Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35739811

ABSTRACT

Two divergent genetic lineages have been described for the endangered green turtle in the Pacific Ocean, occurring sympatrically in some foraging grounds. Chile has seven known green turtle foraging grounds, hosting mainly juveniles of different lineages. Unfortunately, anthropic factors have led to the decline or disappearance of most foraging aggregations. We investigated age-class/sex structure, morphological variation, genetic diversity and structure, and health status of turtles from two mainland (Bahia Salado and Playa Chinchorro) and one insular (Easter Island) Chilean foraging grounds. Bahia Salado is composed of juveniles, and with Playa Chinchorro, exclusively harbors individuals of the north-central/eastern Pacific lineage, with Galapagos as the major genetic contributor. Conversely, Easter Island hosts juveniles and adults from both the eastern Pacific and French Polynesia. Morphological variation was found between lineages and foraging grounds, suggesting an underlying genetic component but also an environmental influence. Turtles from Easter Island, unlike Bahia Salado, exhibited injuries/alterations probably related to anthropic threats. Our findings point to establishing legal protection for mainland Chile's foraging grounds, and to ensure that the administrative plan for Easter Island's marine protected area maintains ecosystem health, turtle population viability, and related cultural and touristic activities.

2.
Proc Biol Sci ; 288(1954): 20210754, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34229490

ABSTRACT

Marine species may exhibit genetic structure accompanied by phenotypic differentiation related to adaptation despite their high mobility. Two shape-based morphotypes have been identified for the green turtle (Chelonia mydas) in the Pacific Ocean: the south-central/western or yellow turtle and north-central/eastern or black turtle. The genetic differentiation between these morphotypes and the adaptation of the black turtle to environmentally contrasting conditions of the eastern Pacific region has remained a mystery for decades. Here we addressed both questions using a reduced-representation genome approach (Dartseq; 9473 neutral SNPs) and identifying candidate outlier loci (67 outlier SNPs) of biological relevance between shape-based morphotypes from eight Pacific foraging grounds (n = 158). Our results support genetic divergence between morphotypes, probably arising from strong natal homing behaviour. Genes and enriched biological functions linked to thermoregulation, hypoxia, melanism, morphogenesis, osmoregulation, diet and reproduction were found to be outliers for differentiation, providing evidence for adaptation of C. mydas to the eastern Pacific region and suggesting independent evolutionary trajectories of the shape-based morphotypes. Our findings support the evolutionary distinctness of the enigmatic black turtle and contribute to the adaptive research and conservation genomics of a long-lived and highly mobile vertebrate.


Subject(s)
Turtles , Adaptation, Physiological/genetics , Animals , Genetic Drift , Pacific Ocean , Turtles/genetics
3.
PLoS One ; 14(10): e0223587, 2019.
Article in English | MEDLINE | ID: mdl-31589640

ABSTRACT

The green turtle (Chelonia mydas) is a globally distributed marine species whose evolutionary history has been molded by geological events and oceanographic and climate changes. Divergence between Atlantic and Pacific clades has been associated with the uplift of the Panama Isthmus, and inside the Pacific region, a biogeographic barrier located west of Hawaii has restricted the gene flow between Central/Eastern and Western Pacific populations. We investigated the carapace shape of C. mydas from individuals of Atlantic, Eastern Pacific, and Western Pacific genetic lineages using geometric morphometrics to evaluate congruence between external morphology and species' phylogeography. Furthermore, we assessed the variation of carapace shape according to foraging grounds. Three morphologically distinctive groups were observed which aligned with predictions based on the species' lineages, suggesting a substantial genetic influence on carapace shape. Based on the relationship between this trait and genetic lineages, we propose the existence of at least three distinct morphotypes of C. mydas. Well-defined groups in some foraging grounds (Galapagos, Costa Rica and New Zealand) may suggest that ecological or environmental conditions in these sites could also be influencing carapace shape in C. mydas. Geometric morphometrics is a suitable tool to differentiate genetic lineages in this cosmopolitan marine species. Consequently, this study opens new possibilities to explore and test ecological and evolutionary hypotheses in species with wide morphological variation and broad geographic distribution range.


Subject(s)
Phenotype , Phylogeny , Turtles/genetics , Animals , Phylogeography , Turtles/anatomy & histology , Turtles/classification
4.
Dis Aquat Organ ; 135(1): 43-48, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31244483

ABSTRACT

An adult olive ridley turtle Lepidochelys olivacea with lesions suggestive of fibropapillomatosis was rescued on the coast of San Antonio, central Chile. Histopathologic analysis showed an exophytic and pedunculated mass formed by epidermal papillary projections supported by fibrovascular cores, epidermal hyperplasia and marked orthokeratotic hyperkeratosis. ChHV5 unique long genes UL27, UL28 and UL30 were amplified from tumor lesions and sequenced for phylogeny. Phylogenetic reconstruction showed the Chilean sequences clustering with the Eastern Pacific group. This is the first case of fibropapillomatosis in an olive ridley turtle diagnosed in Chile and in the southeastern Pacific region. Our results suggest a regional grouping of ChHV5 variants independent of the marine turtle's species.


Subject(s)
Olea , Turtles , Animals , Base Sequence , Chile , Phylogeny
5.
Arch Environ Contam Toxicol ; 75(1): 75-86, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29725722

ABSTRACT

Penguins are reliable sentinels for environmental assessments of mercury (Hg) due to their longevity, abundance, high trophic level, and relatively small foraging areas. We analyzed Hg concentrations from blood and feathers of adult Humboldt penguins (Spheniscus humboldti) and feathers of chinstrap penguins (Pygoscelis antarcticus) from different reproductive colonies with variable degrees of urbanization and industrialization along the Chilean and Antarctic coasts. We evaluated Hg concentration differences between species, sexes (Humboldt penguins), and localities. Our results showed significantly greater levels in Humboldt penguins than in chinstrap penguins and nonsignificant differences between sexes among Humboldts. Penguin Hg concentrations showed a latitudinal pattern, with greater values of the metal at lower latitudes, independent of the species. Both studied penguin species showed elevated Hg concentrations compared to their congeners, highlighting the necessity to investigate potential negative effects on their populations. Although differences between species are possibly due to variation in diet and trophic level, our results suggest an important effect of the degree of Hg pollution adjacent to foraging areas. Further research on Hg content in prey species and environmental samples, together with a larger overall sample size, and investigation on penguin's diet and trophic level are needed to elucidate Hg bioavailability in each location and the role of local Hg pollution levels. Likewise, it is important to monitor Hg and other heavy metals of ecotoxicological importance in penguin populations in vulnerable regions of Chile.


Subject(s)
Environmental Exposure/analysis , Mercury/analysis , Spheniscidae , Animals , Antarctic Regions , Chile , Ecotoxicology/methods , Environmental Monitoring/methods , Feathers/chemistry , Female , Male , Mercury/blood , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...