Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 20(6): 1422-1434, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28793265

ABSTRACT

Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and ß subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and ß complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) ß1, which was identified as a direct hepatic GAbp target. Impairment of AMPKß1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKß1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications.


Subject(s)
Atherosclerosis/metabolism , GA-Binding Protein Transcription Factor/metabolism , Hepatocytes/metabolism , Hypercholesterolemia/metabolism , Protein Kinases/metabolism , Signal Transduction , AMP-Activated Protein Kinase Kinases , Animals , Atherosclerosis/etiology , Atherosclerosis/pathology , Cell Line , Cells, Cultured , Cholesterol/metabolism , GA-Binding Protein Transcription Factor/chemistry , Hypercholesterolemia/complications , Male , Mice , Mice, Inbred C57BL , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Nat Med ; 22(10): 1120-1130, 2016 10.
Article in English | MEDLINE | ID: mdl-27571348

ABSTRACT

Cachexia represents a fatal energy-wasting syndrome in a large number of patients with cancer that mostly results in a pathological loss of skeletal muscle and adipose tissue. Here we show that tumor cell exposure and tumor growth in mice triggered a futile energy-wasting cycle in cultured white adipocytes and white adipose tissue (WAT), respectively. Although uncoupling protein 1 (Ucp1)-dependent thermogenesis was dispensable for tumor-induced body wasting, WAT from cachectic mice and tumor-cell-supernatant-treated adipocytes were consistently characterized by the simultaneous induction of both lipolytic and lipogenic pathways. Paradoxically, this was accompanied by an inactivated AMP-activated protein kinase (Ampk), which is normally activated in peripheral tissues during states of low cellular energy. Ampk inactivation correlated with its degradation and with upregulation of the Ampk-interacting protein Cidea. Therefore, we developed an Ampk-stabilizing peptide, ACIP, which was able to ameliorate WAT wasting in vitro and in vivo by shielding the Cidea-targeted interaction surface on Ampk. Thus, our data establish the Ucp1-independent remodeling of adipocyte lipid homeostasis as a key event in tumor-induced WAT wasting, and we propose the ACIP-dependent preservation of Ampk integrity in the WAT as a concept in future therapies for cachexia.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes, White/drug effects , Adipose Tissue, White/drug effects , Apoptosis Regulatory Proteins/drug effects , Cachexia/metabolism , Lipid Metabolism/drug effects , Neoplasms/metabolism , Peptide Fragments/pharmacology , AMP-Activated Protein Kinases/pharmacology , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cachexia/etiology , Cells, Cultured , In Vitro Techniques , Lipogenesis/drug effects , Lipolysis/drug effects , Mice , Neoplasms/complications , Thermogenesis/drug effects , Uncoupling Protein 1/drug effects , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...