Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 872, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057322

ABSTRACT

In the summer of 2012, two fires affected Mediterranean ecosystems in the eastern Iberian Peninsula. The size of these fires was at the extreme of the historical variability (megafires). Animals are traditionally assumed to recolonize from source populations outside of the burned area (exogenous regeneration) while plants recover from endogenous regeneration (resprouting and seeding). However, there is increasing evidence of in situ fire survival in animals. To evaluate the effect of large-scale fires on biodiversity and the mechanism of recovery, in 2013, we set up 12 plots per fire, covering burned vegetation at different distances from the fire perimeter and unburned vegetation. In each plot, we followed the postfire recovery of arthropods, reptiles (including some of their parasites), and plants for 2 to 5 years. Here we present the resulting database (POSTDIV) of taxon abundance. POSTDIV totals 19,906 records for 457 arthropod taxa (113,681 individuals), 12 reptile taxa (503 individuals), 4 reptile parasites (234 individuals), and 518 plant taxa (cover-abundance). We provide examples in the R language to query the database.


Subject(s)
Arthropods , Fires , Animals , Biodiversity , Ecosystem , Plants , Reptiles , Databases, Factual
2.
Proc Biol Sci ; 288(1954): 20211230, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34255996

ABSTRACT

Wildfires are a natural disturbance in many ecosystems. However, their effect on biotic interactions has been poorly studied. Fire consumes the vegetation and the litter layer where many parasites spend part of their life cycles. We hypothesize that wildfires reduce habitat availability for parasites with consequent potential benefits for hosts. We tested this for the lizard Psammodromus algirus and its ectoparasites in a Mediterranean ecosystem. We predicted that lizards in recently burned areas would have lower parasite load (cleaning effect) than those in unburned areas and that this phenomenon implies that lizards spending their entire lives in postfire conditions experience a lower level of parasitism than those living in unburned areas. We compared the ectoparasite load of lizards between eight paired burned/unburned sites, including recent (less than 1 year postfire) and older fires (2-4 years). We found that lizards' ectoparasites prevalence was drastically reduced in recently burned areas. Likewise, lizards in older burned areas showed less evidence of past parasitic infections. Fire disrupted the host-parasite interaction, providing the opportunity for lizards to avoid the negative effects of ectoparasites. Our results suggest that wildfires probably fulfil a role in controlling vector-borne diseases and pathogens, and highlight ecological effects of wildfires that have been overlooked.


Subject(s)
Fires , Lizards , Wildfires , Animals , Ecosystem , Parasite Load
3.
Curr Zool ; 64(2): 197-204, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30402060

ABSTRACT

Studying the causes of parasite geographic distribution is relevant to understand ecological and evolutionary processes that affect host populations as well as for species conservation. Temperature is one of the most important environmental variables affecting parasite distribution, as raising temperatures positively affect development, reproduction, and rate of transmission of both endo- and ectoparasites. In this context, it is generally accepted that, in mountains, parasite abundance decreases with elevation. However, empirical evidence on this topic is limited. In the present study, we analyzed the elevational variation of hemoparasites and ectoparasites of a lizard, Psammodromus algirus, along a 2,200-m elevational gradient in Sierra Nevada (SE Spain). As predicted, ectoparasite (mites, ticks, mosquitoes, and sandflies) abundance decreased with elevation. However, hemoparasite prevalence and intensity in the lizard augmented with altitude, showing a pattern contrary to their vectors (mites). We suggest that tolerance to hemoparasites may increase with elevation as a consequence of lizards at high altitudes taking advantage of increased body condition and food availability, and reduced oxidative stress. Moreover, lizards could have been selected for higher resistance against hemoparasites at lowlands (where higher rates of replication are expected), thus reducing hemoparasite prevalence and load. Our findings imply that, in a scenario of climate warming, populations of lizards at high elevation may face increased abundance of ectoparasites, accompanied with strong negative effects.

4.
Zookeys ; (552): 137-54, 2016.
Article in English | MEDLINE | ID: mdl-26865820

ABSTRACT

In this data paper, a dataset of passerine bird communities is described in Sierra Nevada, a Mediterranean high mountain located in southern Spain. The dataset includes occurrence data from bird surveys conducted in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each visit, bird species numbers as well as distance to the transect line were recorded. A total of 27847 occurrence records were compiled with accompanying measurements on distance to the transect and animal counts. All records are of species in the order Passeriformes. Records of 16 different families and 44 genera were collected. Some of the taxa in the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

SELECTION OF CITATIONS
SEARCH DETAIL
...