Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.259
Filter
1.
Nano Lett ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953881

ABSTRACT

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.

2.
Article in English | MEDLINE | ID: mdl-38957995

ABSTRACT

Background: The objective of this study was to investigate the association between pre-operative body mass index (BMI) and surgical infection in perihilar cholangiocarcinoma (pCCA) patients treated with curative resection. Methods: Consecutive pCCA patients were enrolled from four tertiary hospitals between 2008 and 2022. According to pre-operative BMI, the patients were divided into three groups: low BMI (≤18.4 kg/m2), normal BMI (18.5-24.9 kg/m2), and high BMI (≥25.0 kg/m2). The incidence of surgical infection among the three groups was compared. Multivariable logistic regression models were used to determine the independent risk factors associated with surgical infection. Results: A total of 371 patients were enrolled, including 283 patients (76.3%) in the normal BMI group, 30 patients (8.1%) in the low BMI group, and 58 patients (15.6%) in the high BMI group. The incidence of surgical infection was significantly higher in the patients in the low BMI and high BMI groups than in the normal BMI group. The multivariable logistic regression model showed that low BMI and high BMI were independently associated with the occurrence of surgical infection. Conclusions: The pCCA patients with a normal BMI treated with curative resection could have a lower risk of surgical infection than pCCA patients with an abnormal BMI.

3.
Arch Pharm (Weinheim) ; : e2400137, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963324

ABSTRACT

In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 µM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.

6.
Mikrochim Acta ; 191(7): 387, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38869719

ABSTRACT

A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking aggregation amplification due to the presence of seven AFP-specific A1 nanobodies on the A1-C4bpα heptamer. Leveraging antibody-functionalized magnetic nanoparticles for target AFP capture and DLS signal output, the proposed heptamer-assisted DLS immunosensor offers high sensitivity, strong specificity, and ease of operation. Under the optimized conditions, the designed DLS immunosensor demonstrates excellent linear detection of AFP in the concentration range 0.06 ng mL-1 to 512 ng mL-1, with a detection limit of 15 pg mL-1. The selectivity, accuracy, precision, practicability, and reliability of this newly developed method were further validated through an assay of AFP levels in spiked and actual human serum samples. This work introduces a novel approach for constructing ultrasensitive DLS immunosensors, easily extendable to the sensitive determination of other targets via simply replacing the nanobody sequence, holding great promise in various applications, particularly in disease diagnosis.


Subject(s)
Dynamic Light Scattering , Limit of Detection , alpha-Fetoproteins , alpha-Fetoproteins/analysis , alpha-Fetoproteins/immunology , Humans , Immunoassay/methods , Antibodies, Immobilized/immunology , Biosensing Techniques/methods , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Magnetite Nanoparticles/chemistry
7.
J Cancer ; 15(12): 3708-3723, 2024.
Article in English | MEDLINE | ID: mdl-38911375

ABSTRACT

With the advancement of RNA sequencing technology, there has been a drive to uncover and elucidate the pivotal role of A-to-I RNA editing events in tumorigenesis. However, A-to-I miRNA editing events have been clearly identified in bladder cancer, the molecular mechanisms underlying their role in bladder cancer remain unclear. In our investigation, we observed a notable under-expression of edited miR-154-p13-5p in bladder cancer (BC) tissues, in contrast to normal counterparts. Remarkably, heightened expression levels of edited miR-154-p13-5p correlated with improved survival outcomes. To assess the impact of modified miR-154-p13-5p, we conducted a string of cell phenotype assays through transfection of the corresponding miRNAs or siRNAs. The results unequivocally demonstrate that edited miR-154-p13-5p exerts a substantial inhibitory influence on proliferation, migration, and induces apoptosis by specifically targeting LIX1L in bladder cancer. Moreover, we observed that the editing of miR-154-p13-5p or LIX1L-siRNAs inhibits the expression of LIX1L, thereby suppressing EMT-related proteins and cell cycle protein CDK2. Simultaneously, an upregulation in the expression levels of Caspase-3 and Cleaved Caspase-3 were also detected. Our research findings suggest that the upregulation of edited miR-154-p13-5p could potentially enhance the prognosis of bladder cancer, thereby presenting molecular biology-based therapeutic strategies.

8.
Sci Total Environ ; 946: 174264, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936716

ABSTRACT

Benzotriazole ultraviolet absorbents (BUAs) of emerging concern were recently monitored in seawater and sediments from the Bohai Sea (BS) and North Yellow Sea (NYS), which are impacted by human activities, to elucidate their regional occurrence patterns, phase distributions, and contamination profiles. Although environmental variables such as sedimentary organic carbon, particle size, and salinity, as well as hydrological conditions, affected the environmental occurrence of BUAs in the BS and NYS, the source dependence of BUA distributions associated with urban impacts and riverine inputs was highlighted. Substantial spatial variability in the composition patterns and contamination profiles of BUAs identified through correlation and principal component analyses were likely caused by region-specific sources and characteristics. The distribution of target BUAs between the sediment and seawater phases showed no dependence on the octanol-water partition coefficient (KOW) but exhibited marked spatial variations. The diversity of BUA sorption behaviors was further explained by the total organic carbon (TOC)-normalized distribution coefficient (KTOC). Classic logKTOC-logKOW linear relationships accurately predicted the phase distributions of UV-326, UV-328, and UV-234, but deviations were found for lighter and heavier BUAs, possibly due to the influences of physical disturbance and microparticle binding.

9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38916438

ABSTRACT

Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.


Subject(s)
Biofilms , Geobacter , Prophages , Biofilms/growth & development , Geobacter/genetics , Geobacter/physiology , Prophages/genetics , Prophages/physiology , Bioelectric Energy Sources/microbiology , Microbial Interactions , Transcriptome
10.
Bone ; 186: 117146, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38844017

ABSTRACT

Obesity has become a major global health problem and the effect on bone formation has received increasing attention. However, the interaction between obesity and bone metabolism is complex and still not fully understood. Here, we show that caveolin-1 (Cav1), a membrane scaffold protein involved in regulating a variety of cellular processes, plays a key regulatory role as a bridge connecting obesity and bone metabolism. High-fat diet (HFD)-induced obese C57BL/6J mouse displayed a significant increase in Cav1 expression and lower osteogenic activity; In vitro treatment of osteoblastic MC3T3-E1 cells with 1 mM free fatty acids (FFA) significantly promoted Cav1 expression and PINK1/Parkin regulated mitophagy, but inhibited the expression of osteogenic marker genes. Conversely, reduced expression of the Cav1 gene prevented these effects. Both endogenous oxidative stress and Sirt1 pathway were also significantly reduced after Cav1 knockdown in FFA-treated cells. Finally, Cav1-Sirt1 docking and co-immunoprecipitation results showed that Cav1 interacted with Sirt1 and FFA enhanced the interaction. Taken together, these results suggest that obesity impairs bone development and formation through up-regulation of the Cav1 gene, which lead to inhibition of Sirt1/FOXO1 and Sirt1/PGC-1α signaling pathways through interacting with Sirt1 molecule, and an increase of mitophagy level.


Subject(s)
Caveolin 1 , Mice, Inbred C57BL , Mitophagy , Obesity , Osteogenesis , Signal Transduction , Sirtuin 1 , Animals , Caveolin 1/metabolism , Osteogenesis/drug effects , Obesity/metabolism , Obesity/pathology , Sirtuin 1/metabolism , Mice , Male , Diet, High-Fat , Cell Line
11.
Curr Opin Immunol ; 88: 102432, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38875738

ABSTRACT

Gasdermins are membrane pore-forming proteins that cause pyroptosis, an inflammatory cell death in which cells burst and release cytokines, chemokines, and other host alarm signals, such as ATP and HMGB1, which recruit and activate immune cells at sites of infection and danger. There are five gasdermins in humans - gasdermins A to E. Pyroptosis was first described in myeloid cells and mucosal epithelia, which express gasdermin D and activate it when cytosolic sensors of invasive infection or tissue damage assemble into large macromolecular structures, called inflammasomes. Inflammasomes recruit and activate inflammatory caspases (caspase 1, 4, 5, and 11), which cut gasdermin D to remove an inhibitory C-terminal domain, allowing the N-terminal domain to bind to membrane acidic lipids and oligomerize into pores. Recent studies have identified inflammasome-independent proteolytic pathways that activate gasdermin D and the other gasdermins. Here, we review inflammasome-independent pyroptosis pathways and what is known about their role in normal physiology and disease.

12.
Nat Commun ; 15(1): 5128, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879628

ABSTRACT

Accurately controlling the product selectivity in syngas conversion, especially increasing the olefin selectivity while minimizing C1 byproducts, remains a significant challenge. Epsilon Fe2C is deemed a promising candidate catalyst due to its inherently low CO2 selectivity, but its use is hindered by its poor high-temperature stability. Herein, we report the successful synthesis of highly stable ε-Fe2C through a N-induced strategy utilizing pyrolysis of Prussian blue analogs (PBAs). This catalyst, with precisely controlled Mn promoter, not only achieved an olefin selectivity of up to 70.2% but also minimized the selectivity of C1 byproducts to 19.0%, including 11.9% CO2 and 7.1% CH4. The superior performance of our ε-Fe2C-xMn catalysts, particularly in minimizing CO2 formation, is largely attributed to the interface of dispersed MnO cluster and ε-Fe2C, which crucially limits CO to CO2 conversion. Here, we enhance the carbon efficiency and economic viability of the olefin production process while maintaining high catalytic activity.

13.
Am J Transl Res ; 16(5): 2034-2048, 2024.
Article in English | MEDLINE | ID: mdl-38883374

ABSTRACT

OBJECTIVE: Aggregating evidence highlights the strong genetic basis underpinning congenital heart disease (CHD). Here BMP4 was chosen as a prime candidate gene causative of human CHD predominantly because BMP4 was amply expressed in the embryonic hearts and knockout of Bmp4 in mice led to embryonic demise mainly from multiple cardiovascular developmental malformations. The aim of this retrospective investigation was to discover a novel BMP4 mutation underlying human CHD and explore its functional impact. METHODS: A sequencing examination of BMP4 was implemented in 212 index patients suffering from CHD and 236 unrelated non-CHD individuals as well as the family members available from the proband carrying a discovered BMP4 mutation. The impacts of the discovered CHD-causing mutation on the expression of NKX2-5 and TBX20 induced by BMP4 were measured by employing a dual-luciferase analysis system. RESULTS: A new heterozygous BMP4 mutation, NM_001202.6:c.318T>G;p.(Tyr106*), was found in a female proband affected with familial CHD. Genetic research of the mutation carrier's relatives unveiled that the truncating mutation was in co-segregation with CHD in the pedigree. The nonsense mutation was absent from 236 unrelated non-CHD control persons. Quantitative biologic measurement revealed that Tyr106*-mutant BMP4 failed to induce the expression of NKX2-5 and TBX20, two genes whose expression is lost in CHD. CONCLUSION: The current findings indicate BMP4 as a new gene predisposing to human CHD, allowing for improved prenatal genetic counseling along with personalized treatment of CHD patients.

14.
Front Cardiovasc Med ; 11: 1406856, 2024.
Article in English | MEDLINE | ID: mdl-38883986

ABSTRACT

The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.

15.
J Inflamm Res ; 17: 3785-3799, 2024.
Article in English | MEDLINE | ID: mdl-38895139

ABSTRACT

Background: Globally, the subsequent complications that accompany sepsis result in remarkable morbidity and mortality rates. The lung is among the vulnerable organs that incur the sepsis-linked inflammatory storm and frequently culminates into ARDS/ALI. The metformin-prescribed anti-diabetic drug has been revealed with anti-inflammatory effects in sepsis, but the underlying mechanisms remain unclear. This study aimed to ascertain metformin's effects and functions in a young mouse model of sepsis-induced ALI. Methods: Mice were randomly divided into 4 groups: sham, sham+ Met, CLP, and CLP+ Met. CLP was established as the sepsis-induced ALI model accompanied by intraperitoneal metformin treatment. At day 7, the survival state of mice was noted, including survival rate, weight, and M-CASS. Lung histological pathology and injury scores were determined by hematoxylin-eosin staining. The pulmonary coefficient was used to evaluate pulmonary edema. Furthermore, IL-1ß, CCL3, CXCL11, S100A8, S100A9 and NLRP3 expression in tissues collected from lungs were determined by qPCR, IL-1ß, IL-18, TNF-α by ELISA, caspase-1, ASC, NLRP3, P65, p-P65, GSDMD-F, GSDMD-N, IL-1ß and S100A8/A9 by Western blot. Results: The data affirmed that metformin enhanced the survival rate, lessened lung tissue injury, and diminished the expression of inflammatory factors in young mice with sepsis induced by CLP. In contrast to sham mice, the CLP mice were affirmed to manifest ALI-linked pathologies following CLP-induced sepsis. The expressions of pro-inflammatory factors, for instance, IL-1ß, IL-18, TNF-α, CXCL11, S100A8, and S100A9 are markedly enhanced by CLP, while metformin abolished this adverse effect. Western blot analyses indicated that metformin inhibited the sepsis-induced activation of GSDMD and the upregulation of S100A8/A9, NLRP3, and ASC. Conclusion: Metformin could improve the survival rate, lessen lung tissue injury, and minimize the expression of inflammatory factors in young mice with sepsis induced by CLP. Metformin reduced sepsis-induced ALI via inhibiting the NF-κB signaling pathway and inhibiting pyroptosis by the S100A8/A9-NLRP3-IL-1ß pathway.

16.
J Virol ; : e0084624, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899900

ABSTRACT

Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.

17.
Plants (Basel) ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891253

ABSTRACT

Camellia oil is valuable as an edible oil and serves as a base material for a range of high-value products. Camellia plants of significant economic importance, such as Camellia sinensis and Camellia oleifera, have been classified into sect. Thea and sect. Oleifera, respectively. Fatty acid desaturases play a crucial role in catalyzing the formation of double bonds at specific positions of fatty acid chains, leading to the production of unsaturated fatty acids and contributing to lipid synthesis. Comparative genomics results have revealed that expanded gene families in oil tea are enriched in functions related to lipid, fatty acid, and seed processes. To explore the function of the FAD gene family, a total of 82 FAD genes were identified in tea and oil tea. Transcriptome data showed the differential expression of the FAD gene family in mature seeds of tea tree and oil tea tree. Furthermore, the structural analysis and clustering of FAD proteins provided insights for the further exploration of the function of the FAD gene family and its role in lipid synthesis. Overall, these findings shed light on the role of the FAD gene family in Camellia plants and their involvement in lipid metabolism, as well as provide a reference for understanding their function in oil synthesis.

18.
J Mol Cell Biol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830800

ABSTRACT

Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membranous organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membranous organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.

19.
BMC Ecol Evol ; 24(1): 74, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831426

ABSTRACT

BACKGROUND: The geographic patterns of plant diversity in the Qinghai-Tibet Plateau (QTP) have been widely studied, but few studies have focused on wetland plants. This study quantified the geographic patterns of wetland plant diversity in the QTP through a comprehensive analysis of taxonomic, phylogenetic and functional indices. METHODS: Based on a large number of floras, monographs, specimens and field survey data, we constructed a comprehensive dataset of 1,958 wetland plant species in the QTP. Species richness (SR), phylogenetic diversity (PD), functional diversity (FD), net relatedness index (NRI) and net functional relatedness index (NFRI) were used to assess the taxonomic, phylogenetic and functional diversity of wetland plants. We explored the relationships between the diversity indices and four categories of environmental variables (i.e. energy-water, climate seasonality, topography and human activities). We used four diversity indices, namely endemic species richness, weighted endemism, phylogenetic endemism and functional endemism, together with the categorical analysis of neo- and paleo-endemism (CANAPE), to identify the endemic centers of wetland plants in the QTP. RESULTS: SR, PD and FD were highly consistent and showed a decreasing trend from southeast to northwest, decreasing with increasing elevation. The phylogenetic structure of wetland plant assemblages in most parts of the plateau is mainly clustered. The functional structure of wetland plant assemblages in the southeast of the plateau is overdispersed, while the functional structure of wetland plant assemblages in other areas is clustered. Energy-water and climate seasonality were the two most important categories of variables affecting wetland plant diversity. Environmental variables had a greater effect on the functional structure of wetland plants than on the phylogenetic structure. This study identified seven endemic centres, mainly in the Himalayas and Hengduan Mountains. CONCLUSIONS: Climate and topography are the main factors determining the geographic distribution of wetland plant diversity at large scales. The majority of grid cells in the QTP with significant phylogenetic endemism were mixed and super-endemism. At large scales, compared to climate and topography, human activities may not have a negative impact on wetland plant diversity in the QTP.


Subject(s)
Biodiversity , Plants , Wetlands , Plants/classification , Tibet , Phylogeny , China
20.
J Chem Inf Model ; 64(12): 4835-4849, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38847742

ABSTRACT

The lymphocyte-specific protein tyrosine kinase (LCK) plays a crucial role in both T-cell development and activation. Dysregulation of LCK signaling has been demonstrated to drive the oncogenesis of T-cell acute lymphoblastic leukemia (T-ALL), thus providing a therapeutic target for leukemia treatment. In this study, we introduced a sophisticated virtual screening strategy combined with biological evaluations to discover potent LCK inhibitors. Our initial approach involved utilizing the PLANET algorithm to assess and contrast various scoring methodologies suitable for LCK inhibitor screening. After effectively evaluating PLANET, we progressed to devise a virtual screening workflow that synergistically combines the strengths of PLANET with the capabilities of Schrödinger's suite. This integrative strategy led to the efficient identification of four potential LCK inhibitors. Among them, compound 1232030-35-1 stood out as the most promising candidate with an IC50 of 0.43 nM. Further in vitro bioassays revealed that 1232030-35-1 exhibited robust antiproliferative effects on T-ALL cells, which was attributed to its ability to suppress the phosphorylations of key molecules in the LCK signaling pathway. More importantly, 1232030-35-1 treatment demonstrated profound in vivo antileukemia efficacy in a human T-ALL xenograft model. In addition, complementary molecular dynamics simulations provided deeper insight into the binding kinetics between 1232030-35-1 and LCK, highlighting the formation of a hydrogen bond with Met319. Collectively, our study established a robust and effective screening strategy that integrates AI-driven and conventional methodologies for the identification of LCK inhibitors, positioning 1232030-35-1 as a highly promising and novel drug-like candidate for potential applications in treating T-ALL.


Subject(s)
Deep Learning , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Molecular Docking Simulation , Protein Kinase Inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Animals , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...