Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 10(7)2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30037028

ABSTRACT

Lupinus mutabilis (LM) is a legume part of Bolivian traditional diet that has a nutraceutical property reducing blood glucose levels. The prevalence of type 2 diabetes is increasing worldwide thus; the search for novel anti-diabetic drugs is needed. Based on its traditional use, we evaluated the anti-diabetic effect of LM in the spontaneously diabetic Goto-Kakizaki (GK) rat, a model of type 2 diabetes and in Wistar (W) rats as healthy control. LM seeds hydroethanolic extract, analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography-high resolution mass spectrometry, is a complex mixture of volatile and non-volatile components. A single oral administration of LM extract (2000 mg/kg b.w.) improved glucose tolerance during the oral glucose tolerance test (OGTT) (30⁻120 min) in GK and W rats (p < 0.0001). The long-term treatment with LM (1000 mg/kg b.w.), for 21 days, improved the area under the curve (AUC) of glucose during OGTT at day 20, in both GK (p < 0.01) and W rats (p < 0.01). The HbA1c (GK rats, p < 0.05 and W rats, p < 0.0001) and the non-fasting glucose (GK rats, p < 0.05) were also reduced. LM increased both serum insulin levels (2.4-fold in GK rats and 2.5-fold W rats), and the glucose-induced (16.7 mM glucose) insulin release in isolated islets from treated animals (6.7-fold in GK rats, and 6.6-fold in W rats). Moreover, LM (10 mg/mL) stimulated in vitro glucose induced (16.7 mM glucose) insulin release in batch incubated GK and W rat islets (p < 0.0001). In perifused GK rat islets, insulin release in 16.7 mM glucose was increased 95.3-fold compared to untreated islets (p < 0.0001), while no significant differences were found in perifused W rat islets. The LM mechanism of action, evaluated using inhibitory compounds of the insulin secretion pathway, showed that LM-dependent insulin secretion was reduced 42% by diazoxide (p < 0.001), 70% by nifedipine (p < 0.001), 86.7% by H89 (p < 0.0001), 70.8% by calphostine-C (p < 0.0001) and 93% by pertussis toxin (p < 0.0001). A similar effect was observed in W rats islets. Our findings provide evidence that LM has an anti-diabetic effect through stimulation of insulin release. The effect is-dependent on L-type calcium channel, protein kinase A and C systems, and G protein-coupled exocytosis and is partially mediated by K-ATP channels.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Islets of Langerhans/drug effects , Lupinus , Phytotherapy , Animals , Area Under Curve , Calcium Channels, L-Type/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Exocytosis , Glucose Tolerance Test , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/therapeutic use , Insulin/blood , Insulin Secretion , Islets of Langerhans/metabolism , KATP Channels/metabolism , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats, Wistar
2.
Nutrients ; 10(1)2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29342984

ABSTRACT

Diabetes Mellitus Type 2 prevalence is increasing worldwide; thus efforts to develop novel therapeutic strategies are required. Amaranthus caudatus (AC) is a pseudo-cereal with reported anti-diabetic effects that is usually consumed in food preparations in Bolivia. This study evaluated the anti-diabetic nutraceutical property of an AC hydroethanolic extract that contains mainly sugars and traces of polyphenols and amino acids (as shown by nalysis with liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)), in type 2 diabetic Goto-Kakizaki (GK) rats and healthy Wistar (W) rats. A single oral administration of AC extract (2000 mg/kg body weight) improved glucose tolerance during Oral Glucose Tolerance Tests (OGTT) in both GK rats and in W rats. Long-term treatment (21 days) with AC (1000 mg/kg b.w.) improved the glucose tolerance evaluated by the area under the curve (AUC) of glucose levels during the OGTT, in both GK and W rats. The HbA1c levels were reduced in both GK (19.83%) and W rats (10.7%). This effect was secondary to an increase in serum insulin levels in both GK and W rats and confirmed in pancreatic islets, isolated from treated animals, where the chronic AC exposure increased the insulin production 4.1-fold in GK and 3.7-fold in W rat islets. Furthermore, the effect of AC on in vitro glucose-dependent insulin secretion (16.7 mM glucose) was concentration-dependent up to 50 mg/mL, with 8.5-fold increase in GK and 5.7-fold in W rat islets, and the insulin secretion in perifused GK and W rat islets increased 31 and nine times, respectively. The mechanism of action of AC on insulin secretion was shown to involve calcium, PKA and PKC activation, and G-protein coupled-exocytosis since the AC effect was reduced 38% by nifedipine (L-type channel inhibitor), 77% by H89 (PKA inhibitor), 79% by Calphostine-C (PKC inhibitor) and 20% by pertussis toxin (G-protein suppressor).


Subject(s)
Amaranthus/chemistry , Diabetes Mellitus, Type 2/drug therapy , Insulin/blood , Insulin/metabolism , Plant Extracts/pharmacology , Animals , Diabetes Mellitus, Type 2/blood , Disease Models, Animal , Glucose Tolerance Test , Glycated Hemoglobin/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Rats , Rats, Wistar
3.
J Ethnopharmacol ; 198: 214-220, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28087472

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Clinopodium bolivianum is a South American plant with anti-inflammatory and anti-infective activities. The increasing antibiotic resistance urges for alternative therapy. Based on its use in traditional medicine, we investigated the effect of C. bolivianum on the ability to defend bladder epithelial cells from E. coli infection. MATERIALS AND METHODS: The extract was analyzed by LC-MS. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli No. 12, its isogenic mutant WE16 csgBA bscA::Cm and CFT073 were used to investigate the effect of C. bolivianum on uroepithelial infection. Bacterial adherence and invasion to cells treated with C. bolivianum were analyzed. Expression of uroplakin 1a, ß1 integrin, caveolin-1, IL-8 and antimicrobial peptides in response to C. bolivianum treatment was assessed using RT-PCR. Protein expression was confirmed by Western blot analysis or ELISA. The antimicrobial effects of C. bolivianum on bacteria and fungus were investigated using minimum inhibitory concentration. Furthermore, the formation of biofilm was investigated with crystal violet assay. RESULTS: C. bolivianum extract consisted of more than 70 different types of phytochemicals including sugars and phenolic compounds. The extract decreased the uroplakin 1a expression and E. coli adhesion and invasion of uroepithelial cells while up-regulated caveolin-1. In uninfected C. bolivianum treated cells, IL-8 was lower than in non-treated cells. In infected cells, however, no difference was observed between treated and non-treated cells. Further, C. bolivianum treatment reduced uropathogenic E. coli (UPEC) biofilms but did not inhibit bacterial growth. CONCLUSIONS: Our results show that C. bolivianum has a protective role on bladder epithelial cells against UPEC infection by decreasing the bacterial adhesion, invasion and biofilm formation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lamiaceae/chemistry , Plant Extracts/pharmacology , Uropathogenic Escherichia coli/drug effects , Anti-Bacterial Agents/isolation & purification , Bacterial Adhesion/drug effects , Biofilms/drug effects , Caveolin 1/genetics , Cell Line , Chromatography, Liquid , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Humans , Mass Spectrometry , Microbial Sensitivity Tests , South America , Urinary Tract Infections/microbiology , Urinary Tract Infections/prevention & control , Uroplakin Ia/genetics , Urothelium/cytology , Urothelium/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL