Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 8(3): 430-441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278985

ABSTRACT

Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.


Subject(s)
Biodiversity , Ecosystem , Animals , Humans , Invertebrates , Rivers , Europe
2.
Nature ; 620(7974): 582-588, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558875

ABSTRACT

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Subject(s)
Biodiversity , Conservation of Water Resources , Environmental Monitoring , Fresh Water , Invertebrates , Animals , Introduced Species/trends , Invertebrates/classification , Invertebrates/physiology , Europe , Human Activities , Conservation of Water Resources/statistics & numerical data , Conservation of Water Resources/trends , Hydrobiology , Time Factors , Crop Production , Urbanization , Global Warming , Water Pollutants/analysis
3.
Sci Total Environ ; 842: 156689, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35724793

ABSTRACT

Humans have severely altered freshwater ecosystems globally, causing a loss of biodiversity. Regulatory frameworks, like the Water Framework Directive, have been developed to support actions that halt and reverse this loss. These frameworks use typology systems that summarize freshwater ecosystems into environmentally delineated types. Within types, ecosystems that are minimally impacted by human activities, i.e., in reference conditions, are expected to be similar concerning physical, chemical, and biological characteristics. This assumption is critical when water quality assessments rely on comparisons to type-specific reference conditions. Lyche Solheim et al. (2019) developed a pan-European river typology system, the Broad River Types, that unifies the national Water Framework Directive typology systems and is gaining traction within the research community. However, it is unknown how similar biological communities are within these individual Broad River Types. We used analysis of similarities and classification strength analysis to examine if the Broad River Types delineate distinct macroinvertebrate communities across Europe and whether they outperform two ecoregional approaches: the European Biogeographical Regions and Illies' Freshwater Ecoregions. We determined indicator and typical taxa for the types of all three typology systems and evaluated their distinctiveness. All three typology systems captured more variation in macroinvertebrate communities than random combinations of sites. The results were similar among typology systems, but the Broad River Types always performed worse than either the Biogeographic Regions or Illies' Freshwater Ecoregions. Despite reaching statistical significance, the statistics of analysis of similarity and classification strength were low in all tests indicating substantial overlap among the macroinvertebrate communities of different types. We conclude that the Broad River Types do not represent an improvement upon existing freshwater typologies when used to delineate macroinvertebrate communities and we propose future avenues for advancement: regionally constrained types, better recognition of intermittent rivers, and consideration of biotic communities.


Subject(s)
Ecosystem , Rivers , Animals , Biodiversity , Environmental Monitoring/methods , Humans , Invertebrates
4.
Mol Ecol ; 26(21): 6085-6099, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28881498

ABSTRACT

Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels.


Subject(s)
Biodiversity , Climate , Insecta/classification , Rivers , Animals , Europe , Geography , Haplotypes , Phylogeny , Species Specificity
5.
Sci Total Environ ; 599-600: 1108-1118, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28511356

ABSTRACT

Sewage inputs on fluvial ecosystems affect benthic communities and alter trophic networks resulting in changes on river functioning. Functional indicators (e.g. river metabolism) have been proposed as a valuable tool to evaluate ecosystem impairment. In the present study we monitored river metabolism in spring (few days after a major flood) and in summer (after 35days of low flow conditions) using both single-station and two-stations methods over a 24h period up and downstream of wastewater treatment plant (WWTP) effluents on three Atlantic river reaches located in northern Spain (Europe). Concurrently with river metabolism, we characterized environmental characteristics (flow, velocity, depth, pH, water temperature, nutrients, etc.), benthic macroinvertebrate communities and biofilm (algae and epilithic biomass). Ecosystem Respiration (ER24) was similar at the different periods and locations, but Gross Primary Productivity (GPP) tended to decrease in impacted reaches (downstream WWTPs) and in summer (except in the Saja River). However, the balance of the metabolic processes showed a trend towards autotrophy in the largest river, while WWTP effluents increased its autotrophy. Chlorophyll a concentration was >4 times larger in spring than in summer in all river reaches, while epilithic biomass followed a similar but less obvious pattern. Increase of invertebrate scraper densities (mainly, Potamopyrgus antipodarum) seems to be a plausible explanation for biofilm biomass temporal patterns in all sites (higher in spring than in summer), altering GPP and ER24 patterns. Thus, metabolism rates show different responses to WWTP effluents depending on season and on the relationships among functional and structural components, with special focus on the composition and structure of macroinvertebrate communities. Increasing our understanding of cause-effect relationships on the impairment of aquatic ecosystems needs to account for both structural and functional components and their interactions.

6.
Sci Total Environ ; 577: 308-318, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27802888

ABSTRACT

We modelled three macroinvertebrate (IASPT, EPT number of families and LIFE) and one fish (percentage of salmonid biomass) biotic indices to river networks draining a large region (110,000km2) placed in Northern and Eastern Spain. Models were developed using Random Forest and 26 predictor variables (19 predictors to model macroinvertebrate indices and 22 predictors to model the fish index). Predictor variables were related with different environmental characteristics (water quality, physical habitat characteristics, hydrology, topography, geology and human pressures). The importance and effect of predictors on the 4 biotic indices was evaluated with the IncNodePurity index and partial dependence plots, respectively. Results indicated that the spatial variability of macroinvertebrate and fish indices were mostly dependent on the same environmental variables. They decreased in river reaches affected by high mean annual nitrate concentration (>4mg/l) and temperature (>12°C), with low flow water velocity (<0.4m/s) and aquatic plant communities being dominated by macrophytes. These indices were higher in the Atlantic region than in the Mediterranean. This study provides a continuous image of river biological communities used as indicators, which turns very useful to identify the main sources of change in the ecological status of water bodies and assist both, the integrated catchment management and the identification of river reaches for recovery.


Subject(s)
Ecosystem , Fishes , Invertebrates , Rivers , Animals , Environmental Monitoring , Models, Biological , Spain
7.
Sci Total Environ ; 545-546: 152-62, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26745301

ABSTRACT

We model the spatial and seasonal variability of three key water quality variables (water temperature and concentration of nitrates and phosphates) for entire river networks in a large area in northern Spain. Models were developed with the Random Forest technique, using 12 (water temperature and nitrate concentration) and 15 (phosphate concentration) predictor variables as descriptors of several environmental attributes (climate, topography, land-uses, hydrology and anthropogenic pressures). The effect of the different predictors on the response variables was assessed with partial dependence plots and partial correlation analysis. Results indicated that land-uses were important predictors in defining the spatial and seasonal patterns of these three variables. Water temperature was positively related with air temperature and the upstream drainage area, whereas increases in forest cover decreased water temperature. Nitrate concentration was mainly related to the area covered by agricultural land-uses, increasing in winter, probably because of catchment run-off processes. On the other hand, phosphate concentration was highly related to the area covered by urban land-uses in the upstream catchment and to the proximity of the closest upstream effluent. Phosphate concentration increased notably during the low flow period (summer), probably due to the reduction of the dilution capacity. These results provide a large-scale continuous picture of water quality, which could help identify the main sources of change in water quality and assist in the prioritization of river reaches for restoration projects.

8.
Water Res ; 45(3): 1501-11, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21168894

ABSTRACT

The present study analyses the distribution patterns of macroinvertebrate communities in four microhabitats (riffles, glides, leaf litter and bank roots) upstream and downstream of two waste water treatment plant (WWTP) effluents in northern Spain rivers. Macroinvertebrate communities were analysed in November 2006 by taking 5 samples from each of the microhabitats under unaffected (upstream WWTP) and affected (downstream WWTP) conditions, respectively. Water velocity, depth, substrate coarseness and hydraulic stress by means of the Froude number were also estimated at all sampling locations. Under unaffected conditions, the abundance and presence/absence of certain macroinvertebrate taxa were mainly determined by hydraulic characteristics (water velocity and Froude number) and feeding resource availability. However, neither macroinvertebrate richness nor abundance were neither significantly correlated with hydraulic stress nor substrate coarseness, although the number of macroinvertebrate taxa increased in microhabitats with high structural complexity. Macroinvertebrate abundance increased downstream of both WWTPs, while macroinvertebrate richness was not adversely affected by the organic enrichment of water. The structure and composition of macroinvertebrate communities occurring in riffles was similar under unaffected and affected conditions, while communities from leaf litter and submerged bank roots showed important changes above and below the WWTPs, indicating that they are probably the most appropriate communities for water quality assessment.


Subject(s)
Environmental Monitoring/methods , Invertebrates , Rivers/chemistry , Animals , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...