Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 23: 100865, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38054034

ABSTRACT

Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues.

2.
Pharmaceutics ; 12(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748816

ABSTRACT

Biodegradable polymers from renewable resources have attracted much attention in recent years within the biomedical field. Lately, poly(δ-decalactone) based copolymer micelles have emerged as a potential drug delivery carrier material as a sustainable alternative to fossil-based polymers. However, their intracellular drug delivery potential is not yet investigated and therefore, in this work, we report on the synthesis and cellular uptake efficiency of poly(δ-decalactone) based micelles with or without a targeting ligand. Folic acid was chosen as a model targeting ligand and Rhodamine B as a fluorescent tracer to demonstrate the straightforward functionalisation aspect of copolymers. The synthesis of block copolymers was accomplished by a combination of facile ring-opening polymerisation and click chemistry to retain the structure uniformity. The presence of folic acid on the surface of micelles with diameter ~150 nm upsurge the uptake efficiency by 1.6 fold on folate receptor overexpressing MDA-MB-231 cells indicating the attainment of targeting using ligand functionality. The drug delivery capability of these carriers was ascertained by using docetaxel as a model drug, whereby the in vitro cytotoxicity of the drug was significantly increased after incorporation in micelles 48 h post incubation. We have also investigated the possible endocytosis route of non-targeted micelles and found that caveolae-mediated endocytosis was the preferred route of uptake. This work strengthens the prospect of using novel bio-based poly(δ-decalactone) micelles as efficient multifunctional drug delivery nanocarriers towards medical applications.

3.
Front Chem ; 8: 602941, 2020.
Article in English | MEDLINE | ID: mdl-33585400

ABSTRACT

Nanogels (Ng) are crosslinked polymer-based hydrogel nanoparticles considered to be next-generation drug delivery systems due to their superior properties, including high drug loading capacity, low toxicity, and stimuli responsiveness. In this study, dually thermo-pH-responsive plasmonic nanogel (AuNP@Ng) was synthesized by grafting poly (N-isopropyl acrylamide) (PNIPAM) to chitosan (CS) in the presence of a chemical crosslinker to serve as a drug carrier system. The nanogel was further incorporated with gold nanoparticles (AuNP) to provide simultaneous drug delivery and photothermal therapy (PTT). Curcumin's (Cur) low water solubility and low bioavailability are the biggest obstacles to effective use of curcumin for anticancer therapy, and these obstacles can be overcome by utilizing an efficient delivery system. Therefore, curcumin was chosen as a model drug to be loaded into the nanogel for enhancing the anticancer efficiency, and further, its therapeutic efficiency was enhanced by PTT of the formulated AuNP@Ng. Thorough characterization of Ng based on CS and PNIPAM was conducted to confirm successful synthesis. Furthermore, photothermal properties and swelling ratio of fabricated nanoparticles were evaluated. Morphology and size measurements of nanogel were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Nanogel was found to have a hydrodynamic size of ~167 nm and exhibited sustained release of curcumin up to 72 h with dual thermo-pH responsive drug release behavior, as examined under different temperature and pH conditions. Cytocompatibility of plasmonic nanogel was evaluated on MDA-MB-231 human breast cancer and non-tumorigenic MCF 10A cell lines, and the findings indicated the nanogel formulation to be cytocompatible. Nanoparticle uptake studies showed high internalization of nanoparticles in cancer cells when compared with non-tumorigenic cells and confocal microscopy further demonstrated that AuNP@Ng were internalized into the MDA-MB-231 cancer cells via endosomal route. In vitro cytotoxicity studies revealed dose-dependent and time-dependent drug delivery of curcumin loaded AuNP@Ng/Cur. Furthermore, the developed nanoparticles showed an improved chemotherapy efficacy when irradiated with near-infrared (NIR) laser (808 nm) in vitro. This work revealed that synthesized plasmonic nanogel loaded with curcumin (AuNP@Ng/Cur) can act as stimuli-responsive nanocarriers, having potential for dual therapy i.e., delivery of hydrophobic drug and photothermal therapy.

4.
Biomater Sci ; 7(2): 634-644, 2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30534690

ABSTRACT

Cancer is an exceptionally confounding disease that demands the development of powerful drug/drugs, without inducing heavy adverse side effects. Thus, different approaches have been applied to improve the targeted delivery of cancer drugs: for example by using nanocarriers. However, nanocarriers are foreign materials, which need further validation for their biocompatibility and biodegradability. In this study, we have chemically conjugated the hydrophilic anticancer drug doxorubicin (DOX) with the hydrophobic drug paclitaxel (PTX) through a redox-sensitive disulfide bond, abbreviated to DOX-S-S-PTX. Subsequently, due to its amphiphilic characterization, the prodrug can self-assemble into nanoparticles under microfluidic nanoprecipitation. These novel prodrug nanoparticles have a super-high drug loading degree of 89%, which is impossible to achieve by any nanocarrier systems, and can be tailored to 180 nm to deliver themselves to the target, and release DOX and PTX under redox conditions, which are often found in cancer cells. By evaluating cell viability in MDA-MB-231, MDA-MB-231/ADR and MEF cell lines, we observed that the prodrug nanoparticles effectively killed the cancer cells, and selectively conquered the MDA-MB-231/ADR. Meanwhile, MEF cells were spared due to their lack of a redox condition. The cell interaction results show that the reduced intermediate of the prodrug can also bind to parent drug biological targets. The hemolysis results show that the nanoparticles are biocompatible in blood. Computer modelling suggested that the prodrug is unlikely to bind to biological targets that parent drugs still strongly interact with. Finally, we confirm that the prodrug nanoparticles have no therapeutic effect in blood or healthy cells, but can selectively eliminate the cancer cells that meet the redox conditions to cleave the disulfide bond and release the drugs DOX and PTX.


Subject(s)
Doxorubicin/chemistry , Drug Carriers/chemistry , Lab-On-A-Chip Devices , Nanoparticles/chemistry , Nanotechnology/instrumentation , Paclitaxel/chemistry , Prodrugs/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Paclitaxel/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use
5.
Sci Rep ; 7(1): 8423, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827674

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are extensively explored as drug delivery systems, but in depth understanding of design-toxicity relationships is still scarce. We used zebrafish (Danio rerio) embryos to study toxicity profiles of differently surface functionalized MSNs. Embryos with the chorion membrane intact, or dechoroniated embryos, were incubated or microinjected with amino (NH2-MSNs), polyethyleneimine (PEI-MSNs), succinic acid (SUCC-MSNs) or polyethyleneglycol (PEG-MSNs) functionalized MSNs. Toxicity was assessed by viability and cardiovascular function. NH2-MSNs, SUCC-MSNs and PEG-MSNs were well tolerated, 50 µg/ml PEI-MSNs induced 100% lethality 48 hours post fertilization (hpf). Dechoroniated embryos were more sensitive and 10 µg/ml PEI-MSNs reduced viability to 5% at 96hpf. Sensitivity to PEG- and SUCC-, but not NH2-MSNs, was also enhanced. Typically cardiovascular toxicity was evident prior to lethality. Confocal microscopy revealed that PEI-MSNs penetrated into the embryos whereas PEG-, NH2- and SUCC-MSNs remained aggregated on the skin surface. Direct exposure of inner organs by microinjecting NH2-MSNs and PEI-MSNs demonstrated that the particles displayed similar toxicity indicating that functionalization affects the toxicity profile by influencing penetrance through biological barriers. The data emphasize the need for careful analyses of toxicity mechanisms in relevant models and constitute an important knowledge step towards the development of safer and sustainable nanotherapies.


Subject(s)
Calcium Compounds/toxicity , Membranes/metabolism , Nanoparticles , Permeability , Silicates/toxicity , Surface Properties , Animals , Calcium Compounds/pharmacokinetics , Cardiovascular System/drug effects , Embryo, Nonmammalian , Silicates/pharmacokinetics , Survival Analysis , Zebrafish
6.
Mol Ther ; 24(5): 926-36, 2016 05.
Article in English | MEDLINE | ID: mdl-26916284

ABSTRACT

Cancer stem cells (CSCs) are a challenge in cancer treatment due to their therapy resistance. We demonstrated that enhanced Notch signaling in breast cancer promotes self-renewal of CSCs that display high glycolytic activity and aggressive hormone-independent tumor growth in vivo. We took advantage of the glycolytic phenotype and the dependence on Notch activity of the CSCs and designed nanoparticles to target the CSCs. Mesoporous silica nanoparticles were functionalized with glucose moieties and loaded with a γ-secretase inhibitor, a potent interceptor of Notch signaling. Cancer cells and CSCs in vitro and in vivo efficiently internalized these particles, and particle uptake correlated with the glycolytic profile of the cells. Nanoparticle treatment of breast cancer transplants on chick embryo chorioallantoic membranes efficiently reduced the cancer stem cell population of the tumor. Our data reveal that specific CSC characteristics can be utilized in nanoparticle design to improve CSC-targeted drug delivery and therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Enzyme Inhibitors/administration & dosage , Glucose/metabolism , Neoplastic Stem Cells/drug effects , Receptors, Notch/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Female , Humans , MCF-7 Cells , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
7.
Small ; 12(12): 1578-92, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26807551

ABSTRACT

Nanomedicine is gaining ground worldwide in therapy and diagnostics. Novel nanoscopic imaging probes serve as imaging tools for studying dynamic biological processes in vitro and in vivo. To allow detectability in the physiological environment, the nanostructure-based probes need to be either inherently detectable by biomedical imaging techniques, or serve as carriers for existing imaging agents. In this study, the potential of mesoporous silica nanoparticles carrying commercially available fluorochromes as self-regenerating cell labels for long-term cellular tracking is investigated. The particle surface is organically modified for enhanced cellular uptake, the fluorescence intensity of labeled cells is followed over time both in vitro and in vivo. The particles are not exocytosed and particles which escaped cells due to cell injury or death are degraded and no labeling of nontargeted cell populations are observed. The labeling efficiency is significantly improved as compared to that of quantum dots of similar emission wavelength. Labeled human breast cancer cells are xenotransplanted in nude mice, and the fluorescent cells can be detected in vivo for a period of 1 month. Moreover, ex vivo analysis reveals fluorescently labeled metastatic colonies in lymph node and rib, highlighting the capability of the developed probes for tracking of metastasis.


Subject(s)
Cell Tracking/methods , Fluorescent Dyes/chemistry , Optical Phenomena , Silicon Dioxide/chemistry , Animals , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Diagnostic Imaging , Exocytosis , Female , Flow Cytometry , Fluorescence , Humans , Mice, Nude , Nanoparticles/ultrastructure , Porosity , Quantum Dots/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...