Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 59(8): 2102-2117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279611

ABSTRACT

The zinc finger protein 804A (ZNF804A) and the 5'-nucleotidase cytosolic II (NT5C2) genes are amongst the first schizophrenia susceptibility genes to have been identified in large-scale genome-wide association studies. ZNF804A has been implicated in the regulation of neuronal morphology and is required for activity-dependent changes to dendritic spines. Conversely, NT5C2 has been shown to regulate 5' adenosine monophosphate-activated protein kinase activity and has been implicated in protein synthesis in human neural progenitor cells. Schizophrenia risk genotype is associated with reduced levels of both NT5C2 and ZNF804A in the developing brain, and a yeast two-hybrid screening suggests that their encoded proteins physically interact. However, it remains unknown whether this interaction also occurs in cortical neurons and whether they could jointly regulate neuronal function. Here, we show that ZNF804A and NT5C2 colocalise and interact in HEK293T cells and that their rodent homologues, ZFP804A and NT5C2, colocalise and form a protein complex in cortical neurons. Knockdown of the Zfp804a or Nt5c2 genes resulted in a redistribution of both proteins, suggesting that both proteins influence the subcellular targeting of each other. The identified interaction between ZNF804A/ZFP804A and NT5C2 suggests a shared biological pathway pertinent to schizophrenia susceptibility within a neuronal cell type thought to be central to the neurobiology of the disorder, providing a better understanding of its genetic landscape.


Subject(s)
Schizophrenia , Humans , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Genome-Wide Association Study , HEK293 Cells , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Neurons/physiology , Schizophrenia/genetics , Schizophrenia/metabolism
2.
Aging Cell ; 21(2): e13549, 2022 02.
Article in English | MEDLINE | ID: mdl-35026048

ABSTRACT

Hexanucleotide repeat expansions in C9orf72 are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mechanisms by which the expansions cause disease are not properly understood but a favoured route involves its translation into dipeptide repeat (DPR) polypeptides, some of which are neurotoxic. However, the precise targets for mutant C9orf72 and DPR toxicity are not fully clear, and damage to several neuronal functions has been described. Many of these functions are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. ER-mitochondria signalling requires close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 'tethering' proteins. Here, we show that ER-mitochondria signalling and the VAPB-PTPIP51 tethers are disrupted in neurons derived from induced pluripotent stem (iPS) cells from patients carrying ALS/FTD pathogenic C9orf72 expansions and in affected neurons in mutant C9orf72 transgenic mice. In these mice, disruption of the VAPB-PTPIP51 tethers occurs prior to disease onset suggesting that it contributes to the pathogenic process. We also show that neurotoxic DPRs disrupt the VAPB-PTPIP51 interaction and ER-mitochondria contacts and that this may involve activation of glycogen synthase kinases-3ß (GSK3ß), a known negative regulator of VAPB-PTPIP51 binding. Finally, we show that these DPRs disrupt delivery of Ca2+ from ER stores to mitochondria, which is a primary function of the VAPB-PTPIP51 tethers. This delivery regulates a number of key neuronal functions that are damaged in ALS/FTD including bioenergetics, autophagy and synaptic function. Our findings reveal a new molecular target for mutant C9orf72-mediated toxicity.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism
3.
FEBS Lett ; 592(5): 812-830, 2018 03.
Article in English | MEDLINE | ID: mdl-29265370

ABSTRACT

Hypoxic-ischaemic encephalopathy, resulting from asphyxia during birth, affects 2-3 in every 1000 term infants and depending on severity, brings about life-changing neurological consequences or death. This hypoxic-ischaemia (HI) results in a delayed neural energy failure during which the majority of brain injury occurs. Currently, there are limited treatment options and additional therapies are urgently required. Mitochondrial dysfunction acts as a focal point in injury development in the immature brain. Not only do mitochondria become permeabilised, but recent findings implicate perturbations in mitochondrial dynamics (fission, fusion), mitophagy and biogenesis. Mitoprotective therapies may therefore offer a new avenue of intervention for babies who suffer lifelong disabilities due to birth asphyxia.


Subject(s)
Asphyxia Neonatorum/metabolism , Hypoxia-Ischemia, Brain/metabolism , Mitochondria/metabolism , Mitophagy , Organelle Biogenesis , Asphyxia Neonatorum/genetics , Asphyxia Neonatorum/pathology , Humans , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/pathology , Infant, Newborn , Mitochondria/genetics , Mitochondria/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...