Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 265: 116053, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38141285

ABSTRACT

The colony-stimulating factor 1 receptor (CSF1R) is an attractive target for inflammation disorders and cancers. Based on a series of pyrrolo[2,3-d]pyrimidine containing two carbo-aromatic rings, we have searched for new CSF1R inhibitors having a higher fraction of sp3-atoms. The phenyl unit in the 4-amino group could efficiently be replaced by tetrahydropyran (THP) retaining inhibitor potency. Exchanging the 6-aryl group with cyclohex-2-ene units also resulted in highly potent compounds, while fully saturated ring systems at C-6 led to a loss of activity. The structure-activity relationship study evaluating THP containing pyrrolo[2,3-d]pyrimidine derivates identified several highly active inhibitors by enzymatic studies. A comparison of 11 pairs of THP and aromatic compounds showed that inhibitors containing THP had clear benefits in terms of enzymatic potency, solubility, and cell toxicity. Guided by cellular experiments in Ba/F3 cells, five CSF1R inhibitors were further profiled in ADME assays, indicating the para-aniline derivative 16t as the most attractive compound for further development.


Subject(s)
Pyrimidines , Receptor Protein-Tyrosine Kinases , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology
2.
J Med Chem ; 66(10): 6959-6980, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37191268

ABSTRACT

Colony-stimulating factor-1 receptor (CSF1R) is a receptor tyrosine kinase that controls the differentiation and maintenance of most tissue-resident macrophages, and the inhibition of CSF1R has been suggested as a possible therapy for a range of human disorders. Herein, we present the synthesis, development, and structure-activity relationship of a series of highly selective pyrrolo[2,3-d]pyrimidines, showing subnanomolar enzymatic inhibition of this receptor and with excellent selectivity toward other kinases in the platelet-derived growth factor receptor (PDGFR) family. The crystal structure of the protein and 23 revealed that the binding conformation of the protein is DFG-out-like. The most promising compounds in this series were profiled for cellular potency and subjected to pharmacokinetic profiling and in vivo stability, indicating that this compound class could be relevant in a potential disease setting. Additionally, these compounds inhibited primarily the autoinhibited form of the receptor, contrasting the behavior of pexidartinib, which could explain the exquisite selectivity of these structures.


Subject(s)
Pyrimidines , Receptor Protein-Tyrosine Kinases , Humans , Structure-Activity Relationship , Pyrimidines/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
3.
Eur J Med Chem ; 255: 115344, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37141705

ABSTRACT

The colony-stimulating factor 1 receptor (CSF1R) plays an important role in the regulation of many inflammatory processes, and overexpression of the kinase is implicated in several disease states. Identifying selective, small-molecule inhibitors of CSF1R may be a crucial step toward treating these disorders. Through modelling, synthesis, and a systematic structure-activity relationship study, we have identified a number of potent and highly selective purine-based inhibitors of CSF1R. The optimized 6,8-disubstituted antagonist, compound 9, has enzymatic IC50 of 0.2 nM, and displays a strong affinity toward the autoinhibited form of CSF1R, contrasting that of other previously reported inhibitors. As a result of its binding mode, the inhibitor shows excellent selectivity (Selectivity score: 0.06), evidenced by profiling towards a panel of 468 kinases. In cell-based assays, this inhibitor shows dose-dependent blockade of CSF1-mediated downstream signalling in murine bone marrow-derived macrophages (IC50 = 106 nM) as well as disruption of osteoclast differentiation at nanomolar levels. In vivo experiments, however, indicate that improve metabolic stability is needed in order to further progress this compound class.


Subject(s)
Macrophages , Osteoclasts , Animals , Mice , Receptor Protein-Tyrosine Kinases , Cell Differentiation , Purines/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
4.
Bioorg Chem ; 88: 102918, 2019 07.
Article in English | MEDLINE | ID: mdl-30999245

ABSTRACT

The epidermal growth factor receptor represents an important target in cancer therapy, and low molecular weight inhibitors based on quinazolines have reached the marked. Herein we report on a new scaffold, 5-aryl-7H-pyrrolo[2,3-d]pyrimidin-4-amines, and show that when employing (S)-phenylglycinol as C-4 substituent, potent inhibitors can be made. The two most active inhibitors have suitable druglike properties, were equipotent with Erlotinib in Ba/F3 cell studies, and showed lower cross reactivity than Erlotinib in a panel of 50 kinases.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Binding Sites , Cell Line , Cell Proliferation/drug effects , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrroles/chemical synthesis , Pyrroles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL