Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(8): e41616, 2012.
Article in English | MEDLINE | ID: mdl-22912673

ABSTRACT

Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD(-); n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD(+); n = 21). After quantile normalization, principal component analysis revealed that AVSD carriers could be distinguished from a combined group of ASD or VSD (ASD+VSD) carriers. From 9,758 expressed genes, we identified 889 and 1,016 genes differentially expressed between CHD(-) and AVSD and CHD(-) and ASD+VSD, respectively, with only 119 genes in common. A specific chromosomal enrichment was found in each group of affected genes. Among the differentially expressed genes, more than 65% are expressed in human or mouse fetal heart tissues (GEO dataset). Additional LCLs from new groups of AVSD and ASD+VSD patients were analyzed by quantitative PCR; observed expression ratios were similar to microarray results. Analysis of GO categories revealed enrichment of genes from pathways regulating clathrin-mediated endocytosis in patients with AVSD and of genes involved in semaphorin-plexin-driven cardiogenesis and the formation of cytoplasmic microtubules in patients with ASD-VSD. A pathway-oriented search revealed enrichment in the ciliome for both groups and a specific enrichment in Hedgehog and Jak-stat pathways among ASD+VSD patients. These genes or related pathways are therefore potentially involved in normal cardiogenesis as well as in cardiac malformations observed in individuals with trisomy 21.


Subject(s)
Down Syndrome/complications , Down Syndrome/pathology , Heart Septal Defects, Ventricular/complications , Heart Septal Defects/complications , Hedgehog Proteins/metabolism , Lymphocytes/pathology , Signal Transduction , Animals , Cell Line , Chromosomes, Human/genetics , Heart Septal Defects/genetics , Heart Septal Defects/metabolism , Heart Septal Defects/pathology , Heart Septal Defects, Ventricular/genetics , Heart Septal Defects, Ventricular/metabolism , Heart Septal Defects, Ventricular/pathology , Humans , Mice , Phenotype , Transcriptome , Young Adult
2.
Eur J Hum Genet ; 17(4): 454-66, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19002211

ABSTRACT

Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype-phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within approximately 85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 21/genetics , Down Syndrome/genetics , Phenotype , Trisomy/genetics , Abnormalities, Multiple/genetics , Comparative Genomic Hybridization , Genotype , Humans
3.
Biochem Biophys Res Commun ; 346(4): 1303-6, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-16806076

ABSTRACT

Patients with Down syndrome appear to be protected from the development of atherosclerosis. On the contrary, hyperhomocysteinemia is associated with an increased risk for atherosclerosis. As hyperhomocysteinemia due to cystathionine beta synthase deficiency is associated with a decreased expression of paraoxonase-1, a major anti-atherosclerotic component secreted by the liver, we aimed to analyze the expression of paraoxonase-1 and cystathionine beta synthase in Down syndrome fetal liver by quantitative real-time reverse transcriptase-polymerase chain reaction. Paraoxonase-1 was up-regulated in Down syndrome fetal liver, while cystathionine beta synthase gene expression in Down syndrome fetuses was similar to the gene level in control fetuses. Moreover, there was no evidence for an association between paraoxonase-1 genotypes influencing paraoxonase-1 gene expression and Down syndrome. Since most serum paraoxonase-1 is synthesized in the liver, an increase of hepatic paraoxonase-1 expression might be one of the factors which could explain the low incidence of atherosclerotic vascular disease in Down syndrome.


Subject(s)
Aryldialkylphosphatase/metabolism , Down Syndrome/metabolism , Gene Expression/physiology , Aryldialkylphosphatase/genetics , Fetus/anatomy & histology , Humans , Liver/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...