Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10122, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698055

ABSTRACT

Non-invasive neuromodulation of non-compressible internal organs has significant potential for internal organ bleeding and blood-shift in aero/space medicine. The present study aims to investigate the potential influences of the non-invasive transcutaneous electrical nerve stimulation (TENS) on multiple non-compressible internal organs' blood flow. Porcine animal model (n = 8) was randomized for a total of 48 neuromodulation sessions with two different TENS stimulation frequencies (80 Hz, 10 Hz) and a placebo stimulation. A combination of two different electrode configurations (Abdominal-only or Abdominal and hind limb) were also performed. Intraarterial blood flow measurements were taken during pre and post-stimulation periods at the left renal artery, common hepatic artery, and left coronary artery. Intracranial, and extracranial arterial blood flows were also assessed with digital subtraction angiography. TENS with abdominal-only electrode configurations at 10 Hz demonstrated significant reductions in average peak blood flow velocity (APV) of the common hepatic artery (p = 0.0233) and renal arteries (p = 0.0493). Arterial pressures (p = 0.0221) were also significantly lower when renal APV was reduced. The outcome of the present study emphasises the potential use of TENS in decreasing the blood flow of non-compressible internal organs when the correct combination of electrodes configuration and frequency is used.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Animals , Transcutaneous Electric Nerve Stimulation/methods , Swine , Renal Artery/physiology , Blood Flow Velocity , Hepatic Artery/physiology , Abdomen/blood supply , Regional Blood Flow
2.
Front Neurosci ; 18: 1265894, 2024.
Article in English | MEDLINE | ID: mdl-38406583

ABSTRACT

Background: Transcutaneous auricular vagus nerve stimulation (taVNS) is considered a safe and promising tool for limb rehabilitation after stroke, but its effect on cough has never been studied. It is known that the ear and larynx share vagal afferent pathways, suggesting that stimulating the ear with taVNS might have effects on cough sensitivity. The specific stimulation parameters used can influence outcomes. Objective: To investigate the effect of various stimulation parameters on change in cough sensitivity, compared to the reference parameter of 25 Hz stimulation at the left concha (most commonly-used parameter for stroke rehabilitation). Design, setting, and participants: Randomized, single-blind, active-controlled, eight-period cross-over design conducted March to August 2022 at a New Zealand research laboratory with 16 healthy participants. Interventions: All participants underwent eight stimulation conditions which varied by stimulation side (right ear, left ear), zone (ear canal, concha), and frequency (25 Hz, 80 Hz). Main outcome measures: Change in natural and suppressed cough threshold (from baseline to after 10 min of stimulation) assessed using a citric acid cough reflex test. Results: When compared to the reference parameter of 25 Hz stimulation at the left concha, there was a reduction in natural cough threshold of -0.16 mol/L for 80 Hz stimulation at the left canal (p = 0.004), indicating increased sensitivity. For the outcome measure of suppressed cough threshold, there was no significant effect of any of the stimulation conditions compared to the active reference. Conclusion: Since stroke patients often have cough hyposensitivity with resulting high risk of silent aspiration, using 80 Hz taVNS at the left canal may be a better choice for future stroke rehabilitation studies than the commonly used 25 Hz taVNS at the left concha. Treatment parameters should be manipulated in future sham-controlled trials to maximize any potential treatment effect of taVNS in modulating cough sensitivity. Clinical trial registration: ACTRN12623000128695.

3.
Parkinsonism Relat Disord ; 121: 105959, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246833

ABSTRACT

BACKGROUND: Studies have suggested that intrinsic auricular muscle zones (IAMZ) stimulation alleviates motor features of Parkinson disease (PD). METHODS: A randomized, blinded, active sham-controlled pilot trial was conducted to evaluate the safety and dose-response-time curve of Earstim using a 3-treatment, 3-period crossover design in PD patients experiencing OFF time on levodopa. Treatments were: short (20-min) IAMZ stimulation; long (60-min) IAMZ stimulation; and 20-min active sham stimulation of non-muscular areas. Assessment time points were: prior to treatment, and 20, 40, 60, 90, and 120 min after treatment onset. Primary safety endpoints were adverse events frequency and severity. Primary efficacy endpoint was the change in MDS-UPDRS motor score at 20 min after treatment onset in the IAMZ treatment groups versus sham. RESULTS: Forty-six individuals consented; 38 were randomized (average age 64 years, 65 % male, mean 8.2 years from diagnosis). No serious adverse events or significant device-related events occurred. At 20 min after treatment onset, motor improvements did not differ between IAMZ treatments versus sham. However, at 60 min after treatment onset, motor improvement peaked on IAMZ treatments compared to sham (difference: 3.1 [-5.9 to 0.3], p = 0.03). While the difference in 120-min AUC change between IAMZ treatments versus sham was not significant, the short-stimulation IAMZ treatment showed the largest aggregate motor score improvement (AUC = -456 points, 95 % CI -691 to -221) compared to sham. CONCLUSION: Earstim was well-tolerated. The greatest motor improvement occurred at 60 min after stimulation onset in the short-stimulation IAMZ treatment, and supports its further study to alleviate OFF periods.


Subject(s)
Parkinson Disease , Female , Humans , Male , Middle Aged , Antiparkinson Agents/therapeutic use , Double-Blind Method , Levodopa/adverse effects , Muscles , Parkinson Disease/therapy , Pilot Projects , Treatment Outcome , Aged
4.
Physiol Meas ; 44(9)2023 09 11.
Article in English | MEDLINE | ID: mdl-37478870

ABSTRACT

Objective. Early diagnosis of heart problems is essential for improving patient prognosis.Approach. We created a non-contact imaging system that calculates the vessel-induced deformation of the skin to estimate the carotid artery pressure displacement waveforms. We present a clinical study of the system in patients (n= 27) with no underlying condition, aortic stenosis (AS), or mitral regurgitation (MR).Main results. Displacement waveforms were compared to aortic catheter pressures in the same patients. The morphologies of the pressure and displacement waveforms were found to be similar, and pulse wave analysis metrics, such as our modified reflection indices (RI) and waveform duration proportions, showed no significant differences. Compared with the control group, AS patients displayed a greater proportion of time to peak (p= 0.026 andp= 0.047 for catheter and displacement, respectively), whereas augmentation index (AIx)was greater for the displacement waveform only (p= 0.030). The modified RI for MR (p= 0.047 andp= 0.004 for catheter and displacement, respectively) was lower than in the controls. AS and MR were also significantly different for the proportion of time to peak (p= 0.018 for the catheter measurements), RI (p= 0.045 andp= 0.002 for the catheter and displacement, respectively), and AIx (p= 0.005 for the displacement waveform).Significance. These findings demonstrate the ability of our system to provide insights into cardiac conditions and support further development as a diagnostic/telehealth-based screening tool.


Subject(s)
Aortic Valve Stenosis , Mitral Valve Insufficiency , Humans , Mitral Valve Insufficiency/diagnostic imaging , Carotid Arteries , Aortic Valve Stenosis/diagnostic imaging , Aorta , Blood Pressure
5.
Sensors (Basel) ; 22(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35746395

ABSTRACT

Parkinson's disease affects millions worldwide with a large rise in expected burden over the coming decades. More easily accessible tools and techniques to diagnose and monitor Parkinson's disease can improve the quality of life of patients. With the advent of new wearable technologies such as smart rings and watches, this is within reach. However, it is unclear what method for these new technologies may provide the best opportunity to capture the patient-specific severity. This study investigates which locations on the hand can be used to capture and monitor maximal movement/tremor severity. Using a Leap Motion device and custom-made software the volume, velocity, acceleration, and frequency of Parkinson's (n = 55, all right-handed, majority right-sided onset) patients' hand locations (25 joints inclusive of all fingers/thumb and the wrist) were captured simultaneously. Distal locations of the right hand, i.e., the ends of fingers and the wrist showed significant trends (p < 0.05) towards having the largest movement velocities and accelerations. The right hand, compared with the left hand, showed significantly greater volumes, velocities, and accelerations (p < 0.01). Supplementary analysis showed that the volumes, acceleration, and velocities had significant correlations (p < 0.001) with clinical MDS-UPDRS scores, indicating the potential suitability of using these metrics for monitoring disease progression. Maximal movements at the distal hand and wrist area indicate that these locations are best suited to capture hand tremor movements and monitor Parkinson's disease.


Subject(s)
Parkinson Disease , Tremor , Hand , Humans , Movement , Parkinson Disease/diagnosis , Quality of Life , Tremor/diagnosis
6.
Appetite ; 169: 105807, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34798222

ABSTRACT

Median nerve stimulation (MNS) in the existing literature has been used for treating gastrointestinal disorders and amelioration of nausea and vomiting. Recently, studies have shown that MNS can also exert effects on olfactory performances and corresponding anatomical regions through the activation of vagal pathways. This study aimed to test effects of specific frequencies of MNS on food-related attention and appetite. The experiment used an odourised, dot probe task for testing food-related attention and a combination of behavioural (i.e., visual analogue scales; VAS) and physiological approaches (i.e., electrocardiograph; ECG - root mean square of successive differences between normal heartbeats-RMSSD: parasympathetic nervous system activation (RMSSD), stress index-SI: sympathetic nervous system activation) for measuring hunger, appetite, and satiation. Twenty-four healthy, male adults completed a VAS and dot probe task before and after receiving either 40 Hz-, 80 Hz-, 120 Hz MNS or sham (control) across four different sessions with continuous ECG recording throughout each session. Data from the dot probe task were analysed using repeated-measures ANOVA, while pair-wise tests were used for ECG recordings and VAS. Improvements on the dot probe task, not specific to odour-food congruence were found after 40 Hz MNS (p-value = 0.048; strong effect size (0.308 partial eta squared)) while increased ratings of hunger (VAS) (p-value = 0.03, small effect size (0.47 Cohen-D)) and RMSSD scores (p-value < 0.001; medium effect size (0.76 Cohen-D)) were found after 120 Hz MNS. These findings implore further testing of MNS frequency parameters on improving RMSSD, a characteristic marker of measuring parasympathetic/autonomic nervous system activation pertaining to the vagal network. Furthermore, improving sympathovagal balance is associated with cardiovascular benefits in numerous health-related conditions such as obesity, hypertension and diabetes.


Subject(s)
Appetite , Median Nerve , Adult , Appetite/physiology , Attention , Autonomic Nervous System/physiology , Heart Rate/physiology , Humans , Male
7.
Front Neurol ; 11: 546123, 2020.
Article in English | MEDLINE | ID: mdl-33117256

ABSTRACT

It has been demonstrated that intrinsic auricular muscles zone stimulation (IAMZS) can improve the motor symptoms of Parkinson's disease (PD) patients who are examined with the Unified Parkinson's Disease Rating Scale (UPDRS) motor scores. In the present pilot study, using motion capture technology, we aimed to investigate the efficacy of IAMZS compared to medication alone or in combination with medication. Ten PD patients (mean age: 54.8 ± 10.1 years) were enrolled. Each participant participated in three different sessions: sole medication, sole stimulation-20 min of IAMZS, and combined IAMZS (20 min) and medication. Each session was performed on different days but at the same time to be aligned with patients' drug intake. Motion capture recording sessions took place at baseline, 20, 40, and 60 min. Statistical analysis was conducted using one-way repeated measures ANOVA. Bonferroni correction was implemented for pairwise comparisons. The sole medication was ineffective to improve gait-related parameters of stride length, stride velocity, stance, swing, and turning speed. In the sole-stimulation group, pace-related gait parameters were significantly increased at 20 and 40 min. These improvements were observed in stride length at 20 (p = 0.0498) and 40 (p = 0.03) min, and also in the normalized stride velocity at 40 min (p-value = 0.02). Stride velocity also tended to be significant at 20 min (p = 0.06) in the sole-stimulation group. Combined IAMZS and medication demonstrated significant improvements in all the time segments for pace-related gait parameters [stride length: 20 min (p = 0.04), 40 min (p = 0.01), and 60 min (p < 0.01); stride velocity: 20 min (p < 0.01), 40 min (p = 0.01), and 60 min (p < 0.01)]. These findings demonstrated the fast action of the IAMZS on PD motor symptoms. Moreover, following the termination of IAMZS, a prolonged improvement in symptoms was observed at 40 min. The combined use of IAMZS with medication showed the most profound improvements. The IAMZS may be particularly useful during medication off periods and may also postpone the long-term side effects of high-dose levodopa. A large scale multicentric trial is required to validate the results obtained from this pilot study. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03907007.

8.
Sensors (Basel) ; 20(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105890

ABSTRACT

(1) Background: Acute acoustic (sound) stimulus prompts a state of defensive motivation in which unconscious muscle responses are markedly enhanced in humans. The orbicularis oculi (OO) of the eye is an easily accessed muscle common for acoustic startle reaction/response/reflex (ASR) investigations and is the muscle of interest in this study. Although the ASR can provide insights about numerous clinical conditions, existing methodologies (Electromyogram, EMG) limit the usability of the method in real clinical conditions. (2) Objective: With EMG-free muscle recording in mind, our primary aim was to identify and investigate potential correlations in the responses of individual and cooperative OO muscles to various acoustic stimuli using a mobile and wire-free system. Our secondary aim was to investigate potential altered responses to high and also relatively low intensity acoustics at different frequencies in both sitting and standing positions through the use of biaural sound induction and video diagnostic techniques and software. (3) Methods: This study used a mobile-phone acoustic startle response monitoring system application to collect blink amplitude and velocity data on healthy males, aged 18-28 community cohorts during (n = 30) in both sitting and standing postures. The iPhone X application delivers specific sound parameters and detects blinking responses to acoustic stimulus (in millisecond resolution) to study the responses of the blinking reflex to acoustic sounds in standing and sitting positions by using multiple acoustic test sets of different frequencies and amplitudes introduced as acute sound stimuli (<0.5 s). The single acoustic battery of 15 pure-square wave sounds consisted of frequencies and amplitudes between 500, 1000, 2000, 3000, and 4000 Hz scales using 65, 90, and 105 dB (e.g., 3000 Hz_90 dB). (4) Results: Results show that there was a synchronization of amplitude and velocity between both eyes to all acoustic startles. Significant differences (p = 0.01) in blinking reaction time between sitting vs. standing at the high intensity (105 dB) 500 Hz acoustic test set was discovered. Interestingly, a highly significant difference (p < 0.001) in response times between test sets 500 Hz_105 dB and 4000 Hz_105 dB was identified. (5) Conclusions: To our knowledge, this is the first mobile phone-based acoustic battery used to detect and report significant ASR responses to specific frequencies and amplitudes of sound stimulus with corresponding sitting and standing conditions. The results from this experiment indicate the potential significance of using the specific frequency, amplitude, and postural conditions (as never before identified) which can open new horizons for ASR to be used for diagnosis and monitoring in numerous clinical and remote or isolated conditions.


Subject(s)
Cell Phone , Posture , Reflex, Startle , Acoustic Stimulation , Adolescent , Adult , Blinking , Electromyography , Humans , Male , Young Adult
9.
Obes Rev ; 20(2): 325-338, 2019 02.
Article in English | MEDLINE | ID: mdl-30450791

ABSTRACT

OBJECTIVE: The modern food environment is a key driver of rising levels of obesity. While olfaction is known to play a major role in food choice; however, its relationship to obesity is yet to be understood. This review assesses current knowledge of the interaction between obesity and olfaction. METHODS: This review is based on observational studies comparing olfactory abilities across weight groups (N = 10) and clinical studies evaluating olfactory changes following bariatric surgery (N = 9). Meta-analyses were performed on data collected by a standard olfactory assessment tool (Sniffin΄ Sticks), to test whether olfaction has any association with body weight or bariatric surgery. RESULTS: This review synthesizes findings derived from 38 datasets, with a total of 1432 individual olfactory assessments. The meta-analyses suggest that olfactory function is negatively correlated with body weight. In addition, Roux-en-Y gastric bypass patients frequently report olfactory changes, yet more pronounced and immediate shifts have been observed among sleeve gastrectomy recipients. CONCLUSIONS: Our review finds strong evidence for the link between olfaction and obesity and indicates that bariatric surgery (particularly the sleeve gastrectomy) is effective in reversing olfactory decline associated with obesity. In conclusion, we present mechanistic models to underpin the observed relationship between olfaction and obesity.


Subject(s)
Body Mass Index , Obesity/physiopathology , Olfactory Perception/physiology , Smell/physiology , Gastric Bypass , Humans , Obesity/surgery
10.
Sci Rep ; 8(1): 17236, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30467407

ABSTRACT

The jugular venous (JV) pressure waveform is a non-invasive, proven indicator of cardiovascular disease. Conventional clinical methods for assessing these waveforms are often overlooked because they require specialised expertise, and are invasive and expensive to implement. Recently, image-based methods have been used to quantify JV pulsation waveforms on the skin as an indirect way of estimating the pressure waveforms. However, these existing image-based methods cannot explicitly measure skin deformations and rely on the use of photoplethysmography (PPG) devices for identification of the pulsatile waveforms. As a result, they often have limited accuracy and robustness and are unsuitable in the clinical environment. Here, we propose a technique to directly measure skin deformations caused by the JV pulse using a very accurate subpixel registration algorithm. The method simply requires images obtained from the subject's neck using a commodity camera. The results show that our measured waveforms contained all of the essential features of diagnostic JV waveforms in all of 19 healthy subjects tested in this study, indicating a significantly important capability for a potential future diagnostic device. The shape of our measured JV displacement waveforms was validated using waveforms measured with a laser displacement sensor, where the average correlation score between the two waveforms was 0.93 ± 0.05. In addition, synchronously recorded ECG signals were used to verify the timings of diagnostic features of the measured waveforms. To our knowledge, this is the first use of image registration for direct measurement of JV displacement waveforms. Significant advantages of our novel method include the high precision of our measurements, and the ability to use ordinary cameras, such as those in modern mobile phones. These advantages will enable the development of affordable and accessible devices to measure JV waveforms for cardiac diagnostics in the clinical environment. Future devices based on this technology may provide viable options for telemedicine applications, point of care diagnostics, and mobile-based cardiac health monitoring systems.


Subject(s)
Heart Rate/physiology , Heart/physiology , Skin/blood supply , Adult , Algorithms , Cardiovascular Diseases/physiopathology , Electrocardiography/methods , Female , Healthy Volunteers , Humans , Male , Middle Aged , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Telemedicine/methods , Young Adult
11.
Front Neurosci ; 12: 410, 2018.
Article in English | MEDLINE | ID: mdl-29967575

ABSTRACT

One of the critical factors that guide choice behavior is the prior bias of the decision-maker with respect to different options, namely, the relative readiness by which the decision-maker opts for a specific choice. Although previous neuroimaging work has shown decision bias related activity in the orbitofrontal cortex, intraparietal sulcus (IPS) and dorsolateral prefrontal cortex, in a recent work by Javadi et al. (2015), primary motor cortex was also implicated. By applying transcranial direct current stimulation (tDCS), they have revealed a causal role of the primary motor cortex excitability in the induction of response time (RT) differences and decision bias in the form of choice probability. The current study aimed to replicate these recent findings with an experimental design that contained a sham group to increase experimental control and an additional testing phase to investigate the possible after-effects of tDCS. The conventional decision outputs such as choice proportion and RT were analyzed along with the theory-driven estimates of choice bias and non-decision related components of RTs (e.g., motor implementation speed of choices made). None of the statistical comparisons favored the alternative hypotheses over the null hypotheses. Consequently, previous findings regarding the effect of primary motor cortex excitability on choice bias and response times could not be replicated with a more controlled experimental design that is recommended for tDCS studies (Horvath et al., 2015). This empirical discrepancy between the two studies adds to the evidence demonstrating inconsistent effects of tDCS in establishing causal relationships between cortical excitability and motor behavior.

12.
Front Neurosci ; 12: 225, 2018.
Article in English | MEDLINE | ID: mdl-29740266

ABSTRACT

In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.

13.
Appetite ; 125: 152-159, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29427692

ABSTRACT

Researchers have long sought to pinpoint factors underpinning individual differences in eating behaviour. Emerging data from eye-tracking studies have suggested that attentional biases to food exist among individuals and food types. However, such studies have thus far relied on food images and computerised tasks, limiting real-world implications. The present study tested 32 healthy male participants (16 being overweight) for attentional biases in an ad libitum buffet setting, using wearable eye-trackers. The eye-tracking analyses suggested that sugar content moderated visual fixation biases (p < 0.05), whereas BMI exerted significant effects on pupil diameter (p < 0.05). In addition, findings from the study revealed tripartite relationships between eye-tracking, self-reported liking, and ad libitum intake. Although visual fixation in the "view" condition was correlated with liking for high-calorie food, further analyses showed that this measure was not a strong predictor of food selection. Instead, visual fixation during the selection task could be the key predictor for selection of savoury food. In contrast, neither eye-tracking nor self-reported measures could adequately predict selection of desserts, implicating distinct decision-making processes for different types of food. Due to the small sample size, findings from this study should be replicated in future research. Overall, this study highlights the importance of realistic experimental settings in eye-tracking studies for understanding eating behaviour.


Subject(s)
Choice Behavior/physiology , Fixation, Ocular/physiology , Food Preferences/physiology , Overweight/psychology , Thinness/psychology , Adult , Attentional Bias , Feeding Behavior , Humans , Male , Photic Stimulation , Young Adult
14.
Front Hum Neurosci ; 12: 533, 2018.
Article in English | MEDLINE | ID: mdl-30719001

ABSTRACT

Median nerve stimulation (MNS) had been performed in the existing literature to alleviate symptoms of nausea and vomiting. The observed facilitative effects are thought to be mediated by the vagal pathways, particularly the vagus nerve (VN) brainstem nuclei of the dorsal motor nucleus of vagus and nucleus tractus solitarius (DMV-NTS). Sense of smell is one of the major sensory modalities for inducing vomiting and nausea as a primary defense against potentially harmful intake of material. This study aimed to test effects of non-invasive, high and low frequency MNS on human olfactory functioning, with supplementary exploration of the orbitofrontal cortex (OFC) using near-infrared spectroscopy (NIRS). Twenty healthy, male, adults performed supra-threshold odor intensity tests (labeled magnitude scale, LMS) for four food-related odorant samples (presented in three different concentrations) before and after receiving high-, low frequency MNS and placebo (no stimulation), while cortical activities in the OFC was monitored by the NIRS. Data of the NIRS and LMS test of separate stimulation parameters were statistically analyzed using mixed-model analysis of variance (ANOVA). Only the high frequency MNS showed effects for suppressing the intensity perception of the moderate concentration of Amyl Acetate (p:0.042) and strong concentration of Isovaleric Acid (p:0.004) and 1-Octen-3-ol (p:0.006). These behavioral changes were coupled with significant changes in the NIRS recordings of the left (p:0.000) and right (p:0.003) hemispheric orbitofrontal cortices. This is the first study that applied non-invasive, high frequency MNS to suppress the supra-threshold odor ratings of specific concentrations of odors. The vagal networks are potential relays of MNS to influence OFC. Results from the current article implore further research into non-invasive, high frequency MNS in the investigation of its modulatory effects on olfactory function, given its potential to be used for ameliorating nausea and malnutrition associated with various health conditions.

15.
Sci Rep ; 7(1): 15570, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138449

ABSTRACT

Testicular artery torsion (twisting) is one such severe vascular condition that leads spermatic cord injury. In this study, we investigate the recovery response of a torsioned ram testicular artery in an isolated organ-culture flow loop with clinically relevant twisting modes (90°, 180°, 270° and 360° angles). Quantitative optical coherence tomography technique was employed to track changes in the lumen diameter, wall thickness and the three-dimensional shape of the vessel in the physiological pressure range (10-50 mmHg). As a control, pressure-flow characteristics of the untwisted arteries were studied when subjected to augmented blood flow conditions with physiological flow rates up to 36 ml/min. Both twist and C-shaped buckling modes were observed. Acute increase in pressure levels opened the narrowed lumen of the twisted arteries noninvasively at all twist angles (at ∼22 mmHg and ∼35 mmHg for 360°-twisted vessels during static and dynamic flow experiments, respectively). The association between the twist-opening flow rate and the vessel diameter was greatly influenced by the initial twist angle. The biomechanical characteristics of the normal (untwisted) and torsioned testicular arteries supported the utilization of blood flow augmentation as an effective therapeutic approach to modulate the vessel lumen and recover organ reperfusion.


Subject(s)
Arteries/physiopathology , Spermatic Cord Torsion/physiopathology , Spermatic Cord/physiopathology , Testis/physiopathology , Animals , Arteries/injuries , Biomechanical Phenomena , Hemodynamics , Humans , Male , Organ Culture Techniques , Regional Blood Flow/physiology , Sheep , Spermatic Cord/blood supply , Spermatic Cord/injuries , Testis/blood supply , Vascular Diseases/blood , Vascular Diseases/physiopathology
16.
Front Hum Neurosci ; 11: 338, 2017.
Article in English | MEDLINE | ID: mdl-28701941

ABSTRACT

Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) and the pedunculopontine nucleus (PPN) significantly improve cardinal motor symptoms and postural instability and gait difficulty, respectively, in Parkinson's disease (PD). Objective and Hypothesis: Intrinsic auricular muscle zones (IAMZs) allow the potential to simultaneously stimulate the C2 spinal nerve, the trigeminal nerve, the facial nerve, and sympathetic and parasympathetic nerves in addition to providing muscle feedback and control areas including the STN, the PPN and mesencephalic locomotor regions. Our aim was to observe the clinical responses to IAMZ stimulation in PD patients. Method: Unilateral stimulation of an IAMZ, which includes muscle fibers for proprioception, the facial nerve, and C2, trigeminal and autonomic nerve fibers, at 130 Hz was performed in a placebo- and sham-controlled, double-blinded, within design, two-armed study of 24 PD patients. Results: The results of the first arm (10 patients) of the present study demonstrated a substantial improvement in Unified Parkinson's Disease Ratings Scale (UPDRS) motor scores due to 10 min of IAMZ electrostimulation (p = 0.0003, power: 0.99) compared to the placebo control (p = 0.130). A moderate to large clinical difference in the improvement in UPDRS motor scores was observed in the IAMZ electrostimulation group. The results of the second arm (14 patients) demonstrated significant improvements with dry needling (p = 0.011) and electrostimulation of the IAMZ (p < 0.001) but not with sham electrostimulation (p = 0.748). In addition, there was a significantly greater improvement in UPDRS motor scores in the IAMZ electrostimulation group compared to the IAMZ dry needling group (p < 0.001) and the sham electrostimulation (p < 0.001) groups. The improvement in UPDRS motor scores of the IAMZ electrostimulation group (ΔUPDRS = 5.29) reached moderate to high clinical significance, which was not the case for the dry needling group (ΔUPDRS = 1.54). In addition, both arms of the study demonstrated bilateral improvements in motor symptoms in response to unilateral IAMZ electrostimulation. Conclusion: The present study is the first demonstration of a potential role of IAMZ electrical stimulation in improving the clinical motor symptoms of PD patients in the short term.

17.
N Z Med J ; 130(1455): 123-125, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28494485

ABSTRACT

AIM: Rotorua city (New Zealand) is known for its 'rotten egg' smell, due to high levels of hydrogen sulphide (H2S) concentrations emitted from local geothermal vents. Studies have shown H2S as potentially toxic if too high in concentration. However, some health benefits have been observed at lower concentrations. This article summarises what is known about effects of H2S on health and postulates whether ambient air inhalation levels of H2S in Rotorua might have a therapeutic role in the management of motor symptoms in Parkinson's disease (PD). RESULTS: Chronic H2S inhalation has been shown to have a protective factor on dopaminergic neurons of animal models of PD. A large-scale survey of long-term Rotorua residents showed no evidence of health detriment nor impairment of cognitive functions. Intriguingly, however, participants in higher H2S exposures showed a tendency for faster motor response times in a finger tapping test. One of the PD Motor Rating Scale examination tests for PD is finger tapping speed, as this is associated with motor performance. Might it be that relatively high, but safe, H2S levels in Rotorua could help protect the degradation of dopaminergic neurons associated with PD? CONCLUSION: An observed beneficial link between chronic H2S inhalation in PD animal models and improved finger tapping scores in a sample of the Rotorua population, linked to dopaminergic nerve function, is worth investigating further.


Subject(s)
Air Pollutants/pharmacology , Hydrogen Sulfide/pharmacology , Parkinson Disease/drug therapy , Animals , Humans , Models, Animal , New Zealand/epidemiology
18.
J Cogn Neurosci ; 29(8): 1433-1444, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28387589

ABSTRACT

Decisions are made based on the integration of available evidence. The noise in evidence accumulation leads to a particular speed-accuracy tradeoff in decision-making, which can be modulated and optimized by adaptive decision threshold setting. Given the effect of pre-SMA activity on striatal excitability, we hypothesized that the inhibition of pre-SMA would lead to higher decision thresholds and an increased accuracy bias. We used offline continuous theta burst stimulation to assess the effect of transient inhibition of the right pre-SMA on the decision processes in a free-response two-alternative forced-choice task within the drift diffusion model framework. Participants became more cautious and set higher decision thresholds following right pre-SMA inhibition compared with inhibition of the control site (vertex). Increased decision thresholds were accompanied by an accuracy bias with no effects on post-error choice behavior. Participants also exhibited higher drift rates as a result of pre-SMA inhibition compared with the vertex inhibition. These results, in line with the striatal theory of speed-accuracy tradeoff, provide evidence for the functional role of pre-SMA activity in decision threshold modulation. Our results also suggest that pre-SMA might be a part of the brain network associated with the sensory evidence integration.


Subject(s)
Decision Making/physiology , Inhibition, Psychological , Motion Perception/physiology , Motor Cortex/physiology , Theta Rhythm/physiology , Bayes Theorem , Brain Mapping , Female , Functional Laterality/physiology , Humans , Male , Models, Neurological , Photic Stimulation , Reaction Time/physiology , Reward , Transcranial Magnetic Stimulation , Young Adult
19.
Front Hum Neurosci ; 11: 3, 2017.
Article in English | MEDLINE | ID: mdl-28167905

ABSTRACT

Although minutes of a spinning episode may induce vertigo in the healthy human, as a result of a possible perceptional plasticity, Sufi Whirling Dervishes (SWDs) can spin continuously for an hour without a vertigo perception.This unique long term vestibular system stimulation presents a potential human model to clarify the cortical networks underlying the resistance against vertigo. This study, therefore, aimed to investigate the potential structural cortical plasticity in SWDs. Magnetic resonance imaging (MRI) of 10 SWDs and 10 controls were obtained, using a 3T scanner. Cortical thickness in the whole cortex was calculated. Results demonstrated significantly thinner cortical areas for SWD subjects compared with the control group in the hubs of the default mode network (DMN), as well as in the motion perception and discrimination areas including the right dorsolateral prefrontal cortex (DLPFC), the right lingual gyrus and the left visual area 5 (V5)/middle temporal (MT) and the left fusiform gyrus. In conclusion, this is the first report that warrants the potential relationship of the motion/body perception related cortical networks and the prolonged term of whirling ability without vertigo or dizziness.

SELECTION OF CITATIONS
SEARCH DETAIL
...