Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 138: 106648, 2023 09.
Article in English | MEDLINE | ID: mdl-37315451

ABSTRACT

CtpF is a Ca2+ transporter P-type ATPase key to the response to stress conditions and to Mycobacterium tuberculosis virulence, therefore, an interesting target for the design of novel anti-Mtb compounds. In this work, molecular dynamics simulations of four previously identified CtpF inhibitors allowed recognizing the key protein-ligand (P-L) interactions, which were then used to perform a pharmacophore-based virtual screening (PBVS) of 22 million compounds from ZINCPharmer. The top-rated compounds were then subjected to molecular docking, and their scores were refined by MM-GBSA calculations. In vitro assays showed that ZINC04030361 (Compound 7) was the best promising candidate, showing a MIC of 25.0 µg/mL, inhibition of Ca2+-ATPase activity (IC50) of 3.3 µM, cytotoxic activity of 27.2 %, and hemolysis of red blood cells lower than 0.2 %. Interestingly, the ctpF gene is upregulated in the presence of compound 7, compared to other alkali/alkaline P-type ATPases coding genes, strongly suggesting that CtpF is a compound 7-specific target.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Molecular Docking Simulation , Protein Binding , Molecular Dynamics Simulation , Membrane Transport Proteins/metabolism , Adenosine Triphosphatases/metabolism , Cell Membrane/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...