Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 255: 112534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552360

ABSTRACT

The family of flavodiiron proteins (FDPs) plays an important role in the scavenging and detoxification of both molecular oxygen and nitric oxide. Using electrons from a flavin mononucleotide cofactor molecular oxygen is reduced to water and nitric oxide is reduced to nitrous oxide and water. While the mechanism for NO reduction in FDPs has been studied extensively, there is very little information available about O2 reduction. Here we use hybrid density functional theory (DFT) to study the mechanism for O2 reduction in FDPs. An important finding is that a proton coupled reduction is needed after the O2 molecule has bound to the diferrous diiron active site and before the OO bond can be cleaved. This is in contrast to the mechanism for NO reduction, where both NN bond formation and NO bond cleavage occurs from the same starting structure without any further reduction, according to both experimental and computational results. This computational result for the O2 reduction mechanism should be possible to evaluate experimentally. Another difference between the two substrates is that the actual OO bond cleavage barrier is low, and not involved in rate-limiting the reduction process, while the barrier connected with bond cleavage/formation in the NO reduction process is of similar height as the rate-limiting steps. We suggest that these results may be part of the explanation for the generally higher activity for O2 reduction as compared to NO reduction in most FDPs. Comparisons are also made to the O2 reduction reaction in the family of heme­copper oxidases.


Subject(s)
Heme , Nitric Oxide , Nitric Oxide/metabolism , Heme/chemistry , Oxidoreductases/chemistry , Ceruloplasmin/metabolism , Oxygen/chemistry , Water/metabolism , Oxidation-Reduction
2.
Proc Natl Acad Sci U S A ; 120(40): e2307093120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37751552

ABSTRACT

Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.


Subject(s)
Cytochromes c , Pseudomonas aeruginosa , Electron Transport , Biological Transport , Anti-Bacterial Agents
3.
BMC Biol ; 21(1): 47, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36855050

ABSTRACT

BACKGROUND: NorQ, a member of the MoxR-class of AAA+ ATPases, and NorD, a protein containing a Von Willebrand Factor Type A (VWA) domain, are essential for non-heme iron (FeB) cofactor insertion into cytochrome c-dependent nitric oxide reductase (cNOR). cNOR catalyzes NO reduction, a key step of bacterial denitrification. This work aimed at elucidating the specific mechanism of NorQD-catalyzed FeB insertion, and the general mechanism of the MoxR/VWA interacting protein families. RESULTS: We show that NorQ-catalyzed ATP hydrolysis, an intact VWA domain in NorD, and specific surface carboxylates on cNOR are all features required for cNOR activation. Supported by BN-PAGE, low-resolution cryo-EM structures of NorQ and the NorQD complex show that NorQ forms a circular hexamer with a monomer of NorD binding both to the side and to the central pore of the NorQ ring. Guided by AlphaFold predictions, we assign the density that "plugs" the NorQ ring pore to the VWA domain of NorD with a protruding "finger" inserting through the pore and suggest this binding mode to be general for MoxR/VWA couples. CONCLUSIONS: Based on our results, we present a tentative model for the mechanism of NorQD-catalyzed cNOR remodeling and suggest many of its features to be applicable to the whole MoxR/VWA family.


Subject(s)
AAA Proteins , Paracoccus denitrificans , Molecular Chaperones , Norethindrone , Structure-Activity Relationship
4.
Commun Chem ; 6(1): 32, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797353

ABSTRACT

Fission yeast Schizosaccharomyces pombe serves as model organism for studying higher eukaryotes. We combined the use of cryo-EM and spectroscopy to investigate the structure and function of affinity purified respiratory complex IV (CIV) from S. pombe. The reaction sequence of the reduced enzyme with O2 proceeds over a time scale of µs-ms, similar to that of the mammalian CIV. The cryo-EM structure of CIV revealed eleven subunits as well as a bound hypoxia-induced gene 1 (Hig1) domain of respiratory supercomplex factor 2 (Rcf2). These results suggest that binding of Rcf2 does not require the presence of a CIII-CIV supercomplex, i.e. Rcf2 is a component of CIV. An AlphaFold-Multimer model suggests that the Hig1 domains of both Rcf1 and Rcf2 bind at the same site of CIV suggesting that their binding is mutually exclusive. Furthermore, the differential functional effect of Rcf1 or Rcf2 is presumably caused by interactions of CIV with their different non-Hig1 domain parts.

5.
Biochim Biophys Acta Bioenerg ; 1863(7): 148585, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35753381

ABSTRACT

The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation­oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 µs, 100 µs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 µs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P â†’ F nor the F â†’ O reactions are pH dependent, but the P â†’ F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.


Subject(s)
Electrons , Protons , Electron Transport , Electron Transport Complex IV/metabolism , Heme/metabolism , Oxygen/metabolism
6.
Chem Rev ; 121(15): 9644-9673, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34184881

ABSTRACT

In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.


Subject(s)
Cell Membrane/enzymology , Electron Transport Complex III/chemistry , Electron Transport Complex III/metabolism , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Saccharomyces cerevisiae , Electron Transport , Protons , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology
7.
BMC Biol ; 19(1): 98, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971868

ABSTRACT

BACKGROUND: Mitochondrial respiration is organized in a series of enzyme complexes in turn forming dynamic supercomplexes. In Saccharomyces cerevisiae (baker's yeast), Cox13 (CoxVIa in mammals) is a conserved peripheral subunit of Complex IV (cytochrome c oxidase, CytcO), localized at the interface of dimeric bovine CytcO, which has been implicated in the regulation of the complex. RESULTS: Here, we report the solution NMR structure of Cox13, which forms a dimer in detergent micelles. Each Cox13 monomer has three short helices (SH), corresponding to disordered regions in X-ray or cryo-EM structures of homologous proteins. Dimer formation is mainly induced by hydrophobic interactions between the transmembrane (TM) helix of each monomer. Furthermore, an analysis of chemical shift changes upon addition of ATP revealed that ATP binds at a conserved region of the C terminus with considerable conformational flexibility. CONCLUSIONS: Together with functional analysis of purified CytcO, we suggest that this ATP interaction is inhibitory of catalytic activity. Our results shed light on the structural flexibility of an important subunit of yeast CytcO and provide structure-based insight into how ATP could regulate mitochondrial respiration.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Adenosine Triphosphate , Animals , Cattle , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Magnetic Resonance Spectroscopy , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
Biochim Biophys Acta Bioenerg ; 1862(8): 148433, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33932366

ABSTRACT

Respiration is carried out by a series of membrane-bound complexes in the inner mitochondrial membrane or in the cytoplasmic membrane of bacteria. Increasing evidence shows that these complexes organize into larger supercomplexes. In this work, we identified a supercomplex composed of cytochrome (cyt.) bc1 and aa3-type cyt. c oxidase in Rhodobacter sphaeroides. We purified the supercomplex using a His-tag on either of these complexes. The results from activity assays, native and denaturing PAGE, size exclusion chromatography, electron microscopy, optical absorption spectroscopy and kinetic studies on the purified samples support the formation and coupled quinol oxidation:O2 reduction activity of the cyt. bc1-aa3 supercomplex. The potential role of the membrane-anchored cyt. cy as a component in supercomplexes was also investigated.


Subject(s)
Cell Membrane/metabolism , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Hydroquinones/metabolism , Rhodobacter sphaeroides/enzymology , Electron Transport , Electron Transport Complex III/chemistry , Electron Transport Complex IV/chemistry , Kinetics , Oxidation-Reduction
9.
Biochemistry ; 60(4): 346-355, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33464878

ABSTRACT

Efficiently carrying out the oxygen reduction reaction (ORR) is critical for many applications in biology and chemistry, such as bioenergetics and fuel cells, respectively. In biology, this reaction is carried out by large, transmembrane oxidases such as heme-copper oxidases (HCOs) and cytochrome bd oxidases. Common to these oxidases is the presence of a glutamate residue next to the active site, but its precise role in regulating the oxidase activity remains unclear. To gain insight into its role, we herein report that incorporation of glutamate next to a designed heme-copper center in two biosynthetic models of HCOs improves O2 binding affinity, facilitates protonation of reaction intermediates, and eliminates release of reactive oxygen species. High-resolution crystal structures of the models revealed extended, water-mediated hydrogen-bonding networks involving the glutamate. Electron paramagnetic resonance of the cryoreduced oxy-ferrous centers at cryogenic temperature followed by thermal annealing allowed observation of the key hydroperoxo intermediate that can be attributed to the hydrogen-bonding network. By demonstrating these important roles of glutamate in oxygen reduction biochemistry, this work offers deeper insights into its role in native oxidases, which may guide the design of more efficient artificial ORR enzymes or catalysts for applications such as fuel cells.


Subject(s)
Copper/metabolism , Escherichia coli Proteins , Escherichia coli , Glutamic Acid , Heme , Metabolic Engineering , Models, Biological , Oxidoreductases , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glutamic Acid/genetics , Glutamic Acid/metabolism , Heme/genetics , Heme/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism
10.
Structure ; 29(3): 275-283.e4, 2021 03 04.
Article in English | MEDLINE | ID: mdl-32905793

ABSTRACT

The Saccharomyces cerevisiae respiratory supercomplex factor 2 (Rcf2) is a 224-residue protein located in the mitochondrial inner membrane where it is involved in the formation of supercomplexes composed of cytochrome bc1 and cytochrome c oxidase. We previously demonstrated that Rcf2 forms a dimer in dodecylphosphocholine micelles, and here we report the solution NMR structure of this Rcf2 dimer. Each Rcf2 monomer has two soluble α helices and five putative transmembrane (TM) α helices, including an unexpectedly charged TM helix at the C terminus, which mediates dimer formation. The NOE contacts indicate the presence of inter-monomer salt bridges and hydrogen bonds at the dimer interface, which stabilize the Rcf2 dimer structure. Moreover, NMR chemical shift change mapping upon lipid titrations as well as molecular dynamics analysis reveal possible structural changes upon embedding Rcf2 into a native lipid environment. Our results contribute to the understanding of respiratory supercomplex formation and regulation.


Subject(s)
Electron Transport Complex IV/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Electron Transport Complex IV/metabolism , Membrane Lipids/metabolism , Molecular Dynamics Simulation , Protein Conformation, alpha-Helical , Protein Domains , Protein Multimerization , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
11.
Cell Death Dis ; 11(9): 722, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32892209

ABSTRACT

Intrinsic apoptosis as a modality of regulated cell death is intimately linked to permeabilization of the outer mitochondrial membrane and subsequent release of the protein cytochrome c into the cytosol, where it can participate in caspase activation via apoptosome formation. Interestingly, cytochrome c release is an ancient feature of regulated cell death even in unicellular eukaryotes that do not contain an apoptosome. Therefore, it was speculated that cytochrome c release might have an additional, more fundamental role for cell death signalling, because its absence from mitochondria disrupts oxidative phosphorylation. Here, we permanently anchored cytochrome c with a transmembrane segment to the inner mitochondrial membrane of the yeast Saccharomyces cerevisiae, thereby inhibiting its release from mitochondria during regulated cell death. This cytochrome c retains respiratory growth and correct assembly of mitochondrial respiratory chain supercomplexes. However, membrane anchoring leads to a sensitisation to acetic acid-induced cell death and increased oxidative stress, a compensatory elevation of cellular oxygen-consumption in aged cells and a decreased chronological lifespan. We therefore conclude that loss of cytochrome c from mitochondria during regulated cell death and the subsequent disruption of oxidative phosphorylation is not required for efficient execution of cell death in yeast, and that mobility of cytochrome c within the mitochondrial intermembrane space confers a fitness advantage that overcomes a potential role in regulated cell death signalling in the absence of an apoptosome.


Subject(s)
Cell Death/physiology , Cytochromes c/metabolism , Mitochondria/metabolism , Yeasts/pathogenicity , Humans
12.
FEBS Lett ; 594(5): 813-822, 2020 03.
Article in English | MEDLINE | ID: mdl-31725900

ABSTRACT

Cytochrome c oxidase is a membrane-bound redox-driven proton pump that harbors two proton-transfer pathways, D and K, which are used at different stages of the reaction cycle. Here, we address the question if a D pathway with a modified energy landscape for proton transfer could take over the role of the K pathway when the latter is blocked by a mutation. Our data indicate that structural alterations near the entrance of the D pathway modulate energy barriers that influence proton transfer to the proton-loading site. The data also suggest that during reduction of the catalytic site, its protonation has to occur via the K pathway and that this proton transfer to the catalytic site cannot take place through the D pathway.


Subject(s)
Bacteria/enzymology , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Mutation , Bacteria/chemistry , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Catalytic Domain , Electron Transport Complex IV/genetics , Models, Molecular , Protein Conformation , Protons
13.
Sci Rep ; 9(1): 17234, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754148

ABSTRACT

Denitrification is a microbial pathway that constitutes an important part of the nitrogen cycle on earth. Denitrifying organisms use nitrate as a terminal electron acceptor and reduce it stepwise to nitrogen gas, a process that produces the toxic nitric oxide (NO) molecule as an intermediate. In this work, we have investigated the possible functional interaction between the enzyme that produces NO; the cd1 nitrite reductase (cd1NiR) and the enzyme that reduces NO; the c-type nitric oxide reductase (cNOR), from the model soil bacterium P. denitrificans. Such an interaction was observed previously between purified components from P. aeruginosa and could help channeling the NO (directly from the site of formation to the side of reduction), in order to protect the cell from this toxic intermediate. We find that electron donation to cNOR is inhibited in the presence of cd1NiR, presumably because cd1NiR binds cNOR at the same location as the electron donor. We further find that the presence of cNOR influences the dimerization of cd1NiR. Overall, although we find no evidence for a high-affinity, constant interaction between the two enzymes, our data supports transient interactions between cd1NiR and cNOR that influence enzymatic properties of cNOR and oligomerization properties of cd1NiR. We speculate that this could be of particular importance in vivo during metabolic switches between aerobic and denitrifying conditions.


Subject(s)
Nitrite Reductases/metabolism , Oxidoreductases/metabolism , Paracoccus denitrificans/metabolism , Electron Transport/physiology , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Pseudomonas aeruginosa/metabolism
14.
mBio ; 10(3)2019 06 04.
Article in English | MEDLINE | ID: mdl-31164464

ABSTRACT

The origin of novel genes and beneficial functions is of fundamental interest in evolutionary biology. New genes can originate from different mechanisms, including horizontal gene transfer, duplication-divergence, and de novo from noncoding DNA sequences. Comparative genomics has generated strong evidence for de novo emergence of genes in various organisms, but experimental demonstration of this process has been limited to localized randomization in preexisting structural scaffolds. This bypasses the basic requirement of de novo gene emergence, i.e., lack of an ancestral gene. We constructed highly diverse plasmid libraries encoding randomly generated open reading frames and expressed them in Escherichia coli to identify short peptides that could confer a beneficial and selectable phenotype in vivo (in a living cell). Selections on antibiotic-containing agar plates resulted in the identification of three peptides that increased aminoglycoside resistance up to 48-fold. Combining genetic and functional analyses, we show that the peptides are highly hydrophobic, and by inserting into the membrane, they reduce membrane potential, decrease aminoglycoside uptake, and thereby confer high-level resistance. This study demonstrates that randomized DNA sequences can encode peptides that confer selective benefits and illustrates how expression of random sequences could spark the origination of new genes. In addition, our results also show that this question can be addressed experimentally by expression of highly diverse sequence libraries and subsequent selection for specific functions, such as resistance to toxic compounds, the ability to rescue auxotrophic/temperature-sensitive mutants, and growth on normally nonused carbon sources, allowing the exploration of many different phenotypes.IMPORTANCEDe novo gene origination from nonfunctional DNA sequences was long assumed to be implausible. However, recent studies have shown that large fractions of genomic noncoding DNA are transcribed and translated, potentially generating new genes. Experimental validation of this process so far has been limited to comparative genomics, in vitro selections, or partial randomizations. Here, we describe selection of novel peptides in vivo using fully random synthetic expression libraries. The peptides confer aminoglycoside resistance by inserting into the bacterial membrane and thereby partly reducing membrane potential and decreasing drug uptake. Our results show that beneficial peptides can be selected from random sequence pools in vivo and support the idea that expression of noncoding sequences could spark the origination of new genes.


Subject(s)
Drug Resistance, Microbial/genetics , Escherichia coli/drug effects , Evolution, Molecular , Peptides/genetics , RNA, Untranslated/genetics , Aminoglycosides/pharmacology , Escherichia coli/genetics , Gene Library , Genomics , Open Reading Frames , Phenotype , Phylogeny
15.
FEBS Lett ; 593(12): 1351-1359, 2019 06.
Article in English | MEDLINE | ID: mdl-31077353

ABSTRACT

A key step of denitrification, the reduction of toxic nitric oxide to nitrous oxide, is catalysed by cytochrome c-dependent NO reductase (cNOR). cNOR contains four redox-active cofactors: three hemes and a nonheme iron (FeB ). Heme b3 and FeB constitute the active site, but the specific mechanism of NO-binding events and reduction is under debate. Here, we used a recently constructed, fully folded and hemylated cNOR variant that lacks FeB to investigate the role of FeB during catalysis. We show that in the FeB -less cNOR, binding of both NO and O2 to heme b3 still occurs but further reduction is impaired, although to a lesser degree for O2 than for NO. Implications for the catalytic mechanisms of cNOR are discussed.


Subject(s)
Heme/metabolism , Oxidoreductases/metabolism , Catalysis , Catalytic Domain , Kinetics , Nitric Oxide/metabolism , Oxidation-Reduction , Oxygen/metabolism , Protein Binding
16.
Nat Struct Mol Biol ; 25(12): 1128-1136, 2018 12.
Article in English | MEDLINE | ID: mdl-30518849

ABSTRACT

In the mycobacterial electron-transport chain, respiratory complex III passes electrons from menaquinol to complex IV, which in turn reduces oxygen, the terminal acceptor. Electron transfer is coupled to transmembrane proton translocation, thus establishing the electrochemical proton gradient that drives ATP synthesis. We isolated, biochemically characterized, and determined the structure of the obligate III2IV2 supercomplex from Mycobacterium smegmatis, a model for Mycobacterium tuberculosis. The supercomplex has quinol:O2 oxidoreductase activity without exogenous cytochrome c and includes a superoxide dismutase subunit that may detoxify reactive oxygen species produced during respiration. We found menaquinone bound in both the Qo and Qi sites of complex III. The complex III-intrinsic diheme cytochrome cc subunit, which functionally replaces both cytochrome c1 and soluble cytochrome c in canonical electron-transport chains, displays two conformations: one in which it provides a direct electronic link to complex IV and another in which it serves as an electrical switch interrupting the connection.


Subject(s)
Cell Respiration/physiology , Electron Transport Chain Complex Proteins/physiology , Electron Transport Complex III/physiology , Models, Molecular , Mycobacterium smegmatis/metabolism , Cryoelectron Microscopy , Electron Transport , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex III/chemistry , Mycobacterium smegmatis/cytology , Oxidation-Reduction , Oxygen , Protein Structure, Tertiary
17.
Sci Rep ; 8(1): 14950, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297885

ABSTRACT

Functional studies of membrane-bound channels, transporters or signal transducers require that the protein of interest resides in a membrane that separates two compartments. One approach that is commonly used to prepare these systems is to reconstitute the protein in liposomes. An intermediate step of this method is purification of the protein, which typically involves solubilization of the native membrane using detergent. The use of detergents often results in removal of lipids surrounding the protein, which may alter its structure and function. Here, we have employed a method for isolation of membrane proteins with a disc of their native lipids to develop an approach that allows transfer of the purified membrane protein to liposomes without the use of any detergents.


Subject(s)
Electron Transport Complex IV/isolation & purification , Liposomes/chemistry , Maleates/chemistry , Membrane Lipids/chemistry , Nanostructures/chemistry , Polystyrenes/chemistry , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae/chemistry , Detergents/chemistry , Electron Transport Complex IV/chemistry , Membrane Proteins/chemistry , Membrane Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/chemistry
18.
Biochim Biophys Acta Bioenerg ; 1859(11): 1191-1198, 2018 11.
Article in English | MEDLINE | ID: mdl-30251700

ABSTRACT

The heme­copper oxidases (HCuOs) are terminal components of the respiratory chain, catalyzing oxygen reduction coupled to the generation of a proton motive force. The C-family HCuOs, found in many pathogenic bacteria under low oxygen tension, utilize a single proton uptake pathway to deliver protons both for O2 reduction and for proton pumping. This pathway, called the KC-pathway, starts at Glu-49P in the accessory subunit CcoP, and connects into the catalytic subunit CcoN via the polar residues Tyr-(Y)-227, Asn (N)-293, Ser (S)-244, Tyr (Y)-321 and internal water molecules, and continues to the active site. However, although the residues are known to be functionally important, little is known about the mechanism and dynamics of proton transfer in the KC-pathway. Here, we studied variants of Y227, N293 and Y321. Our results show that in the N293L variant, proton-coupled electron transfer is slowed during single-turnover oxygen reduction, and moreover it shows a pH dependence that is not observed in wildtype. This suggests that there is a shift in the pKa of an internal proton donor into an experimentally accessible range, from >10 in wildtype to ~8.8 in N293L. Furthermore, we show that there are distinct roles for the conserved Y321 and Y227. In Y321F, proton uptake from bulk solution is greatly impaired, whereas Y227F shows wildtype-like rates and retains ~50% turnover activity. These tyrosines have evolutionary counterparts in the K-pathway of B-family HCuOs, but they do not have the same roles, indicating diversity in the proton transfer dynamics in the HCuO superfamily.


Subject(s)
Electron Transport Complex IV/metabolism , Protons , Vibrio cholerae/enzymology , Electron Transport Complex IV/chemistry , Hydrogen-Ion Concentration , Kinetics , Mutagenesis, Site-Directed , Oxygen/metabolism
19.
Biochim Biophys Acta Bioenerg ; 1859(11): 1223-1234, 2018 11.
Article in English | MEDLINE | ID: mdl-30248312

ABSTRACT

Cytochrome c oxidases (CcO) reduce O2 to H2O in the respiratory chain of mitochondria and many aerobic bacteria. In addition, some species of CcO can also reduce NO to N2O and water while others cannot. Here, the mechanism for NO-reduction in CcO is investigated using quantum mechanical calculations. Comparison is made to the corresponding reaction in a "true" cytochrome c-dependent NO reductase (cNOR). The calculations show that in cNOR, where the reduction potentials are low, the toxic NO molecules are rapidly reduced, while the higher reduction potentials in CcO lead to a slower or even impossible reaction, consistent with experimental observations. In both enzymes the reaction is initiated by addition of two NO molecules to the reduced active site, forming a hyponitrite intermediate. In cNOR, N2O can then be formed using only the active-site electrons. In contrast, in CcO, one proton-coupled reduction step most likely has to occur before N2O can be formed, and furthermore, proton transfer is most likely rate-limiting. This can explain why different CcO species with the same heme a3-Cu active site differ with respect to NO reduction efficiency, since they have a varying number and/or properties of proton channels. Finally, the calculations also indicate that a conserved active site valine plays a role in reducing the rate of NO reduction in CcO.


Subject(s)
Electron Transport Complex IV/metabolism , Nitric Oxide/metabolism , Nitrous Oxide/metabolism , Oxidoreductases/metabolism , Heme/metabolism , Models, Molecular , Oxidation-Reduction , Thermodynamics
20.
Sci Rep ; 8(1): 11397, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061583

ABSTRACT

The respiratory supercomplex factor 1 (Rcf 1) in Saccharomyces cerevisiae binds to intact cytochrome c oxidase (CytcO) and has also been suggested to be an assembly factor of the enzyme. Here, we isolated CytcO from rcf1Δ mitochondria using affinity chromatography and investigated reduction, inter-heme electron transfer and ligand binding to heme a3. The data show that removal of Rcf1 yields two CytcO sub-populations. One of these sub-populations exhibits the same functional behavior as CytcO isolated from the wild-type strain, which indicates that intact CytcO is assembled also without Rcf1. In the other sub-population, which was shown previously to display decreased activity and accelerated ligand-binding kinetics, the midpoint potential of the catalytic site was lowered. The lower midpoint potential allowed us to selectively reduce one of the two sub-populations of the rcf1Δ CytcO, which made it possible to investigate the functional behavior of the two CytcO forms separately. We speculate that these functional alterations reflect a mechanism that regulates O2 binding and trapping in CytcO, thereby altering energy conservation by the enzyme.


Subject(s)
Catalytic Domain , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Saccharomyces cerevisiae/enzymology , Electrons , Imidazoles/pharmacology , Ligands , Models, Biological , Oxidation-Reduction , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...