proteomics. Sixty-seven proteins changed their levels of synthesis in the presence of the metal. On addition of CusCBA efflux system proteins, increased levels of other envelope proteins, such as a putative periplasmic glucan biosynthesis protein (MdoG) involved in the osmoregulated synthesis of glucans and a putative antigen O polymerase (Wzy), were seen in the presence of copper. The expression of A. ferrooxidansmdoG or wzy genes in a copper sensitive Escherichia coli conferred it a higher metal resistance, suggesting the possible role of these components in copper resistance of A. ferrooxidans. Transcriptional levels of genes wzy, rfaE and wzz also increased in strain ATCC 23270 grown in the presence of copper, but not in strain ATCC 53993. Additionally, in the absence of this metal, lipopolysaccharide (LPS) amounts were 3-fold higher in A. ferrooxidans ATCC 53993 compared with strain 23270. Nevertheless, both strains grown in the presence of copper contained similar LPS quantities, suggesting that strain 23270 synthesizes higher amounts of LPS to resist the metal. On the other hand, several porins diminished their levels in the presence of copper. The data presented here point to an essential role for several envelope components in the extreme copper resistance by this industrially important acidophilic bacterium.

9.
Front Microbiol ; 9: 1220, 2018.
Article in English | MEDLINE | ID: mdl-29937757

ABSTRACT

Lipid A is the bioactive component of lipopolysaccharide, and presents a dynamic structure that undergoes modifications in response to environmental signals. Many of these structural modifications influence Salmonella virulence. This is the case of lipid A hydroxylation, a modification catalyzed by the dioxygenase LpxO. Although it has been established that oxygen is required for lipid A hydroxylation acting as substrate of LpxO in Salmonella, an additional regulatory role for oxygen in lpxO expression has not been described. The existence of this regulation could be relevant considering that Salmonella faces low oxygen tension during infection. This condition leads to an adaptive response by changing the expression of numerous genes, and transcription factors Fnr and ArcA are major regulators of this process. In this work, we describe for the first time that lipid A hydroxylation and lpxO expression are modulated by oxygen availability in Salmonella enterica serovar Enteritidis (S. Enteritidis). Biochemical and genetic analyses indicate that this process is regulated by Fnr and ArcA controlling the expression of lpxO. In addition, according to our results, this regulation occurs by direct binding of both transcription factors to specific elements present in the lpxO promoter region. Altogether, our observations revealed a novel role for oxygen acting as an environment signal controlling lipid A hydroxylation in S. Enteritidis.

10.
Front Microbiol ; 9: 234, 2018.
Article in English | MEDLINE | ID: mdl-29515535

ABSTRACT

Recently, we reported the production of Cadmium sulfide (CdS) fluorescent semiconductor nanoparticles (quantum dots, QDs) by acidophilic bacteria of the Acidithiobacillus genus. Here, we report that the addition of inorganic phosphate to Acidithiobacillus thiooxidans ATCC 19703 cultures favors the biosynthesis of CdS QDs at acidic conditions (pH 3.5). The effect of pH, phosphate and cadmium concentrations on QDs biosynthesis was studied by using Response Surface Methodology (RSM), a multivariate technique for analytical optimization scarcely used in microbiological studies to date. To address how phosphate affects intracellular biosynthesis of CdS QDs, the effect of inorganic phosphate on bacterial cadmium-uptake was evaluated. By measuring intracellular levels of cadmium we determined that phosphate influences the capacity of cells to incorporate this metal. A relation between cadmium tolerance and phosphate concentrations was also determined, suggesting that phosphate participates in the adaptation of bacteria to toxic levels of this metal. In addition, QDs-biosynthesis was also favored by the degradation of intracellular polyphosphates. Altogether, our results indicate that phosphate contributes to A. thiooxidans CdS QDs biosynthesis by influencing cadmium uptake and cadmium tolerance. These QDs may also be acting as a nucleation point for QDs formation at acidic pH. This is the first study reporting the effect of phosphates on QDs biosynthesis and describes a new cadmium-response pathway present in A. thiooxidans and most probably in other bacterial species.

11.
Cleft Palate Craniofac J ; 54(2): 210-215, 2017 03.
Article in English | MEDLINE | ID: mdl-26068388

ABSTRACT

OBJECTIVE: Recent treatment goals for Pierre Robin sequence (PRS) focus on avoiding tracheostomy through modalities such as mandibular distraction osteogenesis (MDO). We primarily evaluated the efficacy of our straightforward MDO treatment protocol for resolution of PRS-associated airway obstruction while secondarily analyzing patient characteristics associated with success or failure of MDO. DESIGN: A retrospective chart review before and after treatment. SETTING: Tertiary institutional center and private practice setting. PATIENTS: All patients were diagnosed with PRS and treated with MDO, according to the MDO treatment protocol, by a single surgeon with the same operative technique from 1999 to 2013. A sample size of n = 38 met the inclusion criteria. Data assessed included tracheostomy status (pre-MDO, post-MDO, or none), microlaryngoscopy and bronchoscopy (MLB) findings, multipositional airway study results, clinical resolution of airway obstruction following MDO, and patient characteristics. MAIN OUTCOME MEASURE: Resolution of airway obstruction with avoidance of a tracheostomy. RESULTS: Prior to referral for MDO, five patients required urgent tracheostomy. Of patients without a pre-MDO tracheostomy (n = 33), two patients required tracheostomy post-MDO, while 94% avoided tracheostomy with clinical resolution of airway obstruction (n = 31). On secondary analysis, anatomic abnormalities diagnosed by MLB were associated with a higher rate of tracheostomy (P = .037), confirming the utility of preoperative evaluation with MLB; otherwise, no patient characteristics demonstrated significance in patient selection. Follow-up ranged from 6 months to 10 years (mean = 6.45 years, median = 7.61 years). CONCLUSIONS: Our treatment protocol demonstrates MDO is highly effective for resolving severe airway obstruction related to PRS. Based on secondary analysis, our simplified protocol does not require amendment.


Subject(s)
Airway Obstruction/surgery , Mandible/abnormalities , Mandible/surgery , Osteogenesis, Distraction/methods , Pierre Robin Syndrome/complications , Airway Obstruction/etiology , Female , Humans , Infant, Newborn , Male , Retrospective Studies , Tracheostomy , Treatment Outcome
12.
Front Microbiol ; 7: 1305, 2016.
Article in English | MEDLINE | ID: mdl-27602025

ABSTRACT

The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected during infection.

13.
Biochem Biophys Res Commun ; 477(4): 563-567, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27343553

ABSTRACT

Lipopolysaccharide (LPS) consists of three covalently linked domains: the lipid A, the core region and the O antigen (OAg), consisting of repeats of an oligosaccharide. Salmonella enterica serovar Enteritidis (S. Enteritidis) produces a LPS with two OAg preferred chain lengths: a long (L)-OAg controlled by WzzSE and a very long (VL)-OAg controlled by WzzfepE. In this work, we show that OAg produced by S. Enteritidis grown in E minimal medium also presented two preferred chain-lengths. However, a simultaneous and opposing change in the production of L-OAg and VL-OAg was observed in response to oxygen availability. Biochemical and genetics analyses indicate that this process is regulated by transcriptional factors Fnr and ArcA by means of controlling the transcription of genes encoding WzzSE and WzzfepE in response to oxygen availability. Thus, our results revealed a sophisticated regulatory mechanism involved in the adaptation of S. Enteritidis to one of the main environmental cues faced by this pathogen during infection.


Subject(s)
O Antigens/metabolism , Oxygen/metabolism , Salmonella enterica/metabolism , Electrophoresis, Polyacrylamide Gel , Genes, Bacterial , O Antigens/chemistry , Polymerization , Salmonella enterica/genetics
14.
Perception ; 44(11): 1310-31, 2015.
Article in English | MEDLINE | ID: mdl-26562898

ABSTRACT

People with no arts background often misunderstand abstract art as requiring no skill. However, adults with no art background discriminate paintings by abstract expressionists from superficially similar works by children and animals. We tested whether participants show different visual exploration when looking at paintings by artists' versus children or animals. Participants sat at an eye tracker and viewed paintings by artists paired with "similar" paintings by children or animals, and were asked which they preferred and which was better. Mean duration of eye gaze fixations, total fixation time, and spatial extent of visual exploration was greater to the artist than child or animal images in response to quality but not preference. Pupil dilation was greater to the artist images in response to both questions and greater in response to the quality than preference question. Explicit selections of images paralleled total fixation times: Participants selected at chance for preference, but selected the artist images above chance in response to quality. Results show that lay adults respond differently on both an implicit as well as explicit measure when thinking about preference versus quality in art and discriminate abstract paintings by artists from superficially similar works by children and animals, despite the popular misconception by the average viewer that "my kid could have done that."


Subject(s)
Art , Fixation, Ocular/physiology , Pupil/physiology , Visual Perception/physiology , Adolescent , Animals , Child, Preschool , Consumer Behavior , Female , Humans , Male , Primates , Young Adult
16.
Infect Immun ; 81(4): 1207-20, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23357385

ABSTRACT

Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells.


Subject(s)
Bacterial Secretion Systems , Genomic Islands , Macrophages/microbiology , Membrane Transport Proteins/metabolism , Microbial Viability , Salmonella enterica/pathogenicity , Virulence Factors/metabolism , Animals , Cell Line , Cell Survival , Chickens , Gene Deletion , Membrane Transport Proteins/genetics , Mice , Salmonella enterica/metabolism , Salmonella enterica/physiology , Time Factors , Virulence Factors/genetics
17.
Biol Res ; 45(1): 21-6, 2012.
Article in English | MEDLINE | ID: mdl-22688980

ABSTRACT

Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexneri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by Wzz pHS2. Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Proteins/analysis , Dysentery, Bacillary/microbiology , O Antigens/chemistry , Shigella flexneri/pathogenicity , Caco-2 Cells , Dysentery, Bacillary/immunology , Humans , O Antigens/metabolism , Polymerization , Shigella flexneri/immunology
18.
Biol. Res ; 45(1): 21-26, 2012. ilus, tab
Article in English | LILACS | ID: lil-626743

ABSTRACT

Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexneri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by Wzz pHS2. Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.


Subject(s)
Humans , Bacterial Adhesion/physiology , Bacterial Proteins/analysis , Dysentery, Bacillary/microbiology , O Antigens/chemistry , Shigella flexneri/pathogenicity , Dysentery, Bacillary/immunology , O Antigens/metabolism , Polymerization , Shigella flexneri/immunology
19.
PLoS One ; 6(10): e25557, 2011.
Article in English | MEDLINE | ID: mdl-21984920

ABSTRACT

Shigella flexneri is endemic in most underdeveloped countries, causing diarrheal disease and dysentery among young children. In order to reach its target site, the colon, Shigella must overcome the acid environment of the stomach. Shigella is able to persist in this stressful environment and, because of this ability it can initiate infection following the ingestion of very small inocula. Thus, acid resistance is considered an important virulence trait of this bacterium. It has been reported that moderate acid conditions regulate the expression of numerous components of the bacterial envelope. Because the lipopolysaccharide (LPS) is the major component of the bacterial surface, here we have addressed the role of LPS in acid resistance of S. flexneri 2a. Defined deletion mutants in genes encoding proteins involved in the synthesis, assembly and length regulation of the LPS O antigen were constructed and assayed for resistance to pH 2.5 after adaptation to pH 5.5. The results showed that a mutant lacking O antigen was significantly more sensitive to extreme acid conditions than the wild type. Not only the presence of polymerized O antigen, but also a particular polymer length (S-OAg) was required for acid resistance. Glucosylation of the O antigen also contributed to this property. In addition, a moderate acidic pH induced changes in the composition of the lipid A domain of LPS. The main modification was the addition of phosphoethanolamine to the 1' phosphate of lipid A. This modification increased resistance of S. flexneri to extreme acid conditions, provide that O antigen was produced. Overall, the results of this work point out to an important role of LPS in resistance of Shigella flexneri to acid stress.


Subject(s)
Acids/pharmacology , Lipopolysaccharides/metabolism , Shigella flexneri/drug effects , Shigella flexneri/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Electrophoresis , Glycosylation/drug effects , Hydrogen-Ion Concentration/drug effects , Lipid A/metabolism , O Antigens/chemistry , O Antigens/metabolism , Shigella flexneri/cytology , Shigella flexneri/immunology
20.
Microb Pathog ; 50(2): 70-80, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21075194

ABSTRACT

The role of lipopolysaccharide (LPS) in entry of Salmonella Typhimurium into epithelial cells remains unclear. In this study, we tested the ability of a series of mutants with deletions in genes for the synthesis and assembly of the O antigen and the outer core of LPS to adhere to and invade HeLa, BHK, and IB3 epithelial cells lines. Mutants devoid of O antigen, or that synthesized only one O antigen unit, or with altered O antigen chain lengths were as able as the wild type to enter epithelial cells, indicating that this polysaccharide is not required for invasion of epithelial cells in vitro. In contrast, the LPS core plays a role in the interaction of S. Typhimurium with epithelial cells. The minimal core structure required for adherence and invasion comprised the inner core and residues Glc I-Gal I of the outer core. A mutant of S. Typhimurium that produced a truncated LPS core lacking the terminal galactose residue had a significant lower level of adherence to and ingestion by the three epithelial cell lines than did strains with this characteristic. Complementation of the LPS production defect recovered invasion to parental levels. Heat-killed bacteria with a core composed of Glc I-Gal I, but not bacteria with a core composed of Glc I, inhibited uptake of the wild type by HeLa cells. A comparison of the chemical structure of the S. Typhi core with the published chemical structure of that of S. Typhimurium indicated that the Glc I-Gal I-Glc II backbone is conserved in both serovars. However, S. Typhi requires a terminal glucose for maximal invasion. Therefore, our data indicate that critical saccharide residues of the outer core play different roles in the early interactions of serovars Typhi and Typhimurium with epithelial cells.


Subject(s)
Epithelial Cells/microbiology , Host-Pathogen Interactions , Salmonella Infections/microbiology , Salmonella typhi/metabolism , Salmonella typhimurium/metabolism , Animals , Cell Line , Cricetinae , HeLa Cells , Humans , O Antigens/chemistry , O Antigens/metabolism , Salmonella typhi/chemistry , Salmonella typhi/genetics , Salmonella typhimurium/chemistry , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...