Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3180, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816288

ABSTRACT

Exposure to stress during adolescence exerts a long-term impact on behavior and might contribute to the development of several neuropsychiatric disorders. In adults, control over stress has been found to protect from the negative consequences of stress, but the influence of controllability at early ages has not been extensively studied. Here, we evaluated in a rodent model the effects of repeated exposure in adolescent male rats to controllable versus uncontrollable foot-shock stress (CST or UST, respectively). Rats were assigned to three groups: non-stress (stress-naïve), CST (exposed to 8 sessions of a two-way shuttle active avoidance task over a period of 22 days) and UST (receiving the same amount of shocks as CST, regardless of their actual behavior). During adulthood, different cohorts were tested in several tasks evaluating inhibitory control and cognitive flexibility: 5-choice serial reaction time, delay-discounting, gambling test and probabilistic reversal learning. Results showed that the hypothalamic-pituitary-adrenal response to the first shock session was similar in CST and UST animals, but the response to the 8th session was lower in CST animals. In adulthood, the UST animals presented impaired motor (but not cognitive) impulsivity and more perseverative behavior. The behavioral effects of UST were associated with increased number of D2 dopamine receptors in dorsomedial striatum, but not in other striatal regions. In summary, UST exposure during adolescence induced long-term impairments in impulsivity and compulsivity, whereas CST had only minor effects. These data support a critical role of stress uncontrollability on the long-lasting consequences of stress, as a risk factor for mental illnesses.


Subject(s)
Endocrine System/physiology , Impulsive Behavior/physiology , Receptors, Dopamine D2/metabolism , Stress, Psychological , Age Factors , Animals , Behavior, Animal/physiology , Choice Behavior/physiology , Cognition/physiology , Corpus Striatum/physiology , Delay Discounting/physiology , Humans , Male , Rats , Reaction Time/physiology
2.
Brain Struct Funct ; 223(5): 2213-2227, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29450645

ABSTRACT

Regardless of its particular nature, emotional stressors appear to elicit a widespread and roughly similar brain activation pattern as evaluated by c-fos expression. However, their behavioral and physiological consequences may strongly differ. Here we addressed in adult male rats the contribution of the intensity and the particular nature of stressors by comparing, in a set of brain areas, the number of c-fos expressing neurons in response to open-field, cat odor or immobilization on boards (IMO). These are qualitatively different stressors that are known to differ in terms of intensity, as evaluated by biological markers. In the present study, plasma levels of the adrenocorticotropic hormone (ACTH) demonstrated that intensity increases in the following order: open-field, cat odor and IMO. Four different c-fos activation patterns emerged among all areas studied: (i) positive relationship with intensity (posterior-dorsal medial amygdala, dorsomedial hypothalamus, lateral septum ventral and paraventricular nucleus of the hypothalamus), (ii) negative relationship with intensity (cingulate cortex 1, posterior insular cortex, dorsal striatum, nucleus accumbens and some subdivisions of the hippocampal formation); (iii) activation not dependent on the intensity of the stressor (prelimbic and infralimbic cortex and lateral and basolateral amygdala); and (iv) activation specifically associated with cat odor (ventromedial amygdala and ventromedial hypothalamus). Histone 3 phosphorylation at serine 10, another neuronal activation marker, corroborated c-fos results. Summarizing, deepest analysis of the brain activation pattern elicit by emotional stressor indicated that, in spite of activating similar areas, each stressor possess their own brain activation signature, mediated mainly by qualitative aspects but also by intensity.


Subject(s)
Brain/metabolism , Emotions/physiology , Gene Expression Regulation/physiology , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological/pathology , Adrenocorticotropic Hormone/blood , Animals , Brain/cytology , Exploratory Behavior/physiology , Histones/metabolism , Male , Neurons/metabolism , Odorants , Phosphorylation , Proto-Oncogene Proteins c-fos/genetics , Rats , Rats, Sprague-Dawley , Serine/metabolism , Statistics, Nonparametric , Stress, Psychological/blood , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL