Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26745, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439844

ABSTRACT

There is a growing interest for the possibility of using peripheral blood cells (including platelets) as markers for mitochondrial function in less accessible tissues. Only a few studies have examined the correlation between respiration in blood and muscle tissue, with small sample sizes and conflicting results. This study investigated the correlation of mitochondrial respiration within and across tissues. Additional analyses were performed to elucidate which blood cell type would be most useful for assessing systemic mitochondrial function. There was a significant but weak within tissue correlation between platelets and peripheral blood mononuclear cells (PBMCs). Neither PBMCs nor platelet respiration correlated significantly with muscle respiration. Muscle fibers from a group of athletes had higher mass-specific respiration, due to higher mitochondrial content than non-athlete controls, but this finding was not replicated in either of the blood cell types. In a group of patients with primary mitochondrial diseases, there were significant differences in blood cell respiration compared to healthy controls, particularly in platelets. Platelet respiration generally correlated better with the citrate synthase activity of each sample, in comparison to PBMCs. In conclusion, this study does not support the theory that blood cells can be used as accurate biomarkers to detect minor alterations in muscle respiration. However, in some instances, pronounced mitochondrial abnormalities might be reflected across tissues and detectable in blood cells, with more promising findings for platelets than PBMCs.

2.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769217

ABSTRACT

Amiodarone is a potent antiarrhythmic drug and displays substantial liver toxicity in humans. It has previously been demonstrated that amiodarone and its metabolite (desethylamiodarone, DEA) can inhibit mitochondrial function, particularly complexes I (CI) and II (CII) of the electron transport system in various animal tissues and cell types. The present study, performed in human peripheral blood cells, and one liver-derived human cell line, is primarily aimed at assessing the concentration-dependent effects of these drugs on mitochondrial function (respiration and cellular ATP levels). Furthermore, we explore the efficacy of a novel cell-permeable succinate prodrug in alleviating the drug-induced acute mitochondrial dysfunction. Amiodarone and DEA elicit a concentration-dependent impairment of mitochondrial respiration in both intact and permeabilized platelets via the inhibition of both CI- and CII-supported respiration. The inhibitory effect seen in human platelets is also confirmed in mononuclear cells (PBMCs) and HepG2 cells. Additionally, amiodarone elicits a severe concentration-dependent ATP depletion in PBMCs, which cannot be explained solely by mitochondrial inhibition. The succinate prodrug NV118 alleviates the respiratory deficit in platelets and HepG2 cells acutely exposed to amiodarone. In conclusion, amiodarone severely inhibits metabolism in primary human mitochondria, which can be counteracted by increasing mitochondrial function using intracellular delivery of succinate.


Subject(s)
Amiodarone/toxicity , Anti-Arrhythmia Agents/toxicity , Mitochondria/drug effects , Protective Agents/pharmacology , Succinic Acid/pharmacology , Adenosine Triphosphate/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Cell Respiration/drug effects , Hep G2 Cells , Humans , Mitochondria/metabolism , Prodrugs/pharmacology
3.
Int J Mol Sci ; 22(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401621

ABSTRACT

Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mitochondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.


Subject(s)
Blood Platelets/physiology , Cell Respiration , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mitochondria/physiology , Oxygen Consumption , Succinic Acid/pharmacology , Adult , Aged , Blood Platelets/drug effects , Female , Humans , Male , Mitochondria/drug effects
4.
Article in English | MEDLINE | ID: mdl-32226408

ABSTRACT

Objective: Epidemiological studies have found air pollution to be a driver of adverse pregnancy outcomes, including gestational diabetes, low term birth weight and preeclampsia. It is unknown what biological mechanisms are involved in this process. A first trimester trophoblast cell line (HTR-8/SVneo) was exposed to various concentrations of PM2.5 (PM2.5) in order to elucidate the effect of urban particulate matter (PM) of size <2.5 µm on placental function. Methods: PM2.5 were collected at a site representative of urban traffic and dispersed in cell media by indirect and direct sonication. The HTR-8 cells were grown under standard conditions. Cellular uptake was studied after 24 and 48 h of exposure by transmission electron microscopy (TEM). The secretion of human chorionic gonadotropin (hCG), progesterone, and Interleukin-6 (IL-6) was measured by ELISA. Changes in membrane integrity and H2O2 production were analyzed using the CellToxTM Green Cytotoxicity and ROSGloTM assays. Protease activity was evaluated by MitoToxTM assay. Mitochondrial function was assessed through high resolution respirometry in an Oroboros O2k-FluoRespirometer, and mitochondrial content was quantified by citrate synthase activity. Results: TEM analysis depicted PM2.5 cellular uptake and localization of the PM2.5 to the mitochondria after 24 h. The cells showed aggregated cytoskeleton and generalized necrotic appearance, such as chromatin condensation, organelle swelling and signs of lost membrane integrity. The mitochondria displayed vacuolization and disruption of cristae morphology. At 48 h exposure, a significant drop in hCG secretion and a significant increase in progesterone secretion and IL-6 production occurred. At 48 h exposure, a five-fold increase in protease activity and a significant alteration of H2O2 production was observed. The HTR-8 cells exhibited evidence of increased cytotoxicity with increasing exposure time and dose of PM2.5. No significant difference in mitochondrial respiration or mitochondrial mass could be demonstrated. Conclusion: Following exposure to air pollution, intracellular accumulation of PM may contribute to the placental dysfunction associated with pregnancy outcomes, such as preeclampsia and intrauterine growth restriction, through their direct and indirect effects on trophoblast protein secretion, hormone regulation, inflammatory response, and mitochondrial interference.


Subject(s)
Apoptosis , Hormones/analysis , Inflammation/pathology , Mitochondria/pathology , Oxidative Stress , Particulate Matter/adverse effects , Reactive Oxygen Species/metabolism , Trophoblasts/pathology , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollutants/chemistry , Cells, Cultured , Female , Humans , Inflammation/chemically induced , Mitochondria/drug effects , Particulate Matter/analysis , Particulate Matter/chemistry , Pregnancy , Trophoblasts/drug effects
5.
Pediatr Res ; 83(2): 455-465, 2018 02.
Article in English | MEDLINE | ID: mdl-28981487

ABSTRACT

BackgroundDiagnosing mitochondrial disease (MD) is a challenge. In addition to genetic analyses, clinical practice is to perform invasive procedures such as muscle biopsy for biochemical and histochemical analyses. Blood cell respirometry is rapid and noninvasive. Our aim was to explore its possible role in diagnosing MD.MethodsBlood samples were collected from 113 pediatric patients, for whom MD was a differential diagnosis. A respiratory analysis model based on ratios (independent of mitochondrial specific content) was derived from a group of healthy controls and tested on the patients. The diagnostic accuracy of platelet respirometry was evaluated against routine diagnostic investigation.ResultsMD prevalence in the cohort was 16%. A ratio based on the respiratory response to adenosine diphosphate in the presence of complex I substrates had 96% specificity for disease and a positive likelihood ratio of 5.3. None of the individual ratios had sensitivity above 50%, but a combined model had 72% sensitivity.ConclusionNormal findings of platelet respirometry are not able to rule out MD, but pathological results make the diagnosis more likely and could strengthen the clinical decision to perform further invasive analyses. Our results encourage further study into the role of blood respirometry as an adjunct diagnostic tool for MD.


Subject(s)
Blood Platelets/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/blood , Mitochondrial Diseases/diagnosis , Oxygen Consumption , Biopsy , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Lactic Acid/blood , Male , Oxygen/chemistry , Prevalence , Sensitivity and Specificity
6.
PLoS One ; 9(5): e97673, 2014.
Article in English | MEDLINE | ID: mdl-24828117

ABSTRACT

BACKGROUND: The levels of nitric oxide (NO) and various cytokines are known to be increased during sepsis. These signaling molecules could potentially act as regulators and underlie the enhancement of mitochondrial function described in the later phase of sepsis. Therefore, we investigated the correlation between observed changes in platelet mitochondrial respiration and a set of pro- and anti-inflammatory cytokines as well as NO plasma levels in patients with sepsis. METHODS AND RESULTS: Platelet mitochondrial respiration and levels of TNFα, MCP-1 (monocyte chemotactic protein-1), INFγ (interferon-γ), IL-1ß, IL-4, IL-5, IL-6, IL-8, IL-10 and IL-17 and NO were analyzed in 38 patients with severe sepsis or septic shock at three time points during one week following admission to the ICU. Citrate synthase, mitochondrial DNA and cytochrome c were measured as markers of cellular mitochondrial content. All mitochondrial respiratory states increased over the week analyzed (p<0.001). IL-8 levels correlated with maximal mitochondrial respiration on day 6-7 (p = 0.02, r2 = 0.22) and was also higher in non-survivors compared to survivors on day 3-4 and day 6-7 (p = 0.03 respectively). Neither NO nor any of the other cytokines measured correlated with respiration or mortality. Cytochrome c levels were decreased at day 1-2 by 24±5% (p = 0.03) and returned towards values of the controls at the last two time points. Citrate synthase activity and mitochondrial DNA levels were similar to controls and remained constant throughout the week. CONCLUSIONS: Out of ten analyzed cytokines and nitric oxide, IL-8 correlated with the observed increase in mitochondrial respiration. This suggests that cytokines as well as NO do not play a prominent role in the regulation of platelet mitochondrial respiration in sepsis. Further, the respiratory increase was not accompanied by an increase in markers of mitochondrial content, suggesting a possible role for post-translational enhancement of mitochondrial respiration rather than augmented mitochondrial mass.


Subject(s)
Blood Platelets/metabolism , Cytokines/genetics , Mitochondria/metabolism , Nitric Oxide/metabolism , Shock, Septic/blood , Aged , Blood Platelets/immunology , Blood Platelets/pathology , Case-Control Studies , Cell Respiration , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Cytochromes c/genetics , Cytochromes c/metabolism , Cytokines/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Gene Expression , Humans , Intensive Care Units , Male , Middle Aged , Mitochondria/immunology , Mitochondria/pathology , Oxidative Phosphorylation , Severity of Illness Index , Shock, Septic/immunology , Shock, Septic/mortality , Shock, Septic/pathology , Survival Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL